
I.J. Intelligent Systems and Applications, 2013, 08, 33-39

Published Online July 2013 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijisa.2013.08.04

Copyright © 2013 MECS I.J. Intelligent Systems and Applications, 2013, 08, 33-39

Managing Lexical Ambiguity in the Generation

of Referring Expressions

Imtiaz Hussain Khan

Department of Computer Science, King Abdulaziz University , Jeddah, P.O.Box 80200, Saudi Arabia

E-mail: ihkhan@kau.edu.sa

Muhammad Haleem

Department of Information System, King Abdulaziz University, Jeddah, P.O.Box 80200, Saudi Arabia

E-mail:haleemjunejo@gmail.com

Abstract— Most existing algorithms for the Generation

of Referring Expressions (GRE) tend to produce

distinguishing descriptions at the semantic level,

disregarding the ways in which surface issues (e.g.

linguistic ambiguity) can affect their quality. In this

article, we high light limitations in an existing GRE

algorithm that takes lexical ambiguity into account, and

put forward some ideas to address those limitat ions. The

proposed ideas are implemented in a GRE algorithm.

We show that the revised algorithm successfully

generates optimal referring expressions without greatly

increasing the computational complexity of the (original)

algorithm.

Index Terms—Natural Language Generation, Referring

Expressions Generat ion, Lexical Ambiguity, Lexical

Choice, Content Determination

I. Introduction

Referring expressions are noun phrases (NPs) that

identify particular domain entities to a hearer. The

Generation of Referring Expressions (GRE) is an

integral part of most Natural Language Generation

(NLG) systems [1]. The GRE task can informally be

stated as follows. Given an intended referent (i.e., the

object to be identified) and a set of d istractors (i.e.,

other objects that can be confused with the referent), the

task is to find a description that allows a hearer to

identify its referent uniquely [2]. Such a description is

called a Distinguishing Description (DD), and the

description building process itself is usually referred to

as content determination for referring expressions. The

DD is usually a logical formula or a set of properties,

rather than natural language descriptions (exceptions

are [3-6] which produce actual words).

One of the most widely studied GRE algorithm is

Dale and Reiter’s Incremental Algorithm [7]. The

algorithm aims to generate distinguishing descriptions

which mimic human produced descriptions, and which

can be generated as efficiently as possible. Rather than

focusing on the briefest possible description (cf. Dale’s

Full-Brev ity Algorithm [2]), the Incremental Algorithm

also generates over-specified descriptions just as

speakers often do. The algorithm assumes a preference

order, in which properties occur in order of their

salience (or, more precisely, the order in which the

algorithm will consider them).

Given an intended referent r and a set C of distractors,

the Incremental Algorithm iterates through an ordered

list P of properties, adding a property to the description

S of r only if it is true of r and at the same time it rules

out some of the distractors that have not already been

ruled out. The distractors that are ru led out are removed

from C. The type property (which would be realized as

a head noun) is always included even if it has no

discriminatory power. The algorithm terminates when a

DD for r is constructed (i.e., success) or list of

properties P is exhausted (i.e ., failure). Later on, the DD

is realized as a natural language description by a surface

realiser. However, linguistic ambiguit ies can be

introduced in the step from properties to language

descriptions as shown in the fo llowing example adopted

from [5].

Table 1: The referential domain

Entities
Properties

Age Tenure Type

e1 old current president

e2 young previous president

Consider the referential domain in Table 1, in which

entities are charaterised as having a set of properties . (In

this article, we shall represent properties as attribute-

value pairs (e.g., <age, old>), and words/lexical units

themselves as lowercase italics.) Also assume that the

properties <age, old> and <tenure, previous> are

associated with the word old, that is, the word old is

polysemous or lexically ambiguous. Let our task be to

single out the entity e1 from e2. Assume that the

attribute preference is from left to right, i.e. age will be

considered first, then tenure and so on.

34 Managing Lexical Ambiguity in the Generation of Referring Expressions

Copyright © 2013 MECS I.J. Intelligent Systems and Applications, 2013, 08, 33-39

The Incremental Algorithm will proceed as follows.

The algorithm will first take the property <age, old>,

which is true of the intended referent (e1) and also rules

out a distarctor (e2), and add it into the description S. At

this point there are no distractors left in the distractor

set, so the algorithm will add the type property <type,

president> (which is not already added) in the

description S. The algorithm would return the

distinguishing description as a logical formula: <age,

old>  <type, president>. This formula uniquely

identifies the intended referent (e1) as this combination

of properties does not apply to the other entities

(namely, e2) in the KB. The proble m could arise,

however, when a surface realiser would express this

formula as the old president. The English NP could be

interpreted as:

(1) <age, old>  <type, president>, or

(2) <tenure, previous>  <type, president>

Both interpretations are possible in the g iven domain:

(1) refers to e1, whereas (2) refers to e2. Therefore, the

NP is referentially ambiguous, that is, confusing as to

what the intended referent of this NP is.

In this article, we examine how to deal with linguistic

ambiguities which could cause referential ambiguity,

focusing on lexical ambiguity.

The rest of this article is organized as follows. In

Section 2, we discuss the existing approaches to deal

with the lexical ambiguity in GRE. Section 3 describes

our own approach followed by general discussion in

Section 4. The article concludes in Section 5.

II. GRE and Lexical Ambiguity

Most GRE algorithms do not take lexical ambiguity

into account because they focus only on content

determination and assume that the properties

accumulated by them would be realized unambiguously

by words [1, 2, 8-11]. Generally, these algorithms

assume a one-to-one mapping between properties and

words. That is, these algorithms assume that every

property can be expressed unambiguously by words in a

language. However, in natural languages, a word can

express more than one properties (lexical ambiguity),

and conversely a property can be expressed by more

than one words. When these properties have different

extensions, lexical ambiguity can cause referential

ambiguity (as shown in the above example).

2.1 Dealing with Lexical Ambiguity in GRE

There is very litt le work reported in the literature on

GRE which deals with lexical issues, particularly

lexical ambiguity. One work which deals with the

lexical ambiguity issue in GRE is [5]. In [5],

Siddharthan and Copestake proposed a greedy GRE

algorithm which departs from the tradit ional GRE in the

sense that it works at the level of words (because it

takes text as its input, rather than a KB). Because they

take text as input, it is important to describe how

entities are characterised and constructed.

The entities are constructed from the NPs, extracted

from the given text, with the head noun as type and

modifiers as attributes . Like standard GRE, they also

assume a closed world: the head noun and modifiers in

the NP from which an entity is constructed are the only

type and attributes true of the (constructed) entity. The

head noun and modifiers in the NP, therefore describe

the corresponding entity (constructed from the NP). It is

important to mention here that Siddharthan and

Copestake assume a closed world for entities: only

those entities comprise the d iscourse, or KB in

conventional GRE, which are derived from the given

text.

Their algorithm seeks to maximize the distinctiveness

of an entity relat ive to its distractors in context. In doing

so, their algorithm selects those lexical items,

particularly adjectives, which are conceptually furthest

from the lexical items known to be true of its distractors,

and avoids selecting those lexical items which are

conceptually nearest to the lexical items known to be

true of its distractors. The notion of conceptual distance

is operationalised in terms of lexical relations in

WordNet [12] as exemplified below.

For each adjective adj true of the intended referent,

they compute a Similarity Quotient (SQ) and a

Contrastive Quotient (CQ). The SQ, which exp lo its

synonymy relationship, quantifies how similar adj is to

the adjectives describing distractors, whereas the CQ,

which exp loits antonymy relationship, quantifies how

contrastive adj is to the adjectives describing distractors.

The SQ of adj is calcu lated by first forming sets of

WordNet synonyms of adj: a set S1 would contain

WordNet synonyms of adj; a set S2 contain WordNet

synonyms of all the adjectives in S1; and a set S3

contain WordNet synonyms of all the adjectives in S2.

Then for each adjective describing any distractor, the

SQ (of adj) is incremented by 4 if the adjective is

present in S1, incremented by 2 if it is present in S2, and

by 1 if it is present in S3. By v isiting each distractor in

this manner, they keep track of the SQ of adj with

respect to a particular distractor.

Similarly, the CQ of an adjective adj is computed by

first forming sets of antonyms of adj: a set C1 would

contain WordNet antonyms of adj; C2 contain WordNet

antonyms of all the adjectives in S1 and WordNet

synonyms of all the adjectives in C1; C3 contain

WordNet antonyms of all the adjectives in S2 and

WordNet synonyms of all the adjectives in C2. Finally,

the overall Discriminatory Quotient (DQ) of adj is

computed as follows: DQ = CQ - SQ.

In this way, in the first step of the algorithm, they

compute the DQ for each adjective true of the intended

referent. These DQ values are used to construct a word

preference list, in which the adjective with the highest

 Managing Lexical Ambiguity in the Generation of Referring Expressions 35

Copyright © 2013 MECS I.J. Intelligent Systems and Applications, 2013, 08, 33-39

DQ comes first and so on. Then in a second step, they

use this preference list to construct a DD (distinguishing

description) in an incremental manner [7]. The pseudo-

code of their algorithm is given below.

Require:

An intended referent r

A set C of distractors for r, initialized to Domain – {r}

A preference list L of adjectives describing r

A head noun N describing r

1: Initialize the description S of r as S = 

2: if C =  then

3: Return N

4: end if

5: for each a  L do

6: S  S  a

 % adds adjective a to S

7: for each c  C do

8: if RulesOut(a, c) then

9: C  C \ {c}

 % removes c from C

10: end if

11: end for

12: if C =  then

13: Return S  S  N

14: end if

15: end for

16: Return S  S  N

Siddharthan and Copestake’s Algorithm

2.2 Limitations of the Existing Approach

Even though Siddharthan and Copestake’s work in

GRE goes beyond content determination, it has two

potential problems. First, their algorithm does not

always generate distinguishing expressions, even if

there exists one. This is an important limitation, because

it counts against completeness of the algorithm. The

fact that an adjective applies to a d istractor (being

synonymous with the ad jectives true of the distractors)

is only considered during the construction of the

preference list. Once the preference list is constructed

the algorithm does not exp loit the similarity of the

adjective true of the intended referent with any

synonyms true of its distractors during the description

building process. During the description building

process, however, an adjective is first added to the

description (cf. line 5, of the Algorithm), and then those

distracters for which it has a DQ value greater than 0

are removed (cf. lines 7–9). But, an adjective having a

DQ value greater than 0 with respect to a distractor does

not mean that the interpretation of such an adjective

would not be confused with the other adjectives

describing that distractor. This is illustrated in the

following example.

Consider the referential domain in Tab le 2. Let our

task be to single out e1 (the intended referent) from e2

and e3 (the distractors of the intended referent). The DQ

(discriminatory quotient) values for the adjectives true

of e1 are computed; the DQ values are shown in Table 3.

Therefore, the preference list would be: [old, current,

inexperienced].

Table 2: The referential domain: the first problem

Entities Head Noun Attributes

e1 president old, current, inexperienced

e2 president young, previous, inexperienced

e3 president young, current, inexperienced

Table 3: Discriminatory quotient: the first problem

Adjective
DQ with respect to

O verall DQ
e2 e3

old 2 6 8

current 4 -4 0

inexperienced -6 -6 -12

Siddharthan and Copestake’s algorithm would take

the adjective old; add it into the description; remove e2

and e3 as the DQ of old is greater than 0 with respect to

both e2 and e3; the DQ values are 6 and 2 respectively.

(Note that the similarity of old and previous is not taken

into account, while removing e2.) The algorithm would

return a description whose realisation would be the old

president.

This NP is confusing as one could interpret it as the

previous president, which refers to e2. This means, the

output of the algorithm is a non-distinguishing

description. It is important to note that there exists a

distinguishing description, namely, the current old

president, but their approach would not produce it.

Second, at times, Siddharthan and Copestake’s

algorithm produces unnecessarily long descriptions,

because it adds an adjective to a description without

taking into account whether or not it rules out any

distractors. This limitation is illustrated in the following

example.

Consider the referential domain in Tab le 4. Let our

task be to single out e1 from the other entit ies (e2, e3 and

e4) in the domain. The DQ values for the adjectives true

of e1 are computed as above; the DQ values are shown

in Table 5.

Table 4: The referential domain: the second problem

Entities Head Noun Attributes

e1 bag small, black, striped

e2 bag large, white, striped

e3 bag large, white, striped

e4 bag small, black, plain

36 Managing Lexical Ambiguity in the Generation of Referring Expressions

Copyright © 2013 MECS I.J. Intelligent Systems and Applications, 2013, 08, 33-39

Table 5: Discriminatory quotient: the second problem

Adjective
DQ with respect to

O verall DQ
e2 e3 e4

small 4 4 -4 4

black 2 2 -4 0

striped -4 -4 2 -6

Siddharthan and Copestake would make a preference

list [small, black , striped]. Their algorithm would first

take the adjective small; add it into the description and

remove e2 and e3; at this stage e4 is not removed because

the adjective old is non-discriminatory for e4. As there

is still one distractor (namely, e4) left, the algorithm

would take the adject ive black and add it into the

description. The addition of the adjective black ,

however, is redundant as it does not remove any

distractor (black is non-discriminatory for e4, because

DQ of black with respect to e4 is less than 0). Finally,

their algorithm would add the adjective striped into the

description which successfully removes e4, and return

the small black striped bag. This description is

unnecessarily long, because it contains a superfluous

adjective: the small striped bag (or the black striped

bag) could have served the purpose.

III. Our Treatment of Lexical Ambiguity

Our t reatment of ambiguous/polysemous words is

similar in spirit to that of Siddharthan and Copestake,

but we use a d irect extensional approach to take into

account precisely how many and which distractors an

ambiguous word can be regarded as true of. But the

problem is how to compute the extension of an

ambiguous word. The extension of a word w, written as

[[w]], is a set of objects for which w is true.

Accordingly, we compute the extension of a potentially

ambiguous word by taking the union of the extensions

of all its synonyms. Let the notation w:s means that w is

synonym of s, and let s1, s2,…,sn be the synonyms of the

word w, including w itself, then the extension of w is:

   
:w s

w s       (Equation 1)

We suggest two changes in Siddharthan and

Copestake’s algorithm. First, to remove only those

distractors which do not appear in the extension of the

word (being added into the description). This would

solve the first problem: failure in generating

distinguishing descriptions. Second, a word would be

added into the description only if it removes some

distractors at the present state of the task (similar in

spirit to [7]). This would remedy the second problem:

redundant attributes in the description. These two

changes would lead to the following modified version

of Siddharthan and Copestake’s algorithm.

Require:

An intended referent r

A set C of distractors for r, initialized to Domain – {r}

A preference list L of adjectives describing r

A head noun N describing r

1: Initialize the description S of r as S = 

2: if C =  then

3: Return N

4: end if

5: for each a  L do

6: if C  [[a]]

7: S  S  a

8: C  C  [[a]]

9: end if

10: if C =  then

11: Return S  S  N

12: end if

13: end for

14: Return S  S  N

Modified Siddharthan and Copestake’s Algorithm

The description of r is init ialized to a null () value

at line (1). Line (2) checks if the set of distracters is

empty; if this is the case, the algorithm returns a

description comprising only the head noun (line 3). The

search for a d istinguishing description is initiated at line

(5), where each adjective is taken in turn. At line (6), it

is checked if the current adject ive (a) has some

discriminatory power. If this is the case, i.e. the

adjective removes some distracters, then it is added into

the description (line 7), and those distractors for which

the adjective is not true are removed from the distractor

set (line 8). At line (12), the algorithm checks if C is

empty or not; if C is empty then the head noun N is

added into the description, and a distinguishing

description is returned (line 11). However, if the list L is

exhausted (and C is not empty yet), the algorithm

returns a non-distinguishing description (line 14), which

could be realised as an indefinite NP.

The modified algorithm makes use of Equation 1 to

take into account the synonyms during the description

building process (cf. line 6). Also an adjective is added

to the description only if it removes some d istracters (cf.

line 6-8) at the p resent state of the affairs. In the

following, we show that such an approach helps remedy

the above noted problems (in Siddharthan and

Copestake’s algorithm). We will also show that these

improvements can be made without greatly increasing

the computational complexity of the (orig inal)

algorithm.

3.1 Revisiting the First Problem (Completeness)

Consider the referential domain in Table 2, above,

again. Let we have the same GRE task, and the same

word preference list as computed by Siddharthan and

 Managing Lexical Ambiguity in the Generation of Referring Expressions 37

Copyright © 2013 MECS I.J. Intelligent Systems and Applications, 2013, 08, 33-39

Copestake’s approach. The Modified Siddharthan and

Copestake Algorithm will proceed as follows.

The algorithm would first take the word old; add it

into the description (of the intended referent) as it rules

out some distractors (namely, e3); update the distractor

set by removing e3. (Note that unlike Siddharthan and

Copestake’s algorithm, e2 is not removed at this stage.)

Then, it would take the word current and add it into the

description. At this stage, there are no distractors left in

the distractor set of e1, so the algorithm will add the

noun president in the description. The algorithm would

return the description whose realisation is the current

old president which distinguishes e1 from its distractors.

3.2 Revisiting the Second Problem (Unnecessarily

Long Descriptions)

Consider the referential domain in Table 3. Again, let

we have the same GRE task, and the same word

preference list as computed by Siddharthan and

Copestake’s approach. The modified algorithm would

first take the word small, add it into the description and

remove the distracters e2 and e3. Then, it would take the

word black , disregard it as not being discriminating.

(Note, at this stage Siddharthan and Copestake’s

algorithm would add this word to the description.) Next,

the algorithm would take the word striped and add it

into the description. At this stage, there are no

distractors left in the distractor set of e1, so the

algorithm will add the noun president (which is not

already added) in the description. The algorithm would

return a description whose realisation is the small

striped bag. Note that this description does not contain

superfluous adjectives, hence it is optimal.

IV. Discussion

The modified Siddharthan and Copestake algorithm

makes use of a direct extensional approach by

exploit ing Equation 1 to take into account the synonyms

during the description building process . We have shown

above using illustrative examples that this approach

overcomes the problems observed in the original

algorithm. It is interesting to note that these remed ies do

not greatly increase the computational complexity of the

original algorithm. We can show that both the original

Siddharthan and Copestake algorithm and its modified

version belong to the same complexity class.

An estimate of the complexity of the revised

algorithm depends on three factors: a) the number of

adjectives (Na) in the list L, b) the maximum number of

synonyms of an adjective (Ns), available via the

WordNet, and the number of distractars (Nc) in the

distractor set C. The algorithm computes the extension

of each adjective taking all its synonyms into account,

iterating through the distractor set. This gives the

algorithm a worst-case run-time complexity O(NaNsNc),

which is polynomial time. It is important to mention

here that the complexity of the original Siddharthan and

Copestake algorithm is also polynomial time.

The original Siddharthan and Copestake algorithm

and its modified version make little use of word choice.

These algorithms treat discriminatory power as the only

criterion for choosing words to build descriptions.

However, on reflection it appears to us that there might

be other factors for words choice, for example, fluency

or length of the word. For example, which of the

synonymous words old, aged and senior is the best to

use in an expression, given that all of them can have the

same discriminatory power?

There could be different answers to this question:

choose the word which fits best with the accompanying

words in the expression [13-16]); choose the word

which is most frequent [17] irrespective of its

appropriateness with the accompanying words in the

expression, etc. Psycholinguistic evidence suggests that

a word with many senses/meanings is easier to

recognise than a word with fewer senses/meanings [18-

20] and that more frequent/familiar words are also

highly ambiguous [21]. On the other hand, common

sense suggests that a phrase/sentence comprising words

with many senses/meanings is harder to process

semantically than a phrase/sentence having words with

few senses/meanings. Which words are then more

appropriate from the two extremes of the spectrum:

more common but highly ambiguous words, or less

common but almost unambiguous words? These are still

open questions in GRE research.

The algorithm presented here constructs singleton

referring expressions (i.e. referring expressions whose

intended referent set is a single object). However, p lural

referring expressions (i.e. reference to arbitrary sets of

objects) are also very common in any natural language

discourse. While a large body of research has focused

on generating singular reference, some algorithms have

been developed to produce plural referring expressions

as well [8, 9, 10, 22, 23]. We hypothesise that the ideas

presented in this article can be adapted in the existing

GRE algorithms, which generate plural referring

expressions.

V. Conclusion and Future Work

Most existing algorithms for the GRE (Generat ion of

Referring Expressions) aim at generating distinguishing

descriptions at the semantic level, disregarding surface

issues, e.g. lexical ambiguity. Siddharthan and

Copestake proposed a GRE algorithm which takes

lexical ambiguity into account. They exp loited lexical

relations in the WordNet to account for lexical

ambiguity. However, we observed that their algorithm

has two potential problems: a) it fails to generate

distinguishing descriptions, even if the one exists, and b)

sometimes it generates unnecessarily long descriptions ,

even when a shorter description is possible.

38 Managing Lexical Ambiguity in the Generation of Referring Expressions

Copyright © 2013 MECS I.J. Intelligent Systems and Applications, 2013, 08, 33-39

In this article, we highlighted the limitations in the

existing algorithm, and put forward some ideas to

address those limitations. The proposed ideas were

implemented in a GRE algorithm, which proved

effective. We showed that the improvements in the

revised algorithm produce optimal descriptions without

greatly increasing the computational complexity of the

original algorithm.

The work presented in this article can be extended in

at least two different ways. First, the ideas presented in

this article do not have any empirical support. For

example, our use of taking set union to represent the

meaning of an ambiguous expression adheres the

hypothesis “Lexically ambiguous expressions are

interpreted by taking all possible meanings (of the

expression) into account”. However, on reflection it

appears to us that all interpretations of a word may not

be applicable and some interpretations may be very

unlikely (in a given context). Th is leads to an

interesting hypothesis: “Lexically ambiguous

expressions are interpreted by taking likelihood of

different meanings into account”. This hypothesis is

worth exp loring. An interesting research question in this

regard is how to compute the likelihood of different

meanings for a given word.

Second, the work presented here treats discriminatory

power as the only criterion for choosing words to build

descriptions. However, there might be other factors for

words’ choice, for example, fluency or length of the

word. For example, which of the synonymous words

old, aged and senior is the best to be used in an

expression, given that all of them can have the same

discriminatory power? Of course, the choice of a word

would depend on the particular context and speaker’s

perspective, which are not trivial concepts to be

operationalised though.

Acknowledgments

The authors would like to thank the anonymous

reviewers for their helpful comments in improving this

article.

References

[1] Reiter, E. and Dale, R. “Building Natural

Language Generation Systems”. Cambridge

University Press, 2000.

[2] Dale, R. “Generating Referring Expressions:

Building Descriptions in a Doma in of Objects and

Processes”. MIT Press, 1992.

[3] Stone, M. and Webber, B. “Textual economy

through close coupling of syntax and semantics”.

In Proceedings of the 9
th

 International Workshop

on Natural Language Generation (INLG’98), New

Brunswick, New Jersey, 1998, pp. 178–187.

[4] Krahmer, E. and Theune, M. “Efficient context-

sensitive generation of referring expressions”. In

van Deemter, K. and Kibble, R., editors,

Information Sharing: Reference and

Presupposition in Language Generat ion and

Interpretation, Center for the Study of Language

and Information (CSLI) Publications, 2002, pp.

223–264.

[5] Siddharthan, A. and Copestake, A. “Generating

referring expressions in open domains”. In

Proceedings of the 42
nd

 Meeting of the Association

for Computational Linguistics Annual Conference

(ACL-04), Barcelona, Spain, 2004.

[6] Khan, I. H., van Deemter, K., and Ritchie, G.

“Managing ambiguity in reference generation: the

role of surface structure”. Topics in Cognitive

Science, 2012, 4(2), pp. 211-31.

[7] Dale, R. and Reiter, E. “Computational

interpretations of the Gricean maxims in the

generation of referring expressions”. Cognitive

Science, 1995, 18, pp. 233–263.

[8] Gardent, C. “Generating min imal definite

descriptions”. In Proceedings of the 40
th

 Annual

Meeting of the Association for Computational

Linguistics (ACL), Philadelphia, USA, 2002.

[9] van Deemter, K. “Generating referring expressions:

Boolean extensions of the incremental algorithm”.

Computational Linguistics, 2004, 28(1), pp. 37–52.

[10] Horacek, H. “On referring to sets of objects

naturally”. In Proceedings of the 3
rd

 International

Conference on Natural Language Generation

(INLG’04), Brockenhurst England, 2004, pp 70–

79.

[11] Krahmer, E., van Erk, S., and Verleg, A. “Graph-

based generation of referring expressions”.

Computational Linguistics, 2003, 29(1), pp. 53–72.

[12] Miller, G. “WordNet: a lexical database for

English”. Communications of the Association for

Computing Machinery (ACM), 1995, 38(11), pp.

39–41.

[13] Murphy, G. L. “Noun phrase interpretation and

conceptual combination”. Journal of Memory and

Language, 1990, 29(3), pp. 259–288.

[14] Lapata, M., Mcdonald, S., and Keller, F.

“Determinants of adjective-noun plausibility”. In

Proceedings of the 9
th

 Conference of the European

Chapter of the Association for Computational

Linguistics (ACL), 1999, pp. 30–36.

[15] van Jaarsveld, H. and Dra, I. “Effects of

collocational restrictions in the interpretation of

adjective-noun combinations”. Journal of

Language and Cognitive Processes, 2003, 18(1),

pp. 47–60.

 Managing Lexical Ambiguity in the Generation of Referring Expressions 39

Copyright © 2013 MECS I.J. Intelligent Systems and Applications, 2013, 08, 33-39

[16] Gatt, A. “Generating Coherent References to

Multiple Entit ies”. An unpublished doctoral thesis,

The University of Aberdeen, Aberdeen, Scotland,

2007.

[17] Wingfield, A. “Effects of frequency on

identification”. American Journal of Psychology,

1968, 81, pp. 226–234.

[18] Borowsky, R. and Masson, M. E. “Semantic

ambiguity effects in word identification”. Journal

of Experimental Psychology: Learn ing Memory

and Cognition, 1996, 22, pp. 63–85.

[19] Azuma, T. “Why safe is better than fast: The

relatedness of a word’s meanings affects lexical

decision times”. Journal of Memory and Language,

1997, 36(4), pp. 484–504.

[20] Rodd, J., Gaskell, G., and Marslen-Wilson,W.

“The advantages and disadvantages of semantic

ambiguity”. In Proceedings of the 22
nd

 Annual

Conference of the Cognitive Science Society,

Mahwah, New Jersey, 2000, pp. 405–410.

[21] Huang, C.-R., Chen, C.-R., and Shen, C. C.

“Quantitative criteria for computational Chinese,

the nature of categorical ambiguity and its

implications for language processing: A corpus -

based study of mandarin Chinese”. In Nakayama,

M., editor, Sentence Processing in East Asian

Languages, Stanford: Center for the Study of

Language and Information (CSLI) Publications,

2002, pp. 53–83.

[22] Stone, M. “On identify ing sets”. In Proceedings of

the 1
st

 International Conference on Natural

Language Generation (INLG’00), pp. 116–123,

2000, Mitzpe Ramon.

[23] van Deemter, K. and Krahmer, E. Graphs and

Booleans: On the generation of referring

expressions. In H. Bunt and R. Muskens, editors,

Computing Meaning, Vol. III, Studies in

Linguistics and Philosophy. Dordrecht: Kluwer,

2006.

Authors’ Profiles

Imtiaz Hussain Khan received his Masters (Computer

Science) and PhD (Artificial Intelligence) degrees from

the University of Essex UK and University of Aberdeen

UK, in 2005 and 2010, respectively. In September 2010,

he joined the Department of Computer Science at King

Abdulaziz University, Jeddah, Kingdom of Saudi

Arabia, as an Assistant Professor.

His areas of research are Natural Language

Processing (NLP), part icularly Natural Language

Generation (NLG), and Evolut ionary Computation. He

has published a reasonable number of art icles in well-

reputed journals and conferences , including TopiCS in

Cognitive Science, Association for Computational

Linguistics (ACL), and COLING. Presently, he is also

working as a co-investigator on a King Abdulaziz City

of Science and Technology (KACST) funded project:

Building a Plagiarism Detection System for Arabic.

Muhammad Haleem received his B.Engg (Electronics

Engineering) and Masters (Satellite Communication

Engineering) degrees from the MUET University

Pakistan and University of Surrey, UK in 2004 and

2007, respectively. In 2008, he joined COMSATS

Institute of Information Technology Lahore, Pakistan.

In 2011, he was being employed by the Department of

Information System at King Abdulaziz University,

Jeddah, Kingdom of Saudi Arabia, as a lecturer.

His areas of research are Wireless Networks, Cloud

Computing and Human Language Technology.

How to cite this paper: Imtiaz Hussain Khan, Muhammad

Haleem,"Managing Lexical Ambiguity in the Generation of
Referring Expressions", International Journal of Intelligent

Systems and Applications(IJISA), vol.5, no.8, pp.33-39, 2013.

DOI: 10.5815/ijisa.2013.08.04

