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Abstract— The human brain is one of the most complex 

physiological systems. Therefore, electroencephalogram 

(EEG) signal modeling is important to achieve a better 

understanding of the physical mechanis ms generating 

these signals. The aim of this study is to investigate the 

application of Kalman filter and the state space model 

for estimat ion of electroencephalogram signals in a 

specific pathological state. For this purpose, two types 

of EEG signals (normal and partial ep ilepsy) were 

analyzed. The estimation performance of the proposed 

method on EEG signals is evaluated using the root 

mean square (RMS) measurement. The result of the 

present study shows that this model is appropriate for 

the analysis of EEG recordings. In fact, this model is 

capable of p redicting changes in EEG time series with 

phenomena such as epileptic spikes and seizures. 

 

Index Terms— Electroencephalogram, Epilepsy, 

Kalman Filter, Modeling, State Space 

 

I. Introduction 

The electroencephalogram (EEG) measures the 

electrical activity o f the b rain  by applying electrodes on 

the head surface which was firstly introduced by Berger 

[1]. It is a  non-invasive technique and there has been an 

explosion of popular and scientific interest in measuring 

and analyzing it in many fields related to neuroscience 

(physiology, psychology, neurology, psychiatry, etc.) 

[2]. 

With regard to the diagnosis and localization of 

pathological processes involved in epilepsy, the 

recordings of brain activity by means of EEG have 

become widely important. 

One of the most disabling aspects of epilepsy is the 

sudden, unforeseen way in which epileptic seizures 

strike. Apart from the risk of serious injury, there is 

often a severe feeling o f helplessness that has a strong 

impact on the everyday life of a patient [3]. The word 

‘epilepsy’ is derived from the Greek word  epilambanein, 

which means ‘to seize or attack’. It is now known, 

however, that seizures are the result of a sudden, usually 

brief, excessive electrical discharge in a group of brain 

cells (neurons) and different parts of the brain can be 

the site of such discharges. Transient symptoms can 

occur, such as loss of awareness or consciousness and 

disturbances of movement, sensation (including v ision, 

hearing, and taste), mood, or mental function. 

EEG signal modeling is important to achieve a better 

understanding of the physical mechanis ms generating 

these signals and to identify the causes of changes in 

EEG signals [4]. Modeling can also be used for 

predicting the future neurological outcome and for data 

compression. In addition, simulations based on the 

models of EEG signals  can be used to demonstrate the 

effectiveness of a certain quantitative analysis method 

or EEG feature extraction. 

In order to improve the estimation of noisy 

physiological signals, d ifferent methods have been 

employed. Some of these methods consist of machine 

learning technique [5], averaging [6] and Kalman 

filtering [7, 8]. Machine learning techniques can detect 

artifacts efficiently but in this method large amount of 

data is required. Averaging methods can reduce the 

noise levels, but it smooths the signal fluctuations. 

Compared to these techniques, Kalman filter (KF) 

methods can estimate the trends of biological signals [9].  

The properties of KF along with the simplicity of the 

derived equations make it valuable in the analysis of 

signals. In another study [10] an  off-line Kalman filter 

approach to remove Transcranial Magnetic Stimulation 

(TMS) induced artifacts from EEG record ings is 

proposed. Lenz et al. [7] made use of a modified 

unscented Kalman filter and a corresponding unscented 

smoother for the estimation of the underlying neural 

activity of the brain. Purdon et al. [11] have developed a 

state space approach for mult imodal integration of 

simultaneous EEG and fMRI. Li et al. [8] evaluated a 

new robust tracking algorithm for estimat ing blood 

pressure and heart rate (HR) based upon a Kalman 

Filter with an update sequence modified by the KF 

innovation sequence and the value of the Signal Quality 

Index (SQI). In  the study of Mneimneh et al. [12] an 

adaptive Kalman filter is proposed for the real time 

removal of baseline wandering using a polynomial 
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approximation independent of the signal characteristics. 

Bohlin [13], Mathieu [14], Dusquesnoy [15], 

Blechschmid [16] and Jansen et al. [17,18] have already 

applied Kalman filtering to an AR model for analyzing 

EEG signals.  

Despite these works and the theoretical advantages 

(optimal filter, non-stationary spectral analysis), 

Kalman filtering was not very much used for EEG 

analysis and modeling in a specific neurological and 

pathological disorders. It  can be assumed that the 

unsolved problem of selecting the model o rder and the 

unstable estimation algorithms were reasons for this. 

From the mult iplicity of concepts and methods for 

time-series analysis that have been applied to neuro-

scientific time-series, this study focused on predictive 

modeling, i.e., finding a predictor fo r future time-series 

values, based on present and past values. More 

precisely, we will d iscuss a particular class of predictive 

modeling that is attracting considerable attention due to 

its wide applicability: the state-space model [4, 19-22] 

and Kalman  filter. In this study, a state space model is 

used to distinguish between the underlying brain  states 

and the EEG measurements in epileptic patients. In 

addition, we make use of a Kalman filter for the 

estimation of the fundamental neural activity. 

The paper is structured as follows. In  the next section, 

the signals and methods (state space model and Kalman 

filtering) used in this study are briefly described. Then, 

the results of analysis on data sets are presented. Finally, 

some results of EEG data are discussed. 

 

II. Methods  

2.1 Data Selection 

Five sets (denoted A–E) each containing 100 single 

channel EEG segments of 23.6-sec duration, were 

collected by Andrzejak et  al. [23, 24]. These segments 

were selected and cut out from continuous multichannel 

EEG recordings after visual inspection for artifacts, e.g., 

due to muscle activity or eye movements. 

Sets A and B consisted of segments taken from 

surface EEG recordings that were carried out on healthy 

volunteers using a standardized electrode placement. 

Volunteers were relaxed  in  a conscious state with eyes 

open (A) and eyes closed (B), respectively. Sets C, D, 

and E originated from the EEG arch ive of pre-surgical 

diagnosis [23, 24]. 

Segments in set D were recorded from with in the 

epileptogenic zone, and those in set C from the 

hippocampal formation of the opposite hemisphere of 

the brain. While sets C and D contained only activity 

measured during seizure free intervals, set E only 

contained seizure activity. Here segments were selected 

from all recording sites exhibiting ictal activity. 

All EEG s ignals were recorded with the same 128- 

channel amplifier system, using an average common 

reference [omitting electrodes containing pathological 

activity (C, D, and E) o r strong eye movement artifacts 

(A and B)]. After 12 bit  analog-to-digital conversion, 

the data were written continuously onto the disk of a 

data acquisition computer system at a sampling rate of 

173.61 Hz. Band-pass filter settings were 0.53–40 Hz 

(12 dB/oct) [23, 24]. 

In this study, 40 EEG signals from sets A and E were 

used in order to model EEG behaviors in normal and 

seizure states. These two types of EEG signals are 

shown in Fig. 1. 

 

 

 

Fig. 1: Electroencephalographic signals. (Top) Healthy volunteer with open eyes. (Bottom) Epileptic patients during seizure activity  
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2.2 Spectral Estimation 

The goal of spectral estimat ion is to describe the 

distribution (over frequency) of the power contained in 

a signal, based on a finite set of data. Estimat ion of 

power spectra is useful in a variety of applicat ions, 

including the detection of signals buried in wideband 

noise. 

In general terms, one way of estimating the PSD of a 

process is to simply find the discrete-time Fourier 

transform of the samples of the process (usually done 

on a grid with an FFT) and take the magnitude squared 

of the result (MATLAB version 7.0 with Signal 

Processing Toolbox). This estimate is called the 

Periodogram. The Periodogram estimate of the PSD of 

a length-L signal xL[n] is 
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The actual computation of XL(f) can be performed  

only at a finite number of frequency points, N, and 

usually employs the FFT. In  practice, most 

implementations of the Periodogram method compute 

the N-point PSD estimate 

2
[ ]ˆ [ ] ,

, 0,1, , 1

L k

xx k

s

s
k

X f
P f

f L

kf
f k N

N



  

                                 (3) 

Where 








1

0

/2][][

N

n

Njkn
LkL enxfX 

                                (4) 

It is wise to choose N > L so that N is the next  power 

of two larger than L. To evaluate XL[fk], we simply pad 

xL[n ] with zeros to length N. If L > N, we must wrap 

xL[n] modulo-N prior to computing XL[fk]. 

 

2.3 State Space Model  

A state space representation is a mathematical model 

of a physical system as a set of input, output and state 

variables related by first-order differential equations. To 

abstract from the number of inputs, outputs and states, 

the variables are expressed as vectors. Additionally, if 

the dynamical system is linear and time invariant, the 

differential and algebraic equations may be written in 

matrix form. The state space representation (also known 

as the "time-domain approach") provides a convenient 

and compact way  to model and analyze systems with 

multiple inputs and outputs. 

The most general state-space representation of a 

linear system with p inputs, q outputs and n state 

variables is written in the following form: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

x t A t x t B t u t

y t C t x t D t u t
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where x(.) is the state vector, x(t)
n
, y(.) is the 

output vector, y(t)
q
, u(.) is the input or control 

vector, u(t)
p
, A(.) is the state or system matrix, 

dim[A(.)] = n×n, B(.) is the input matrix, dim[B(.)] = 

n×p, C(.) is the output matrix, dim[C(.)] = q×n, D(.) is 

the feed through (or feed forward) matrix (in cases 

where the system model does not have a direct feed 

through, D(.) is the zero matrix), dim[D(.)] = q×p, and 

)(:)( tx
dt

d
tx     

 

2.4 Kalman Filtering 

The properties of KF along with the simplicity of the 

derived equations make it valuable in the analysis of 

biological signals. The Kalman Filter is an estimator 

with interesting properties like optimality in the 

Minimum Mean Square Error (MMSE). 

The aim of the Kalman filter is to estimate the state 

vector xk. A process of estimation which keeps pace 

with the data by generating an estimate of the current 

state vector xk with each new observation zk is 

described as filtering. The retrospective enhancement of 

a state estimate using data which has arisen 

subsequently is described as smoothing. The estimation 

of a future state vector is described as a prediction. 

The Kalman filter is an optimal state estimat ion 

method for a stochastic signal [25,26] that estimates the 

state of a discrete time controlled process, x, with 

measurement data z, where x and z are governed by the 

linear stochastic difference equations  

11   kkkk wBuAxx                              (6) 

kkk vHxz                                                       (7) 

The random variab les w and v  are independent, white, 

and possess normal probability distributions, p(w) ∼ 

N(0, Q) and p(v) ∼ N(0, R). The matrices A, B, H are 

the coefficient state transition matrices, Q is the state 

noise covariance, R is the measurement noise 

covariance and u is an optional control input to the state 

x. 

The KF algorithm is given by the following equations: 
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where 
kx̂  and kx̂  are a priori and a posteriori state 

estimate before and after a g iven measurement zk, 


kP and Pk are the error covariance of a priori and a 

posteriori estimate,  kkk xHzr ˆ  is the measurement 

innovation (or residual) and Kk is the gain required to 

minimize the a posteriori error covariance, Pk. 

The Kalman filter algorithm is presented in Fig. 2. 

 

 

 

Fig. 2: Kalman Filter Algorithm [27] 

 

In Fig. 2, the part in the dashed box is a Kalman filter 

algorithm. This structure receives only one input 

(measurement, Zk) and returns one output (estimate, 

kx̂ ). Internal process is done through a four-step 

computation as discussed above. 
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The general idea of the Kalman filter is to propose a 

model for the observations, in most cases linear, where 

some parameters must be estimated. To be able to apply 

the Kalman Filter o r the Kalman Smoother the model 

for the observations must be written in a state – space 

form. A state – space model is represented by two 

equations. One equation describes the evolution of the 

parameters, and second equation describes the relation 

of the parameters with the observations. 

 

III. Results 

In order to study the effect of epilepsy on brain 

activity, the power spectrum is calculated fo r each of 

the EEG signals using Periodogram method. The power 

spectrum of EEG s ignals for the two conditions (normal 

and epileptic) is shown in Fig. 3. 

 

 

(a) 

 

 

(b) 

Fig. 3: Power spectrum of EEG signals. (a) Normal subject, (b) 
Epileptic patient  

 

Results presented in Fig. 3 show that the power 

spectrum of EEG signals in the normal state and in the 

epileptic state is remarkably  different. In addition, the 

amplitude of the power of EEG s ignals is increased 

during epilepsy.  

Fig. 4 shows the amplitude of the first peak power of 

EEG signals in normal subject and epileptic patients. 

It can be observed from these figures, that the 

prominent peaks are not at similar frequencies . There is 

a single narrowed band peak with high amplitude in the 

power spectrum at around 0.25 Hz as an example 

shown in Fig. 3(b). Whereas, for the normal subject, 

there are several spectral peaks spreading throughout 

the frequency ranges. Furthermore, the amplitude of 

these components is lower than that of during epilepsy 

(as an example shown in Fig. 4).  

 

 

Fig 4: Amplitude of the power spectrum in normal subjects and 
during epilepsy 

 

A new method for modeling and estimating the 

normal and epileptic EEG signals is described based on 

a state-space model and the Kalman filter. 

Fig. 5 depicts the raw and estimated signal by 

applying the proposed approach in two data sets: (a) 

normal subjects, (b) epileptic patients during seizure 

activity. 

 

(a) 
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(b) 

Fig. 5: The original EEG signal (top panel) and the estimated signal 

using proposed method (bottom panel). (a) Healthy volunteer,  (b) 
Epileptic patients during seizure activity 

 

The estimat ion performance of the proposed method 

on EEG signals is evaluated using the root mean square 

(RMS) measurement. The RMS is a good criterion to 

compute the quality of estimat ion algorithm that has 

been implemented. With RMS measure, the difference 

between the orig inal EEG signal and the estimated 

signal can be compared. The results of this evaluation 

for healthy volunteer and epileptic patients during 

seizure activ ity are summarized in Fig. 6(a) and Fig. 

6(b), respectively. 

 

(a) 

 

 

(b) 

Fig. 6: Estimated error (RMS) between original and estimated data for 

40 subjects: (a) healthy subjects, (b) epileptic patients during seizure 
activity 

According to the values of the RMS (Fig. 6(a) and 

Fig. 6(b)), it is obvious that by applying this method, 

EEG signals could be estimated accurately. The mean 

estimation error fo r this method on healthy individuals 

and epileptic patients are about 0.0169±0.0013 and 

2.98×10
-6

±2.58×10
-6

, respectively. 

 

IV. Discussion 

The variat ions of EEG signals can  be separated into 

different components by use of spectral analysis. The 

frequency domain  analysis of EEG s ignals reveals that 

the pattern of the power spectrum is remarkab ly 

different during epilepsy than that of the normal subject. 

In addition, the power of EEG signals is increased 

during epilepsy. There is a single narrowed band peak 

with high amplitude in the power at around 0.25 Hz as 

an example shown in Fig. 3(b), but for the normal, there 

are several spectral peaks spreading throughout the 

frequency ranges. Furthermore, the amplitude of these 

components is lower than that of during epilepsy (as an 

example shown in Fig. 4).  

The application of Kalman filters and the state space 

model for estimation of pathological EEG signals is 

new to the best of our knowledge. 

In this paper, it is assumed that EEG t ime series are 

vectors valued with random process and have slow 

dynamic variabilities during the specific time. In 

addition, past realizations have some informat ion which 

is relevant to future realizations and these changes can 

be modeled with a state-space model. It has shown that 

the Kalman  filter is considerably robust and it has a low 

sensitivity to suboptimal parameter setting. Generally 

speaking, this feature of the Kalman filter is very 

important in a clinical environment, since the optimal 

setting is impossible to determine. The Kalman filter is 

more than just a filter since it holds the potential to 

incorporate more information about the EEG generating 

process in the model, maintain ing the dynamics in the 

signal and producing accurate estimates. 

In the normal stage, the cortex is more active and 

more neurons are available for processing [28];  whereas, 

in ep ileptic stage, the cortex becomes inactive and EEG 

signals become less random. The neurons in the 

cerebral hemispheres during the seizure misfire and 

create abnormal electrical activ ity. Therefore, the 

number o f neurons available for processing the 

informat ion reduces during the seizures. In other words, 

the variability of epileptic activity was less as compared 

to that of non-epileptic activ ity [29, 30]. It  was 

supported by the reduced dimensionality  of ep ileptic 

seizures as compared to non-epileptic EEG signals. This 

concept finds support in the observations that neuronal 

hyper-synchrony underlies seizures: a  phenomenon 

during which the number o f independent variables 

required to describe the system was smaller [31]. 



32 Modeling Epileptic EEG Time Series by State Space Model and Kalman Filtering Algorithm  

Copyright © 2014 MECS                                                           I.J. Intelligent Systems and Applications, 2014, 03, 26-34 

Morbidi et al. [10] show that by applying Kalman  

filter the effect of the magnetic art ifacts on the EEG 

recordings has been strongly reduced, while preserving 

the integrity of EEG signals around TMS impulses. The 

result of Mneimneh et al. [12] shows that the Kalman 

filter approach was successful in the online estimation 

and removal of the baseline wandering for real-patient 

and a simulated test signal. 

In this study, a state space model is used to 

distinguish between the underlying brain states and the 

EEG measurements in epileptic patients. In addit ion, we 

make use of a Kalman filter for the estimat ion of the 

fundamental neural activity. 

The performance of the presented approach is 

evaluated using the root mean  square (RMS) 

measurement to produce a reliable estimation of real 

EEG s ignals. The RMS is a good criterion to compute 

the quality of estimation algorithm that has been 

implemented. According to the values of the RMS (Fig. 

6(a) and Fig. 6(b)), it is obvious that by applying this 

method, EEG signals could be estimated accurately. 

Therefore, this model is appropriate for the analysis of 

EEG recordings. In fact, this model is capable of 

predicting changes in EEG time series with phenomena 

such as epileptic spikes and seizures. 

The results presented here might be of some use in 

addressing the issue of stochastic dynamics versus 

chaos in the nervous system. In recent years, there has 

been a tendency to view the EEG as the output of a low 

dimensional dynamic system with chaotic behavior 

[32,33]. An ext reme point of view even banishes 

stochastic effects as an explanation for the EEG signals. 

The availability of parametric nonlinear models may be 

of assistance in assessing the role of stochastic effects in 

the EEG as well as to characterize the multiple 

dynamical attractors of the nervous system, some of 

which may or not be chaotic [34,35]. Further works can 

be considered the nonlinear behavior of b rain act ivity in 

the modeling of EEG signals. 

 

V. Conclusion 

The results of this study showed that applying the 

state space model and Kalman filter could  be useful to 

estimate EEG s ignals. In addition, this algorithm can be 

applied to other non-stationary biological systems, too.  

EEG t ime series are usually recorded from a set of 

electrodes covering the whole scalp. The method which 

has been proposed in this paper could be applied 

independently to each channel of the data, but it  would 

be desirable to have a modeling approach capable of 

building a single common model from all available 

channels simultaneously; thereby also the spatial 

informat ion contained in the positions of electrodes 

could be incorporated. The generalization of  the method 

to this case will be the subject of future work. 
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