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Abstract—This paper presents a new model based on simulated 

annealing algorithm (ASA) and adaptive neuro-fuzzy inference 

system (ANFIS) for shape optimization and its applications to 

electromagnetic devices. The proposed model uses ANFIS 
system to evaluate the electromagnetic performance of the 

device. Both the ANFIS and ASA method are applied to the 

design/optimization of the electromagnetic actuator. The results 

of the proposed approach are compared with other techniques 

such as: method of moving asymptotes, penalty method, 
augmented lagrangian genetic algorithm and simulated 

annealing method (SA). Among the algorithms, the proposed 

ANFIS-ASA approach significantly  outperforms the other 

methods. 

 
Index Terms—Adaptive Neuro-Fuzzy Inference System, 

Simulated Annealing, Genetic Algorithm, Shape Optimization, 

Electromagnetic Actuator 

 

I.  INTRODUCTION 

Electromagnetic actuators (EA) have been widely used 

in industrial applicat ions because of their efficiency and 

power density [1-2-3-4]. Today, the change in its 

configurations with low prices has been stimulating the 

design/optimizat ion for industrial applications [1-2]. In  

these devices, the main task is increasing of the magnetic 

force in electromagnetic actuator by geometrical shape 

optimization. Various optimizat ion algorithms for shape 

optimization of an actuator have been proposed [1-3].  

In [3], A iello has developed several algorithms for 

optimization problem and is observed that shape 

optimization is one of the most complex problems which 

need robust numerical methods such as finite elements 

method (FEM),…, etc. Saldanha and Bied inger optimized 

geometry of cylindrical actuator so as to maximize their 

energy while limits on a certain value [4-5]. Based on 

numerical analysis, the responses of linear actuator were 

determined and the genetic algorithm has been applied.  

In the classical optimizat ion, the objective function 

calculation requires the use of a FEM code that solves the 

equations of Maxwell’s. This calculation is usually very 

computer intensive, with one flow solution taking from 

several minutes to several hours or days in the most 

complex problems [1-2-3-4-5]. For these problems, it is 

required to make use several methods for replace the 

expensive FEM program for shape optimizat ion problems.  

Among different methods, neuro-fuzzy systems are 

mostly suitable for the representing objective functions 

that incorporate several design variables [6]. The neuro-

fuzzy system works similarly to that of multi-layer neural 

network. Th is hybrid system uses the adaptive neural 

networks (ANNs) theory to characterize the input-output 

relationship and build the fuzzy rules by determining the 

input structure [7]. Neuro-fuzzy systems exp loit the 

capacity of the two concepts, fuzzy logic theory and 

ANNs, by utilizing the values of parameters in the 

adaptive nodes of adaptive neural networks in  tuning rule 

based system that approximate the functional relat ions 

between responses and input variables of the process 

under study. 

In [7], we presented a new model for parameters 

identification using the FEM coupled with ANFIS system. 

The objective of this paper is to propose the new fast 

optimization method for solving  inverse electromagnetic 

problem in electrical engineering such as the geometrical 

shape optimization problem. In this case, the ASA-

ANFIS model has been implemented on a linear 

electromagnetic actuator for its optimum design to 

maximize force magnetic. Our approach is radically  

different from those developed elsewhere.  In effect, in  

our new approach, the scheme is separated in two  steps: 

training the ANFIS with a data set and geometrical shape 

optimization with the ASA method.  

This paper is organized as follows. Section II defines 

the geometry of the electromagnetic actuator. In sections 

III and IV, we demonstrate the electromagnetic field  

computation and magnetic fo rce calculations for 

modeling this device. Sections V and VI, we describe the 

design parameters, cost function and practical constraints 

of the actuator. Also, sections VII and VIII represent the 

proposed model and the process optimization using ASA 

and ANFIS. Section IX represents the detailed results and 

discussion. Finally, the section X concludes this work and 

recommends future directions.  

 

II.  ACTUATOR DISCRIPTION 

The electromechanical structure is presented in Fig. 1. 

The actuator has an axisymetrical configurat ion. It is 

composed of two co ils, fed separately. Th is actuator has 
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been the subject of an internal s tudy in electrical 

engineering laboratory in g renoble, conducted by 

Saldanha [4] in the context of industrial collaboration.  

 
Fig. 1. Axisymmetric linear actuator 

 

The cross section of the fixed part adopts an O shape, 

which is symmetrical with the horizontal median p lane 

and a cylindrical coordinate system (r, θ, z) is used. The 

mobile part is a magnet ring with a cylindrical cross 

section. It is free to move linearly and horizontally.  

 

III.  ELECTROMAGNETIC FIELD COMPUTATION 

For magneto-static fields, the field intensity and flux 

density must obey: 

sJ)H(toR


                                                     (1) 

0)B(Div 


                                                      (2) 

Where H is the magnetic field intensity, B is magnetic 

flux density and J is electrical current density. For 

isotropic material, the constitutive equations to 

Maxwell’s equations are: 

ra BH B                                                     (3) 

EJ                                                                       (4) 

Where μ is magnetic permeability, σ is electric 

conductivity, Br  is residual magnetic flux density of the 

permanent magnet. The Br is related to the coercive field  

intensity Hc by - μ Hc. 

The magnetic vector potential A is the obvious choice 

in most instances. The divergence condition on B implies 

the existence of a vector potential defined by: 

B)A(toR


                                                      (5) 

The magnetic field can  be considered as a magneto-

static problem. Substituting (5) to (1) we obtain: 
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The FEM is one of the most numerical methods used to 

solve differential equations. The FEM is widely  used by 

scientists and engineers [9]. After assembling all the 

elementary equations, a differential system of equations 

is obtained which may be written as: 

]F[[A] ]M[                                                          (7) 

Where [M] is the global coefficient  matrix, [A]  is the 

matrix of nodal magnetic vector potentials and [F] is 

nodal term sources. The  Gaussian  elimination  algorithm  

is  then  used  to  solve  the  above banded  matrix  

equation. More details about the finite element theory can 

be found in reference [8].  

IV.  FORCES MAGNETIC CALCULATION 

The force in a direction is given by the derivation of 

the magneto-static energy w in relat ion to a virtual 

displacement q [9]: 

q

W
F
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
                                                                  (8) 

The energy of the system is given by: 
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The magnetic field  on the z axis is going to generate an 

axial force on the magnet. In  a  cylindrical configuration  

the symmetry  allows  us  to consider only  the  axial  

component  of  the magnetic field.  The force is given by 

[4]: 
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This magnet is supposed to have a constant 

polarization J and permeability equal to µ0. The magnetic 

force (Fig.2) can be directly calculated with the values of 

the magnetic vector potential A generated by the coils at 

the ends of the magnet volume [4]: 

 )z,R(A)z,R(A
R2

JF 2111
0

zz 



                        (11) 

Where R is the exterior radius of the magnet.  

 

Fig. 2. Potential vector “A”  due to the Coils [4] 

 

 
Fig. 3. Design variable of the actuator 
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V.  DESIGN PARAMETERS 

The geometry of the actuator is illustrated by four 

design parameters xi (i =1…4) selected to change the 

shape of the actuator (Fig. 3). The optimizat ion problem 

is to define the parameters xi in order to insure a given 

constant force F0 along the z-axis at the N points (Fig. 2). 

 

VI.  COST FUNCTION AND PRACTICAL CONSTRAINT S 

The aim of shape optimizat ion is to maximize the 

magnetic force with a global constant volume. This 

optimization consists of minimizing an objective function, 

which is the error between the target magnetic force (5N) 

and a magnetic force Fz. Generally, the optimization is 

considered as a nonlinear problem to locate a solution 

that minimizes the following cost function:  
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Where Fz is the magnetic force exerted on the magnet 

core by considering the displacement Li (0mm to 18 mm) 

and N is the N positions of the magnet defined by zi 

(Fig.2).  The actuator design also needs to satisfy the 

following constraints [4]: 

1. The excitation coil current density is J=2.68A.mm
-2

. 

2. The inequality constraints: 

2 max min max min
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The lower and upper bounds of the parameter of the 

problem are defined in Table 1. Each solution must 

respect an equality constraint on the magnetic force  

whose value is set by the user (F0), and four inequality 

constraints are considered. 
 

Table 1. The Lower and Upper Bounds of the Design P arameterS 

Parameter  (mm) Lower  bounds Upper  bounds 

x1 2.5 25 

x2 5 25 

x3 2.5 50 

x4 2.5 25 

VII.  DESIGN/OPTIMIZATION METHOD 

A.  Adaptive Neuro-Fuzzy Inference System 

Neuro-fuzzy methods are usually applied when is 

required to solve a function approximat ion problem or 

where the manual design process should be supported or 

replaced by an automatic learning process. Many neuro-

fuzzy systems for function approximation are inspired on 

the Takagi-Sugeno fuzzy systems, because it is best 

suited for learning purposes through gradient based 

methods if differentiable membership function are used. 

Adaptive network-based fuzzy in ference system is one of 

the first and still one of the popular neuro-fuzzy systems 

[7].  

 
Fig. 5. The general architecture of ANFIS [7-6] 

 

ANFIS is a neuro-fuzzy method to determine the 

parameters of a Sugeno-type fuzzy model which is 

represented as a special feed-forward network. Fig.5 

show the structure of a two input ANFIS. This hybrid 

system is generally based on the Takag i-Sugeno’s fuzzy  

If-Then rules as shown in  Fig.4.  In general, neuro-fuzzy  

system has input and output layers, and three hidden 

layers that represent membership functions and fuzzy  

rules. Each node in a layer receives input signals from a 

previous layer and transmits its output signals to nodes in 

the next layer [7]. 

In the adaptive network, we use both circle (fixed  

nodes) and square nodes (adaptive nodes). By vary ing 

these parameters, we are really  changing the node 

function (adaptive nodes) and the behavior of adaptive 

network [7]. For the first-order Sugeno inference system, 

typical two rules can be expressed as [7-6-11]: 

Rule 1: if x is A1 and y is B1 then f1= p1*x+q1*y+r1 

Rule 2: if x is A2 and y is B2 then f2= p2*x+q2*y+r2 

Where x and y the inputs variables to the node I, A i 

and Bi are fuzzy sets (or the linguistic table), which are 

characterized by convenient membership functions and 

finally, pi , qi and ri are the consequence parameters [6-7-

10]. The structure of this inference system is shown in 

Fig.5. 

 
Fig. 4. Sugeno fuzzy if-then rule and fuzzy reasoning mechanism 

 

Layer 1: Each node in th is first layer is adjustable node. 

The output signals are the fuzzy membership functions of 

the input signals, which are g iven by the node function as 

[7]: 
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Where Ai and Bi-2 is the linguistic variable. The fuzzy  

membership function generally chooses a generalized 

bell-shape with upper limit and lower limit equal to 1and 

0. The generalized bell-shape function depends on three 

parameter sets a, b, and c as given by [7]: 
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Where the parameter b is usually positive. The 

parameter c locates the centre of the curve. The parameter 

sets in this first layer are named as premise parameters. 

Layer 2: all nodes in this layer are not adaptive (fixed  

node, labelled as π). Each  node calculates the firing 

strength of a rule wi or the output signal through 

multiplication [6-7-10]: 
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Layer 3: In this layer, every node isn’t also adaptive. 

Nodes in the third layer (Labelled as N) compute the 

normalized firing strength wi by dividing each rule firing 

strength by the summation of all of them. The output 

signals can be represented as [6-7-10]: 

21

i
i

3
iO







                                                   (17) 

Layer 4: Nodes (adjustable node) in this layer compute 

the weighted output of the rules by evaluating the Takagi-

Sugeno type linear approximator fi multiplied by the 

normalized firing strength [6-7-10]: 
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4
i ry.qx.pf.O                                (18) 

Layer 5: this layer has only one node labelled S that is 

a fixed node. The output of the system is computed by the 

node in the last layer as a summat ion of all incoming 

signals. Hence, the global output signal of the node is 

given by [7]: 
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Though the gradient method can be applied to identify 

the parameters in an adaptive network, the method is 

generally slow and likely to become t rapped in local 

minima. Instead, the hybrid learn ing rule which combines 

the gradient method and the least squares estimate (LSE) 

to identify parameters results in a more efficient way to 

train the network. The output of the ANFIS can  be 

expressed as [10]: 

 

 S,IFoutput                                                         (20) 

Where I is the set of input variables.  

For this overall output, we can d ivide the parameter set 

S into two sets S1 (premise parameters) and S2 

(consequent parameters). For the backward pass, the error 

signals propagate backward and by descent method [6-7-

10] we can calculate (or update) the premise parameters 

with respect the overall error measure:  
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Where Tm,p is the m
th

 component of the p
th

 target 

output vector, and Om,p is the m
th

 component of the actual 

output vector produced by the p
th

 input vector. The partial 

derivative depends on the type of membership function 

(MF) used. In th is case, the gradient is used to update the 

MF parameters α, then [7-10]: 
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And the gradient vector is: 
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The learning rate can be written: 
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Where k is the step size, which can be changed to vary 

the speed of convergence. A hybrid learning algorithm 

(gradient method and least square estimate) is proposed 

to fine tune the values of these parameters.  

Given the ANFIS architecture shown at Fig. 4, it is 

observed that given the values of premise parameters, the 

overall output can be expressed as linear combinations of 

the consequent parameters. More precisely, the output f 

in Fig. 4 can be rewritten as [10]:  
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This is a linear combination of the modifiable 

parameters p1, q1, r1, p2, q2, r2. 

B.  Adaptive Simulated Annealing 

The optimization process by simulated annealing was 

first described by Kirkpatrick et al [12], and is based on 

work by Metropolis et al [13] in the area of statistical 

mechanics.  SA algorithm contains two steps:  the first, 

perform search while the temperature is decreasing. The 

second determine the acceptance. The acceptance of the 

novel result is according to the Metropolis’s condition 
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based on the Boltzman’s probability [12]. The acceptance 

probability of solution point i is defined by [16]:  

 KTEjEjexpP '                                         (26) 

Where K is the Boltzman’s constant and T is the 

temperature of the heat bath, Ej
’
 is the current energy 

state for the system and Ej is a subsequent energy state. 

The first simulated annealing employed Gaussian 

distribution as a generator and was proposed by 

Kirkpatrick. Szu [13] proposed a fast simulated annealing 

by using Cauchy/Lorentzian d istribution. Another 

modification of the SA, the so-called adaptive simulated 

annealing was proposed by Ingber [14-15-16] and was 

designed for optimizat ion problem in a cons trained search 

space. For x
k
 a parameter in d imension i at annealing time 

k with rang x[x
min

, x
max

] the new value is generated by 

[16]:  
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Where x
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 and x
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  are the maximum and minimum 

of the i
th

 domain. Th is is repeated until a legal xi  between 

x
min

 and x
max

 is generated.  λ i ( [-1,1]) the random 

variable generated by the following generating function 

[14-15-16]: 
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The i values and Ti are identifies the parameter index 

and temperature. The parameter λi is calculated by the 

cumulat ive probability distribution, which can be defined 

as [14-15-16]: 
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In this case, by the idea o f Ingber it can  be seen to 

choose g(λ i)=ui, we can apply this formulation:  
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The new generation distribution function in ASA has 

much fatter t rails than Gaussian and Cauchy generation 

function. The solution can be obtained statistically if the 

annealing schedule is  [15-16]:  

)kc(xpe )0(T)k(T n/1
iii                                         (31) 

Where ci is a  user-defined parameter whose value 

should be selected according to the guidelines in  

reference [13-14-15], but n is the dimension of the space 

under explorat ion. The same type of annealing schedule 

should be used for both the generating function and the 

acceptance function1/(1+p). 

Reannealing in ASA algorithm periodically rescales 

the generating temperature in terms of the sensitivities is  

calculated at the most current min imum values of the cost 

function. After every acceptance points, reannealing takes 

place by the first calculating the sensitivities [14-15-16]: 

ii xEs                                                                 (32) 

The annealing time is adjusted according to s i, based 

on the heuristic concept that the generating distribution 

used in the relatively  insensitive dimension should be 

wider than that of the distribution produced in a 

dimension more sensitive to change [14-15-16]. 

 

VIII. PROCESS OPTIMIZATION USING ASA AND ANFIS 

In this paper, we present a new model or technique in  

the geometrical shape optimisation. The new approach 

can be summarized as follows:  

a) Preparation of data for training and testing of ANFIS. 

b) Load training/ testing data Generate initial FIS model. 

c) ANFIS training and testing. The trained ANFIS 

network is then tested with testing data which not 

belong to the original data set. 

d) Obtain ANFIS to predict objective function 

e) Create initial solutions. 

f) Predict responces via ANFIS objective model (y). 

g) Optimization process: ASA algorithm is utilized to  

obtain the optimal objective value.  

h) the ANFIS package must be able to accept parameters 

generated by ASA, to perform the ANFIS computation 

automatically, and to return the value of the objective 

function to the ASA algorithm 

 

Fig. 6. Optimization process with ANFIS approach 
 

The strategy selected is based on two components as 

illustrated in Fig. 6. The first one is a neuro-fuzzy  

network which is used to approximate the strength 

magnetic performance, the second one, is used to solve 

the optimization problem via ASA algorithm. To  

calculate the objective function of design parameters, the 

ANFIS package must be able to accept parameters 

generated by ASA, to perform the ANFIS computation 
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automatically, and to return the value of the objective 

function to the ASA algorithm. 
 

IX. RESULTS AND DISCUSSION 

A. FEM  Modelling  

Our axsiymmetrical model is based on the 2D-element  

fin ite method (2D-FEM) which permits to calculate the 

global magnetic force. Fig.7 shows the equipotential lines 

of magnetic vector potential and Fig. 8 shows the change 

of the maximum magnetic force results  by the FEM 

simulation.  

The mesh is automat ically  generated by dividing  the 

geometry into discrete elements. Standard triangular 

elements are applied here. The open boundary was set at 

a radius of 4.R (exterior radius) using the Dirich let 

condition. The generated mesh had approximately 705 

nodes. It is important to select an adequate mesh to 

represent correctly the electromagnetic phenomena and 

then, to reduce the numerical errors that can influence the 

convergence of the optimizat ion process. The problem 

was solved on a PC with P4 2.4G
® 

CPU under Matlab 7 

workspace using the Partial Differential Equation 

Toolbox for the finite element meshes generation.  

 
Fig. 7. Equipotential lines of magnetic vector potential 

 

 
Fig. 8. Force actuator versus magnet displacement  

B. Predicted Force Magnetic using ANFIS System 
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1. The paired  data with the form of ([x1,x2,x3,x4]) are 

given to the trained ANFIS network.  

2. The trained ANFIS network completes the forward  

pass which the overall output f is the electric 

conductivity.  

3. After train ing phase the trained ANFIS system is tested 

with another independent data.  

4. The error is calculated for every one epoch by 

computing the root mean square errors (RMSE). 

5. Train ing of the ANFIS is performed using both least 

squares method and back-propagation. In the forward  

pass the consequent parameters (p i, qi and ri) are 

updated using least squares and in the backward pass 

the premise parameters (ai, bi and ci) are identified  

using back-propagation. This is offline learning, 

because the trained ANFIS network accepts all data 

sets. Also, all parameters are updated [7].  

6. After these steps calculation, if the number o f ANFIS 

training epochs is achieved then the system terminates. 

 
Fig. 10. Final bell-shaped membership functions 

 

 
Fig. 11. Parameter step adaptation 

 

Three types of fuzzy sets are used for indicating  

“small-S”, “medium-M”, “large-L” respectively. Also, 

each fuzzy value such as “large-L” is denoted by the 

control parameters p, q and r. These parameters are used 

in computing the output of the ANFIS system separately. 

Fig. 10 illustrates the final membership functions for each 

input variable. The steps of parameter adaptation of the 

ANFIS are shown in Fig. 11. 

Table 2 : RMSE and Average Percent RMSE of Training and Testing 

Data 

RMSE  
of 

training 

data 

RMSE  
of 

testing 

data 

Average  
percent  

RMSE of  

training 
data 

Average  
percent  

RMSE of  

testing 
data 

0.021 0.0742 0.8894 3.7167 

Table 2 shows the results of training and test results of 

ANFIS with generalized bell curve type MFs. The best 

test performance is with 3 MFs. Average percentage error 

in training is 0.8894 %. The training time increases with 

the number of MFs. 

 
Fig. 12. Errors between the ANFIS output and testing data 

 

 
Fig. 13. ANFIS training and checking errors 
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Once a value function is assessed and validated the 

ANFIS is used to approximate the magnetic force and the 

objective optimization problem will be reduced to a 

problem as follows: 

))4x,3x,2x,1x(Fz(y max 4x,3x,2x,1x                         (34)  

C. ANFIS-ASA Shape Optimization 

The ASA method combined with ANFIS prediction  

system was tested on the shape optimizat ion.  The task is 

to find new optimum conditions for electromagnetic 

actuator. The results obtained from five techniques are 

given below in Table 3. The ANFIS presented in this 

study has high accuracy and requires no complicated 

mathematical functions. The proposed ASA approach 

was compared  with three non-tradit ional techniques (GA-

ALM, MMA, PE, ASA and BEM-GA). All the 

parameters are the same in all cases. Fig. 15 shows the 

behavior of the objective function values through the 

various iterations of the different methods. 

  
Table 3. Comparison of Results for Five Methods 

Algorithms 
Optimal solutions (mm) Average 

Optimiz. 

T ime [s] x1 x2 x3 x4 

GA-ALM 17.3 23.1 24.0 16.0 45893.1 

ANFIS-ASA 17.2 23.9 25.0 17.8 27.246 

ASA 17.5 24.4 24.8 17.2 1943.67 

MMA [4] 16.7 24.6 23.4 16.1 3548.12 

BEM-GA [5] 17.7 24.1 23.9 15.8 1578.56 

 

 
Fig. 15. Objective function versus iterations 

 

The Fig. 14 shows the change of the magnetic force by  

the different methods. The results indicated that the new 

method "ANFIS-ASA" significantly outperforms the GA-

ALM, MMA, PE and ASA methods. With the new model 

(ANFIS-ASA), the convergence to an optimal solution 

can be assured after a number of iterations. The ANFIS 

has advantage of being a quick method compared  to the 

classical iterat ive optimizat ion methods. Clearly, from the 

results, the new approach provides a sufficiently  

approximation to the true optimal solution. 
 

 
Fig. 14. General forces results 

 

X. CONCLUSION 

In this work, non-conventional optimization techniques 

have been studied for the shape optimizat ion. The hybrid 

ANFIS-ASA integrates neural network, fuzzy log ic and 

simulated annealing optimization to approximate the 

magnetic force and to optimize this quantity. The results 

of the proposed approach are compared  with results of 

five non-traditional techniques (FEM -GA-ALM, FEM-

MMA, FEM-PE, FEM-GA and FEM-ASA). Among the 

algorithms, ANFIS-ASA outperforms all other algorithms.  

The ANFIS results were in very  good agreement with  

the results available in the literature obtained by using the 

FEM. Since the ANFIS presented in this study has high 

accuracy and requires no complicated mathemat ical 

functions, it can be very useful for the development of 

fast CAD models. 
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