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Abstract— Many protection applications are based 

upon the Phasor Measurement Units (PMUs) 

technology. Therefore, PMUs have been increasingly 

widespread throughout the power network, and there 

are several researches have been made to  locate the 

PMUs for complete system observability. This paper 

introduces an important application of PMUs in power 

system protection which is the detection of single line 

outage. In addition, a detection of the out of service line 

is achieved depending on the variations of phase angles 

measured at the system buses where the PMUs are 

located. Hence, a protection scheme from unexpected 

overloading in the network that may lead to system 

collapse can be achieved. Such detections are based 

upon an artificial intelligence technique which is the 

support Vector Machine (SVM) classification tool. To 

demonstrate the effectiveness of the proposed approach, 

the algorithm is tested using offline simulat ion for both 

the 14-bus IEEE and the 30-bus IEEE systems. Two 

different kernels of the SVM are tested to select the 

more appropriate one (i.e. polynomial and Radial Basis 

Function (RBF) kernels are used). 

 

Index Terms— Phasor Measurement Units, Support 

Vector Machine, Radial Basis Function Kernel 

 

I. Introduction 

The study of line outage is important to provide a 

measure of the overall effect on the system due to that 

line outage. The power flow of the system is affected by 

the line outage, and overloading for certain lines may 

occur in order to supply the loads located at the load 

buses. Therefore, the line outage causes changes in 

power angles for several buses. A protective action 

should be made to prevent large system disturbances 

(over loading of lines) leading to cascaded tripping 

results in a system collapse [1, 2].  

In recent years, Phasor Measurement Units (PMUs) 

gained a great importance and became capable of 

providing geographically dispersed accurate 

synchronized measurements over the entire power grid 

[3]. Therefore, they are used for power system studies 

and became a powerful technology in power system 

protection [4 - 8]. 

Mikolinnas and Wollenberg [9] have presented a 

version of the Megawatt Performance Indices (PI) 

whish are function of bus voltages and line flows and 

the corresponding limits. They include all terms in the 

infinite Taylor’s series expansion for all the change in 

the performance index due to different outage. Irissari 

and Sasson [10] have proposed an improved 

computational procedure based on DC load flow 

method in order to detect the line outage. Vemuri and 

Usher [11] have presented a unified approach to find 

sensitivity of performance index for single branch 

outage, generation/load outage and combination of them. 

D. Hazarika et al. [12] describe an algorithm for 

determining the line outage contingency of a line taking 

into account of line over load effect  in  remaining lines 

and subsequent tripping of over loaded line(s) leading 

to system split or islanding of a power system using fast 

decoupled load flow analysis. J. Tate and T. Overbye 

[13, 14] introduce two researches for single and double 

line outage respectively using phasor angle 

measurements. This is done by utilizing an optimization 

technique for event detection. 

This paper focuses on the line outage problem and 

proposes an artificial intelligence based technique for 

outage detection. The line which suffers an outage is 

determined by means of a Support Vector Machine 

(SVM) classificat ion tool using either of polynomial 

kernel o r Radial Basis Function (RBF) kernel. The task 

of SVM is to utilize the output information from the 

PMUs to determine a status for each line if it is out of 

service or not. The PMUs calculate the phasor angles at 

the certain buses based on the complete observability 

approach discussed in [15]. Section II of this paper 

gives some details about SVM as a classification tool. 

Section III proposes an approach to detect the outage of 

a line based on the variations of the phasor angles at 

different buses with the aid o f the SVM tool. Sect ion IV 

introduces a numerical simulation for the IEEE 14-bus 

system using an offline simulat ion program 

EMTDC/PSCAD and the mathemat ical analysis with 

the aid of MATLAB. Sect ions V and VI present the 

results of line outage detection in the IEEE 14-bus 

system for both polynomial and RBF kernels 
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respectively. Section VII applies the same proposed 

approach on the IEEE 30-bus system to show the 

validity of such approach in larger systems. Section 

VIII clarifies the extracted conclusions. 

 

II. Support Vector Machine 

Support vector machine [16, 17] was originally  

introduced by Vapnik and co-workers in the late 1990s. 

SVM mainly has two classes of applicat ions, 

classification and regression. In this paper, only the 

application of classification is considered. 

There are many possible linear classifiers that can 

separate the data, but there is only one that maximizes 

the margin between the data point of each class). This 

linear classifier is termed the optimal separating hyper-

plane. Fig. 1 shows the maximum margin hyper-plane 

and margins for SVM trained with samples from two 

classes. 

Given a set of training data 

*      
+              *    +             (1) 

Each xi is a d-dimensional real vector R
d
. The points 

x which lie on the hyper-plane satisfy: 

                                                                  (2) 

Where w is normal to the hyper-plane, |b|/||w|| is the 

perpendicular distance from the hyper-plane to the 

origin, and ||w|| is the Euclidean norm of w. For the 

linearly separable case, the support vector algorithm 

simply looks for the separating hyper-plane with largest 

margin. This can be formulated as fo llows (suppose that 

all the training data satisfy the following constraints): 

                                                    (3) 

                                                    (4) 

These can be combined into one set of inequalities: 

  
(      )                                                (5) 

Train ing points for which  the equality in (5) ho lds are 

called  support vectors. The pair of hyper-planes which 

gives the maximum marg in by minimizing ||w||, subject 

to constraints can be found. The optimizat ion problem 

presented is difficu lt to solve because it depends on 

||w|| which involves a square root. Fortunately it is 

possible to alter the equation by substituting ||w|| with 

0.5||w||
2
 without changing the solution. Taking into 

account the noise with slack variable ξ and error penalty 

C, the optimal hyper-plane can be found by solving the 

following convex quadratic programming (QP) problem: 

Minimize 

   
     

     
 

 
        ∑  

 

   

                                             ( ) 

Subjected to 

  
(      )                                 (7) 

where ξi is measuring the degree of misclassification, 

the constant C > 0 determines the trade-off between 

margin maximization and training error minimization. 

In SVM, the optimal hyper-plane is determined to 

maximize the generalization ability. But if the training 

data are not linearly separable, the obtained classifier 

may not have high generalization ability. Thus to 

enhance linear separation, the orig inal input space is 

mapped into a high-dimensional dot product space 

called the feature space. 

 

Fig. 1: Maximum margin hyper-plane and margins for a SVM trained 

with samples from two classes 

 

A construction of the linear separating hyper-plane is 

done in this high dimensional feature space, after a 

nonlinear mapping of the input data to feature space as 

shown in Fig. 2. An inner product in feature space has 

an equivalent kernel in input space as in (8). 

 (    )   〈  ( )    (  )〉                                      (8) 

This allows the algorithm to fit  the maximum-margin  

hyper-plane in the transformed feature space [18]. In 

this work, the polynomial kernel function is used as in 

(9) with the degree n: 

 (    )  (〈    〉    )                                         (9) 

Radial basis functions have received significant 

attention, most commonly with a Gaussian of the form. 

 (    )     ( 
|      |

 

   
)                                   (10) 

http://en.wikipedia.org/wiki/Space#Mathematics
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III. The Proposed Approach 

The line outage in a transmission network causes a 

re-distribution of the lines power flow. Hence, 

variations in the voltages phase angles are achieved. 

The most affected buses are the buses near the outaged 

lines. Therefore, large scale measurements all over the 

network should be taken into consideration. The PMUs 

are located at certain buses for complete observability 

[15]. Then, a mathematical model is applied to calculate 

the phasors angles.  

 

Fig. 2: Mapping the training data into a higher-dimensional feature 

space 

 

The proposed approach uses the Rockefeller and 

Udren algorithm [19] that depends on successive three 

samples to calculate the phasor voltage magnitude and 

angle.  

A training of the SVM is made using all the possible 

cases of the line outage scenarios at several different 

loading cases. For the proposed first study case of 14-

bus IEEE system, there are 20 lines connecting the 

buses. So, the number of train ing vectors is 20 single 

line outage cases mult iplied by 6 d ifferent loading cases 

at different buses, (i.e. 120 train ing vectors). Each 

vector contains the results of phase angles for each line 

outage case. Theses vectors are the x vectors of the 

SVM. These vectors form a matrix X. For the second 

study case of 30-bus IEEE system, same analysis is 

made but with larger number of lines (i.e. 41 lines). 

The y vector o f the SVM for a certain  line is a vector 

that has the values of 1 and -1. The value of 1 represents 

a case in which the test data matches the training data. 

While the value of -1 represents a non-matching data 

(e.g. if the rows number i, j and k in  the X  matrix 

represent an outage case of a certain line. Hence, when 

studying the outage of that line, the i
th

, j
th

, and k
th
 

elements in the y vector should equal to 1 and other 

elements in the y vector should equal to -1) 

In the testing of the studied system, an SVM 

classification function is applied for each line and the 

predicted values of the SVM functions are collected. 

Hence, the out of service line is extracted through the 

results of the testing of SVM. To show the effect of the 

error penalty C, the testing is repeated at different 

values of C, to get the accuracy of the results as a 

function of C.  

Fig. 3 introduces a flow chart describing the proposed 

approach applied to either the 14-bus IEEE system or 

the 30-bus IEEE system as a simple model used to 

apply the proposed approach. 

 

Fig. 3: Flowchart describing the proposed approach 

 

IV. Simulation Results of The 14 Bus IEEE System 

In order to test the proposed algorithm, an offline 

simulation is performed  using EMTDC/PSCAD 

simulation package [20]. The 14-bus IEEE system is 

shown in Fig. 4, and the PMUs are located upon the 

complete observability approach in [15] at  the buses 2, 

7, 10 and 13. 

Therefore, the voltage samples are taken at the buses 

where the PMUs are located. Then, the angles of 

voltage phasors are calculated. 

The train ing of SVM requires many study cases of 

outage for each line to record the angles variations in all 

cases. The proposed approach suggests making such 

training at different loading cases at different buses. The 
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following cases are considered in the SVM training 

using either the polynomial kernel or the RBF kernel. 

 Normal loading case as the standard IEEE system. 

 An increase of 25% in loading at bus 4. 

 An increase of 25% in loading at bus 6. 

 An increase of 25% in loading at bus 9. 

 An increase of 25% in loading at bus 10. 

 An increase of 25% in loading at bus 12. 

 

 

Fig. 4: IEEE 14 bus system 

 

Each of the six loading  cases has an internal 20 cases 

of line outage for the 20 lines in the system. Therefore, 

120 vectors are availab le to perform the required 

training of SVM. 

The training vector consists of a number of parts 

arranged together. Each part clarifies the angle 

variations at the buses where the PMUs are located. The 

next step is to apply a different loading case to test the 

SVM including all possible line outages. Then, the 

results are tabulated and the accuracy is calculated. It is 

proposed to perform such testing at conditions that 

differ from the training conditions. 

In order to ensure the superiority of the SVM 

classification tool in the field of line outage detection, 

several study cases have been studied including the 

complete observability princip le. The study cases are 

given as follow: 

 Study case (1): An increase of 25% in loading at bus 

14. 

 Study case (2): An increase of 25% in loading at bus 

3. 

 Study case (3): An increase of 40% in loading at bus 

9. 

The targets of studying more study cases are; (1) to 

get an approximated accuracy of the proposed approach, 

(2) to select the appropriate range of penalty error for 

each line outage detection case, and (3) to determine 

which kernel from the two proposed kernels is more 

powerful. 

 

V. Simulation Results of The 14 Bus IEEE System 

Firstly, the polynomial kernel is considered, and the 

results of the three study cases are given in Tables 1, 2, 

and 3 respectively. The results are compared, and the 

comparison is introduced in Fig. 5. 

 

Fig. 5: Comparison of different study cases using polynomial kernels 

 

It is clear from Fig. 5 that for each line, there is a 

detectable range of penalty error "C" for the line outage. 

Some lines are classified clearly even the value of C  is 

small which  means narrow range of classification or 

large which means wide marg in of classification (e.g. 

line connecting bus 6 and bus 13), where the result is 

correct for all tested range of C. While other line needs 

a specified range of C (e.g. line connecting bus 6 and 

bus 12), it requires a greater value o f C starting from 

1x10
4
. On the opposite, some lines need small values of 

C (e.g. line connecting bus 9 to bus 14), it  requires 

lower value of C up to 10, after that a miss-

classification may occur and the result becomes 

confusing. 

For the study case (3), the bus number 9 is 40% 

overloaded than the standard system that differs from 

both study cases (1) and (2). The difference between the 

study cases is that in case (3), the SVM fails in the 

detection of line 9-10 and makes a miss classification as 

shown in Table 3 by bolded font and grey shadow. It 

detects line 10-11 instead of 9-10 at C = 1x10
4
. Even a 

miss classificat ion occurs; the accuracy of the approach 

still has 19 correct detections versus one wrong 

detection which means a percentage of 95 % of 

accuracy. 
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The conclusion is that the overall accuracy increases 

as the value of C increases to have much classification 

margin. But, for some cases the increase in C allows an 

appearance of miss-classifications. Therefore, to have 

correct decision for any case of line outage, it  is 

important to make a parallel processing for all lines 

with parallel subroutines. Each subroutine operates with 

the suitable or optimum penalty error "C" that to be 

adjusted through different study cases in order to get 

correct decisions. Consequently, the obtained accuracy 

of the SVM classificat ion tool for these study cases 

reaches 59 cases over 60 cases with a percentage of 

98.3%. 

 
Table 1: Results of study case (1) using polynomial kernel 

Study Case (1): An increase of 25% at bus 14 using polynomial kernel  

Outage 
Case 

Result at  
C = 1 

Result at  
C = 10 

Result at  
C = 100 

Result at  
C = 1000 

Result at  
C = 1x10

4
 

Result at  
C = 1x10

5
 

Result at  
C = 1x10

6
 

Result at  
C = 1x10

7
 

Line 1-2 No outage 1-2 1-2 1-2 1-2 1-2 1-2 1-2 

Line 1-5 No outage 1-5 1-5 1-5 1-5 1-5 1-5 1-5 

Line 2-3 No outage 2-3 2-3 2-3 2-3 2-3 2-3 2-3 

Line 2-4 2-4 2-4 2-4 2-4 2-4 2-4, 10-11 2-4, 10-11 2-4, 10-11 

Line 2-5 No outage No outage No outage No outage 2-5 2-5 2-5 2-5 

Line 3-4 3-4 3-4 3-4 3-4 3-4 3-4 3-4 3-4 

Line 4-5 No outage No outage No outage 4-5 4-5 4-5 4-5 4-5 

Line 4-7 4-7 4-7 4-7 4-7 4-7 4-7 4-7 4-7 

Line 4-9 No outage No outage No outage No outage No outage No outage 4-9 4-9 

Line 5-6 No outage No outage No outage No outage 5-6 5-6 5-6 5-6 

Line 6-11 6-11 6-11 6-11 6-11 6-11 6-11, 10-11 6-11, 10-11 6-11, 10-11 

Line 6-12 No outage No outage No outage No outage 6-12 6-12 6-12 6-12 

Line 6-13 6-13 6-13 6-13 6-13 6-13 6-13 6-13 6-13 

Line 7-8 No outage No outage No outage No outage No outage No outage 7-8 7-8 

Line 7-9 7-9 7-9 7-9 7-9 7-9 7-9 7-9 7-9 

Line 9-10 No outage No outage No outage No outage 9-10 9-10 9-10 9-10 

Line 9-14 9-14 9-14 9-14, 3-4 9-14, 3-4 9-14, 3-4 9-14, 3-4 9-14, 3-4 9-14, 3-4 

Line 10-11 No outage No outage No outage 10-11 10-11 10-11 10-11 10-11 

Line 12-13 No outage No outage No outage No outage No outage No outage No outage 12-13 

Line 13-14 13-14 13-14 13-14 13-14 13-14 13-14 13-14 13-14 

 

Table 2: Results of study case (2) using polynomial kernel 

Study Case (2): An increase of 25% at bus 3 using polynomial kernel  

Outage 
Case 

Result at  
C = 1 

Result at  
C = 10 

Result at  
C = 100 

Result at  
C = 1000 

Result at  
C = 1x10

4
 

Result at  
C = 1x10

5
 

Result at  
C = 1x10

6
 

Result  at 
C = 1x10

7
 

Line 1-2 No outage 1-2 1-2 1-2 1-2 1-2 1-2 1-2 

Line 1-5 No outage 1-5 1-5 1-5 1-5 1-5 1-5 1-5 

Line 2-3 No outage No outage 2-3 2-3 2-3 2-3 2-3 2-3 

Line 2-4 2-4 2-4 2-4 2-4 2-4 2-4 2-4 2-4 

Line 2-5 No outage No outage No outage No outage 2-5 2-5 2-5 2-5 

Line 3-4 3-4 3-4 3-4 3-4 3-4 3-4 3-4 3-4 

Line 4-5 No outage No outage No outage 4-5 4-5 4-5 4-5 4-5 

Line 4-7 4-7 4-7 4-7 4-7 4-7 4-7 4-7 4-7 

Line 4-9 No outage No outage No outage No outage No outage 4-9 4-9 4-9 

Line 5-6 No outage No outage No outage No outage 5-6 5-6 5-6 5-6 

Line 6-11 6-11 6-11 6-11 6-11 6-11 6-11 6-11 6-11 

Line 6-12 No outage No outage No outage No outage 6-12 6-12 6-12 6-12 

Line 6-13 6-13 6-13 6-13 6-13 6-13 6-13 6-13 6-13 

Line 7-8 No outage No outage No outage No outage No outage No outage 7-8 7-8 

Line 7-9 7-9 7-9 7-9 7-9 7-9 7-9 7-9 7-9 

Line 9-10 No outage No outage No outage No outage 9-10 9-10 9-10 9-10 

Line 9-14 9-14 9-14 9-14 9-14 9-14 9-14 9-14 9-14 

Line 10-11 No outage No outage No outage 10-11 10-11 10-11 10-11 10-11 

Line 12-13 No outage No outage No outage No outage No outage No outage No outage 12-13 

Line 13-14 13-14 13-14 13-14 13-14 13-14 13-14 13-14 13-14 
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Table 3: Results of study case (3) using polynomial kernel 

Study Case (3): An increase of 40% at bus 9 using polynomial kernel  

Outage 
Case 

Result at  
C = 1 

Result at  
C = 10 

Result at  
C = 100 

Result at  
C = 1000 

Result at  
C = 1x10

4
 

Result at  
C = 1x10

5
 

Result at  
C = 1x10

6
 

Result at  
C = 1x10

7
 

Line 1-2 No outage 1-2 1-2 1-2 1-2, 10-11 1-2, 10-11 1-2, 10-11 1-2, 10-11 

Line 1-5 No outage 1-5 1-5 1-5 1-5, 2-5 1-5, 2-5 1-5, 2-5 1-5, 2-5 

Line 2-3 No outage 2-3 2-3 2-3 2-3 2-3 2-3 2-3 

Line 2-4 2-4 2-4 2-4 2-4 2-4, 2-5 2-4, 2-5, 7-8 2-4, 2-5, 7-8 2-4, 2-5, 7-8, 

Line 2-5 No outage No outage No outage No outage 2-5 2-5 2-5, 7-8 2-5, 7-8 

Line 3-4 No outage 3-4 3-4 3-4 3-4, 10-11 3-4, 10-11 3-4, 10-11 3-4, 10-11 

Line 4-5 No outage No outage No outage 4-5 4-5 4-5 4-5 4-5 

Line 4-7 4-7 4-7 4-7 4-7 4-7, 10-11 4-7, 10-11 4-7, 10-11 4-7, 10-11 

Line 4-9 No outage No outage No outage No outage No outage No outage 4-9 4-9 

Line 5-6 No outage No outage No outage No outage 5-6 5-6, 10-11 5-6,10-11 5-6,10-11 

Line 6-11 6-11 6-11 6-11 6-11 6-11 6-11 6-11, 4-9 6-11, 4-9 

Line 6-12 No outage No outage No outage No outage 6-12 6-12 6-12 6-12 

Line 6-13 6-13 6-13 6-13 6-13 6-13 6-13 6-13 6-13 

Line 7-8 No outage No outage No outage No outage No outage No outage 7-8 7-8, 10-11 

Line 7-9 7-9 7-9 7-9 7-9 7-9 7-9 7-9, 4-9 7-9, 4-9 

Line 9-10 No outage  No outage  No outage  No outage  No outage  10-11 10-11, 7-8 10-11, 7-8 

Line 9-14 No outage 9-14 9-14 9-14 9-14, 10-11 9-14, 10-11 9-14, 10-11 9-14, 10-11 

Line 10-11 No outage No outage No outage No outage No outage 10-11 10-11 10-11 

Line 12-13 No outage No outage No outage No outage No outage No outage No outage 12-13 

Line 13-14 13-14 13-14 13-14 13-14 13-14 13-14 13-14, 9-10 13-14, 9-10 

 

VI. Simulation Results of The 14 Bus IEEE System 

Using RBF Kernel 

The (RBF) kernel is introduced in section II. It is 

applied to the proposed line outage problem and the 

results are obtained for the selected three study cases 

that are mentioned before. Tab le 4, Table 5 and Table 6 

introduce the detailed results of line outage cases for an 

increase in the loading by 25% at bus 14, 25% at bus 3 

and 40% increase at bus 9 respectively. The results are 

combined in a bar chart representation and introduced 

in Fig. 6. 

The results of using RBF kernel are much better than 

that using polynomial kernel. A ll line outage cases are 

classified clearly for a large range of penalty error even 

the cases in which the phase angles have very small 

changes during the occurrence of line outage. 

According to all simulation, tables of results and 

figures, the RBF kernel is more efficient than the 

polynomial kernel, as the RBF kernel have succeeded in 

all line outage cases for all study cases. To show the 

superiority of the RBF kernel compared to the 

polynomial kernel in the classification of line outage, a 

comparison of the final results for both kernels is 

introduced in Table 7. It is clear from the table that the 

RBF kernel has a more detectable range of penalty error 

in 15 line outage cases against 4 cases in which the 

polynomial kernel advances. 

 

 

Fig. 6: Comparison of different study cases using RBF kernel 
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Table 4: Results of study case (1) using RBF kernel 

Study Case (1): An increase of 25% at bus 14 using RBF kernel  

Outage 

Case 

Result at  

C = 1 

Result at  

C = 10 

Result at  

C = 100 

Result at  

C = 1000 

Result at  

C = 1x10
4
 

Result at  

C = 1x10
5
 

Result at  

C = 1x10
6
 

Result at  

C = 1x10
7
 

Line 1-2 No outage 1-2 1-2 1-2 1-2 1-2 1-2 1-2 

Line 1-5 1-5 1-5 1-5 1-5 1-5 1-5 1-5 1-5 

Line 2-3 No outage 2-3 2-3 2-3 2-3 2-3 2-3 2-3 

Line 2-4 2-4 2-4 2-4 2-4 2-4 2-4 2-4 2-4 

Line 2-5 No outage 2-5 2-5 2-5 2-5 2-5 2-5 2-5 

Line 3-4 3-4 3-4 3-4 3-4 3-4 3-4 3-4 3-4 

Line 4-5 4-5 4-5 4-5 4-5 4-5 4-5 4-5 4-5 

Line 4-7 4-7 4-7 4-7 4-7 4-7 4-7 4-7 4-7 

Line 4-9 4-9 4-9 4-9 4-9 4-9 4-9 4-9 4-9 

Line 5-6 No outage 5-6 5-6 5-6 5-6 5-6 5-6 5-6 

Line 6-11 6-11 6-11 6-11 6-11 6-11 6-11 6-11 6-11 

Line 6-12 6-12 6-12 6-12 6-12 6-12 6-12 6-12 6-12 

Line 6-13 6-13 6-13 6-13 6-13 6-13 6-13 6-13 6-13 

Line 7-8 No outage No outage No outage 7-8 7-8 7-8 7-8 7-8 

Line 7-9 7-9 7-9 7-9 7-9 7-9 7-9 7-9 7-9 

Line 9-10 9-10 9-10 9-10 9-10 9-10 9-10 9-10 9-10 

Line 9-14 9-14 9-14 9-14 9-14 9-14 9-14 9-14 9-14 

Line 10-11 10-11 10-11 10-11 10-11 10-11 10-11 10-11 10-11 

Line 12-13 No outage 12-13 12-13 12-13 12-13 12-13 12-13 12-13 

Line 13-14 13-14 13-14 13-14 13-14 13-14 13-14 13-14 13-14 

 

Table 5: Results of study case (2) using RBF kernel 

Study Case (2): An increase of 25% at bus 3 using RBF kernel  

Outage 
Case 

Result at  
C = 1 

Result at  
C = 10 

Result at  
C = 100 

Result at  
C = 1000 

Result at  
C = 1x10

4
 

Result at  
C = 1x10

5
 

Result at  
C = 1x10

6
 

Result at  
C = 1x10

7
 

Line 1-2 No outage 1-2 1-2 1-2 1-2 1-2 1-2 1-2 

Line 1-5 1-5 1-5 1-5 1-5 1-5 1-5 1-5 1-5 

Line 2-3 No outage 2-3 2-3 2-3 2-3 2-3 2-3 2-3 

Line 2-4 2-4 2-4 2-4 2-4 2-4 2-4 2-4 2-4 

Line 2-5 2-5 2-5 2-5 2-5 2-5 2-5 2-5 2-5 

Line 3-4 3-4 3-4 3-4 3-4 3-4 3-4 3-4 3-4 

Line 4-5 4-5 4-5 4-5 4-5 4-5 4-5 4-5 4-5 

Line 4-7 4-7 4-7 4-7 4-7 4-7 4-7 4-7 4-7 

Line 4-9 4-9 4-9 4-9 4-9 4-9 4-9 4-9 4-9 

Line 5-6 No outage 5-6 5-6 5-6 5-6 5-6 5-6 5-6 

Line 6-11 6-11 6-11 6-11 6-11 6-11 6-11 6-11 6-11 

Line 6-12 6-12 6-12 6-12 6-12 6-12 6-12 6-12 6-12 

Line 6-13 6-13 6-13 6-13 6-13 6-13 6-13 6-13 6-13 

Line 7-8 No outage No outage 7-8 7-8 7-8 7-8 7-8 7-8 

Line 7-9 7-9 7-9 7-9 7-9 7-9 7-9 7-9 7-9 

Line 9-10 9-10 9-10 9-10 9-10 9-10 9-10 9-10 9-10 

Line 9-14 9-14 9-14 9-14 9-14 9-14 9-14 9-14 9-14 

Line 10-11 10-11 10-11 10-11 10-11 10-11 10-11 10-11 10-11 

Line 12-13 No outage 12-13 12-13 12-13 12-13 12-13 12-13 12-13 

Line 13-14 13-14 13-14 13-14 13-14 13-14 13-14 13-14 13-14 
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Table 6: Results of study case (3) using RBF kernel 

Study Case (3): An increase of 40% at bus 9 using RBF kernel  

Outage 
Case 

Result at  
C = 1 

Result at  
C = 10 

Result at  
C = 100 

Result at  
C = 1000 

Result at  
C = 1x10

4
 

Result at  
C = 1x10

5
 

Result at  
C = 1x10

6
 

Result at  
C = 1x10

7
 

Line 1-2 No outage 1-2 1-2 1-2 1-2 1-2 , 2-5 1-2 , 2-5 1-2 , 2-5 

Line 1-5 1-5 1-5 1-5 1-5 1-5 1-5 1-5 1-5 

Line 2-3 No outage 2-3 2-3 2-3 , 9-10 2-3 , 9-10 2-3 , 9-10 2-3 , 9-10 2-3 , 9-10 

Line 2-4 2-4 2-4 2-4 2-4 2-4 2-4 2-4 2-4 

Line 2-5 2-5 2-5 2-5 2-5 , 1-5 2-5 , 1-5 2-5 , 1-5 2-5 , 1-5 2-5 , 1-5 

Line 3-4 No outage 3-4 3-4 3-4 , 5-6 3-4 , 5-6 3-4 , 5-6 3-4 , 5-6 3-4 , 5-6 

Line 4-5 4-5 4-5 4-5 4-5 4-5 4-5 4-5 4-5 

Line 4-7 4-7 4-7 4-7 4-7 4-7 4-7 4-7 4-7 

Line 4-9 4-9 4-9 4-9 4-9 4-9 4-9 4-9 4-9 

Line 5-6 No outage 5-6 5-6 5-6 , 9-10 5-6 , 9-10 5-6 , 9-10 5-6 , 9-10 5-6 , 9-10 

Line 6-11 6-11 6-11 6-11 6-11 6-11 6-11 6-11 6-11 

Line 6-12 6-12 6-12 6-12 6-12 6-12 6-12 6-12 6-12 

Line 6-13 6-13 6-13 6-13 6-13 6-13 6-13 6-13 6-13 

Line 7-8 No outage No outage No outage No outage No outage No outage 7-8 7-8 , 9-10 

Line 7-9 7-9 7-9 7-9 7-9 7-9 7-9 7-9 7-9 

Line 9-10 No outage 9-10 9-10 9-10 , 2-5 9-10 , 2-5 9-10 , 2-5 9-10 , 2-5 9-10 , 2-5 

Line 9-14 No outage 9-14 9-14 9-14,12-13 9-14,12-13 9-14,12-13 9-14,12-13 9-14,12-13 

Line 10-11 10-11 10-11 10-11 10-11, 5-6 10-11, 5-6 10-11, 5-6 10-11, 5-6 10-11, 5-6 

Line 12-13 No outage 12-13 12-13 12-13 12-13 12-13, 2-5 12-13, 2-5 12-13, 2-5 

Line 13-14 13-14 13-14 13-14 13-14 13-14 13-14 13-14 13-14 

 

Table 7: Comparison of results for polynomial and RBF kernels 

O utage  
Case  

Range of log (C)  
for detection  

for Polynomial kernel  

Range of log (C)  
for detection  

for RBF kernel  

O utage  
Case  

Range of log (C)  
for detection  

for Polynomial kernel  

Range of log (C)  
for detection  

for RBF kernel  

Line 1-2 1 to 7 1 to 4 Line 6-11 0 to 4 0 to 7 

Line 1-5 1 to 7 0 to 7 Line 6-12 4 to 7 0 to 7 

Line 2-3 2 to 7 1 to 2 Line 6-13 0 to 7 0 to 7 

Line 2-4 0 to 3 0 to 7 Line 7-8 6 5 to 6 

Line 2-5 4 to 5 1 to 2 Line 7-9 0 to 5 0 to 7 

Line 3-4 1 to 3 1 to 3 Line 9-10 Misdetection in one case 1 to 2 

Line 4-5 3 to 7 0 to 7 Line 9-14 1 1 to 2 

Line 4-7 0 to 3 0 to 7 Line 10-11 5 to 7 0 to 2 

Line 4-9 6 to 7 0 to 7 Line 12-13 7 1 to 4 

Line 5-6 4 1 to 2 Line 13-14 0 to 5 0 to 7 

 

The final conclusion is that the SVM classification 

tool using the RBF kernel is a  powerful tool in the 

detection of an outage of a line. As a result, it has a 

great importance in  the field of power system protection 

against line outage contingency. 

 

VII. Testing the proposed algorithm with 30-Bus 

System Using RBF Kernel 

In order to enhance the superiority of the proposed 

algorithm, the EMTDC/PSCAD simulation package is 

used to simulate the 30-bus IEEE system shown in Fig. 

7. According to the complete observability approach 

[15], the PMUs are located at 10 d ifferent locations in 

the buses 2, 4, 6, 9, 10, 12, 15, 19, 25 and 27. The study 

cases of outage considered in the training of SVM are 

as follow: 

 Normal loading case as the standard IEEE system. 

 An increase of 25% in loading at bus 4. 

 An increase of 25% in loading at bus 12. 

 An increase of 25% in loading at bus 15. 

 An increase of 25% in loading at bus 17. 

 An increase of 25% in loading at bus 21. 

Each of the six loading  cases has an internal 41 cases 

of line outage for the 41 lines in the system. Therefore, 

246 vectors are availab le to perform the required 

training of SVM.  
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Fig. 7: IEEE 30 bus system 

 

As mentioned previously in the case of IEEE 14-bus 

system, the train ing is  made and testing is performed for 

different cases of loading including all possible line 

outages. The proposed study cases including the 

complete observability principle. Are as follow: 

 Study case (1): An increase of 25% in loading at bus 

18. 

 Study case (2): An increase of 20% in loading at bus 

24 + an increase of 20% in loading at bus 29. 

 

As the conclusion in the 14-bus IEEE system is that 

the RBF kernel gives more accurate results. Therefore, 

the simulat ion for the 30-bue IEEE system is to be run 

under the using of RBF kernel function. The results of 

the two study cases are given in Table 8 and Table 9 

respectively. 

Table 8 and Table 9 introduce supportive results to 

the previously discussed in the case of 14-bus IEEE 

system. It is clear that the outage of the most of 

transmission lines in the network is classified very well 

for a wide range of penalty error ''C ''. Therefore, the 

accuracy of the classification for the 30-bus system is 

approximately equivalent to that of the 14-bus system. 

As a result, it can be stated that the proposed approach 

is suitable for large transmission networks. 

 
Table 8: Results of study case (1): An increase of 25% in loading at bus 18 

Study Case (1): An increase of 25% at bus 18 using RBF kernel  

Outage 
Case 

Result at  
C = 1 

Result at  
C = 10 

Result at  
C = 100 

Result at  
C = 1000 

Result at  
C = 1x10

4
 

Result at  
C = 1x10

5
 

Result at  
C = 1x10

6
 

Result at  
C = 1x10

7
 

Line 1-2 No outage 1-2 1-2 1-2 1-2 1-2 1-2 1-2 

Line 1-3 1-3 1-3 1-3 1-3 1-3 1-3 1-3 1-3 

Line 2-4 2-4 2-4 2-4 2-4 2-4 2-4 2-4 2-4 

Line 2-5 No outage 2-5 2-5 2-5 2-5 2-5 2-5 2-5 

Line 2-6 2-6 2-6 2-6 2-6 2-6 2-6 2-6 2-6 

Line 3-4 3-4 3-4 3-4 3-4 3-4 3-4 3-4 3-4 

Line 4-6 4-6 4-6 4-6 4-6 4-6 4-6 4-6 4-6 

Line 4-12 4-12 4-12 4-12 4-12 4-12 4-12 4-12 4-12 

Line 5-7 No outage 5-7 5-7 5-7 5-7 5-7 5-7 5-7 

Line 6-7 6-7 6-7 6-7 6-7 6-7 6-7 6-7 6-7 

Line 6-8 6-8 6-8 6-8 6-8 6-8 6-8 6-8 6-8 

Line 6-9 6-9 6-9 6-9 6-9 6-9 6-9 6-9 6-9 

Line 6-10 6-10 6-10 6-10 6-10 6-10 6-10 6-10 6-10 

Line 6-28 6-28 6-28 6-28 6-28 6-28 6-28 6-28 6-28 

Line 8-28 No outage No outage No outage No outage No outage No outage No outage No outage 

Line 9-10 9-10 9-10 9-10 9-10 9-10 9-10 9-10 9-10 

Line 9-11 9-11 9-11 9-11 9-11 9-11 9-11 9-11 9-11 

Line 10-17 10-17 10-17 10-17 10-17 10-17 10-17 10-17 10-17 

Line 10-20 10-20 10-20 10-20 10-20 10-20 10-20 10-20 10-20 

Line 10-21 10-21 10-21 10-21 10-21 10-21 10-21 10-21 10-21 

Line 10-22 10-22 10-22 10-22 10-22 10-22 10-22 10-22 10-22 

Line 12-13 12-13 12-13 12-13 12-13 12-13 12-13 12-13 12-13 

Line 12-14 12-14 12-14 12-14 12-14 12-14 12-14 12-14 12-14 

Line 12-15 12-15 12-15 12-15 12-15 12-15 12-15 12-15 12-15 

Line 12-16 12-16 12-16 12-16 12-16 12-16 12-16 12-16 12-16 

Line 14-15 14-15 14-15 14-15 14-15 14-15 14-15 14-15 14-15 

Line 15-18 15-18 15-18 15-18 15-18 15-18 15-18 15-18 15-18 

Line 15-23 15-23 15-23 15-23 15-23 15-23 15-23 15-23 15-23 

Line 16-17 16-17 16-17 16-17 16-17 16-17 16-17 16-17 16-17 

Line 18-19 18-19 18-19 18-19 18-19 18-19 18-19 18-19 18-19 

Line 19-20 19-20 19-20 19-20 19-20 19-20 19-20 19-20 19-20 

Line 21-22 21-22 21-22 21-22 21-22 21-22 21-22 21-22 21-22 
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Line 22-24 22-24 22-24 22-24 22-24 22-24 22-24 22-24 22-24 

Line 23-24 23-24 23-24 23-24 23-24 23-24 23-24 23-24 23-24 

Line 24-25 24-25 24-25 24-25 24-25 24-25 24-25 24-25 24-25 

Line 25-26 25-26 25-26 25-26 25-26 25-26 25-26 25-26 25-26 

Line 25-27 25-27 25-27 25-27 25-27 25-27 25-27 25-27 25-27 

Line 27-28 27-28 27-28 27-28 27-28 27-28 27-28 27-28 27-28 

Line 27-29 27-29 27-29 27-29 27-29 27-29 27-29 27-29 27-29 

Line 27-30 27-30 27-30 27-30 27-30 27-30 27-30 27-30 27-30 

Line 29-30 29-30 29-30 29-30 29-30 29-30 29-30 29-30 29-30 

 

Table 9: Results of study case (2): An increase of 20% in loading at both buses 24 and 29  

Study Case (2): An increase of 20% at buses 24 and 29 using RBF kernel  

Outage 
Case 

Result at  
C = 1 

Result at  
C = 10 

Result at  
C = 100 

Result at  
C = 1000 

Result at  
C = 1x10

4
 

Result at  
C = 1x10

5
 

Result at  
C = 1x10

6
 

Result at  
C = 1x10

7
 

Line 1-2 No outage 1-2 1-2 1-2 1-2 1-2 1-2 1-2 

Line 1-3 1-3 1-3 1-3 1-3 1-3 1-3 1-3 1-3 

Line 2-4 2-4 2-4 2-4 2-4 2-4 2-4 2-4 2-4 

Line 2-5 No outage 2-5 2-5 2-5 2-5 2-5 2-5 2-5 

Line 2-6 2-6 2-6 2-6 2-6 2-6 2-6 2-6 2-6 

Line 3-4 3-4 3-4 3-4 3-4 3-4 3-4 3-4 3-4 

Line 4-6 4-6 4-6 4-6 4-6 4-6 4-6 4-6 4-6 

Line 4-12 4-12 4-12 4-12 4-12 4-12 4-12 4-12 4-12 

Line 5-7 No outage No outage 5-7 5-7 5-7 5-7 5-7 5-7 

Line 6-7 6-7 6-7 6-7 6-7 6-7 6-7 6-7 6-7 

Line 6-8 6-8 6-8 6-8 6-8 6-8 6-8 6-8 6-8 

Line 6-9 6-9 6-9 6-9 6-9 6-9 6-9 6-9 6-9 

Line 6-10 6-10 6-10 6-10 6-10 6-10 6-10 6-10 6-10 

Line 6-28 6-28 6-28 6-28 6-28 6-28 6-28 6-28 6-28 

Line 8-28 No outage No outage No outage No outage No outage No outage No outage  No outage  

Line 9-10 9-10 9-10 9-10 9-10 9-10 9-10 9-10 9-10 

Line 9-11 9-11 9-11 9-11 9-11 9-11 9-11 9-11 9-11 

Line 10-17 No outage 10-17 10-17 10-17 10-17 10-17 10-17 10-17 

Line 10-20 10-20 10-20 10-20 10-20 10-20 10-20 10-20 10-20 

Line 10-21 10-21 10-21 10-21 10-21 10-21 10-21 10-21 10-21 

Line 10-22 10-22 10-22 10-22 10-22 10-22 10-22 10-22 10-22 

Line 12-13 12-13 12-13 12-13 12-13 12-13 12-13 12-13 12-13 

Line 12-14 12-14 12-14 12-14 12-14 12-14 12-14 12-14 12-14 

Line 12-15 12-15 12-15 12-15 12-15 12-15 12-15 12-15 , 14-15 12-15 , 14-15 

Line 12-16 12-16 12-16 12-16 12-16 12-16 12-16 12-16 12-16 

Line 14-15 14-15 14-15 14-15 14-15 14-15 14-15 14-15 14-15 

Line 15-18 15-18 15-18 15-18 15-18 15-18 15-18 15-18 15-18 

Line 15-23 15-23 15-23 15-23 15-23 15-23 15-23 15-23 15-23 

Line 16-17 16-17 16-17 16-17 16-17 16-17 16-17 16-17 16-17 

Line 18-19 18-19 18-19 18-19 18-19 18-19 18-19 18-19 18-19 

Line 19-20 19-20 19-20 19-20 19-20 19-20 19-20 19-20 19-20 

Line 21-22 No outage No outage No outage 21-22 21-22 21-22 21-22 21-22 

Line 22-24 22-24 22-24 22-24 22-24 22-24 22-24 22-24 22-24 

Line 23-24 23-24 23-24 23-24 23-24 23-24 23-24 23-24 23-24 

Line 24-25 24-25 24-25 24-25 24-25 24-25 24-25 24-25 24-25 

Line 25-26 25-26 25-26 25-26 25-26 25-26 25-26 25-26 25-26 

Line 25-27 25-27 25-27 25-27 25-27 25-27 25-27 25-27 25-27 

Line 27-28 27-28 27-28 27-28 27-28 27-28 27-28 27-28 27-28 

Line 27-29 27-29 27-29 27-29 27-29 27-29 27-29 27-29 27-29 

Line 27-30 27-30 27-30 27-30 27-30 27-30 27-30 27-30 27-30 

Line 29-30 29-30 29-30 29-30 29-30 29-30 29-30 29-30 29-30 
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VIII. Conclusion 

The paper presents the SVM classification tool in  

determination of the outage of a line in a power network 

based on the technology of PMUs. 

The paper suggests applying a parallel processing for 

each line with the optimum range of penalty error. Also, 

the paper show the superiority of the RBF kernel 

compared with the polynomial kernel in the process of 

classification related to the line outage problem. 

Therefore, the approach reaches an accuracy of 60 

correct detections over 60 possible cases of outage 

scenarios including three study cases for the 14-bus 

IEEE power system and 80 correct detections over 82 

possible cases including two study cases  for the 30-bus 

IEEE power system with the use of RBF kernel.  

The research can be applicable for any network 

especially when the regular daily  loading cases are 

considered in  the training of SVM. Hence, the actual 

case of line outage will not be so far from the training 

cases. As a result, a good detection will be achieved.  

It is suggested to get a dynamic train ing of SVM 

related to the variations of network loading stated by the 

network dispatch center. Future work will consider 

larger systems. 
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