
I.J. Intelligent Systems and Applications, 2013, 05, 68-75

Published Online April 2013 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijisa.2013.05.08

Copyright © 2013 MECS I.J. Intelligent Systems and Applications, 2013, 05, 68-75

An Analysis of Fuzzy Approaches for

COCOMO II

1
Ashita Malik,

2
Varun Pandey,

3
Anupama Kaushik

Department Of Information Technology, Maharaja Surajmal Institute Of Technology, New Delhi, India

E-mail:
1
malikashita@gmail.com,

2
varun24pandey@gmail.com,

3
anupama@msit.in

Abstract — Software cost estimation is one of the most

challenging task in pro ject management. However, the

process of estimation is uncertain in nature as it largely

depends upon some attributes that are quite unclear

during the early stages of development. In this paper a

soft computing technique is explored to overcome the

uncertainty and imprecision in estimation. The main

objective of this research is to investigate the role of

fuzzy logic technique in improving the effort estimation

accuracy using COCOMO II by characterizing inputs

parameters using Gaussian, trapezoidal and triangular

membership functions and comparing their results.

NASA (93) dataset is used in the evaluation of the

proposed Fuzzy Logic COCOMO II. After analyzing

the results it had been found that effort estimat ion using

Gaussian member function yields better results for

maximum criterions when compared with the other

methods.

Index Terms — Software Cost Estimation, Soft

Computing, COCOMO, COCOMO II Fuzzy Logic

I. Introduction

Software development has become an essential

investment for many organizations [1]. Software

engineering practitioners have become more and more

concerned about accurately predicting the cost and

quality of software product under development.

Software engineering cost (and schedule) models and

estimation techniques are used for a number of

purposes. These include:

Budgeting: The primary but not the only important

use. Accuracy of the overall estimate is the most

desired capability.

Trade-off and risk analysis: An important additional

capability is to illuminate the cost and schedule

sensitivities of software pro ject decisions (scoping,

staffing, tools, reuse, etc.).

Project planning and control: An important

additional capability is to provide cost and schedule

breakdowns by component, stage and activity.

Software improvement investment analysis: An

important additional capability is to estimate the costs

as well as the benefits of such strategies as tools, reuse,

and process maturity.

Software developers always interest to know the time

estimation of software tasks. It could be done by

comparing similar tasks that have already been

developed. Although, estimating task has an uncertain

nature, as it depends on several and usually not clear

factors and it is hard to be modelled mathematically.

Software schedule and cost estimation supports the

planning and tracking of software projects. Effective ly

controlling the expensive investment of software

development is of high importance. The reliable and

accurate cost estimat ion in software engineering is an

ongoing process due to which it allows for considerable

financial and strategic planning [2].The software

estimation process includes estimating the size of the

software product to be produced, estimating the effort

required, developing preliminary p roject schedules, and

finally, estimat ing overall cost of the project [3].

However, the process estimation is uncertain in nature

as it largely depends upon some attributes that are quite

unclear during the early stages of development, but it

needs to be carried out as huge investments are

involved in developing the software [4].

Software effort estimation models are div ided into

two main categories: Algorithmic models & Non-

Algorithmic models.

Algorithmic models: Some of the famous

algorithmic models are: Boehm’s COCOMO’81,

COCOMO II [5], A lbrecht’s Function Point [6] and

Putnam’s SLIM [7]. All of them require inputs,

accurate estimate of specific attributes, such as Lines of

Code (LOC), number of user screen, interfaces and

complexity and other cost drivers like skill set, self

assessment etc., which are not easy to acquire during

the early stage of software development. As most of the

software development effort estimates are based on the

prediction of size o f the system to be developed but this

is a difficult task as the estimates obtained at the early

stages of development are more likely to be inaccurate

because not much information of the project to be

developed is available at that time. So the correctness

of algorithmic model largely depends upon the

informat ion that is available during the preliminary

mailto:1malikashita@gmail.com,2varun24pandey@gmail.com,3anupama@

 An Analysis of Fuzzy Approaches for COCOMO II 69

Copyright © 2013 MECS I.J. Intelligent Systems and Applications, 2013, 05, 68-75

stages of development. The inability of algorithmic

model to handle categorical data (which are specified

by a range of values) and most importantly lack of

reasoning capabilities contributed to the number of

studies exploring non-algorithmic methods which are

based on soft computing.

Non-algorithmic models: In 1990’s non-algorithmic

models was born and have been proposed to project

cost estimation. Software researchers have turned their

attention to new approaches that are based on soft

computing such as artificia l neural networks, fuzzy

logic models and genetic algorithms. Neural networks

are able to generalize from trained data set. A set of

training data, a specific learning algorithm makes a set

of rules that fit the data and fits previously unseen data

in a rational manner. Some of early works show that

neural networks are highly applicab le to cost estimation.

Fuzzy logic offers a powerful linguistic representation

that able to represent imprecision in inputs and outputs,

while providing a more knowledge based approach to

model building. Research shows that fuzzy logic model

achieved good performance, being outperformed in

terms of accuracy only by neural network model with

considerably more input variables.

Hodgkinson and Garratt represented that estimat ion

by expert judgment was better than all regression based

models [2]. A Neuro-fuzzy approach [8], was

introduced into cost estimat ion which take the linguistic

attributes of a fuzzy system and combine them with the

learning and modelling attributes of a neural network to

produce transparent, adaptive systems. As is mentioned

above, Fuzzy Logic has been proposed to some models

to overcome the uncertainty problem. However, there is

still much uncertainty as to what prediction technique

appropriate to which type of prediction problem.

Burgess et al. applied genetic programming to carry

software effort estimation [9].

Thus it can be summarized from the prev ious

research that all soft computing based techniques lack

in one aspect or the other and still there is lot of

uncertainty in deciding that what soft computing based

prediction technique should be applied to which

prediction problem. In this paper a fuzzy log ic based

COCOMO II model is proposed to so as to overcome

the problem of imprecision and uncertainty. Because of

the importance of COCOMO Model and fuzzy logic

system in our research we provide a brief overview on

them in this study. Section 2 describes COCOMO

framework, section 3 g ives an introduction on

COCOMO II model. Sect ion 4 is a brief on Fuzzy

Logic, section 5 is our proposed approach, section 6

discusses experimental results and section 7 is the

conclusion.

II. COCOMO Framework

COCOMO (Constructive Cost Model), is the best

known algorithmic cost model published by Barry

Boehm in 1981 [5]. It was developed from the analysis

of sixty three software projects. The COCOMO model

is a hierarchy of software cost estimat ion models and

they are:

2.1 Basic COCOMO Model

Basic COCOMO computes software development

effort (and cost) as a function of program size. Program

size is expressed in estimated thousands of source lines

of code (SLOC). COCOMO [10] applies to three

classes of software projects:

Organic projects - "small" teams with

"good"experience working with "less than rigid"

requirements

Semi-detached projects - " medium" teams with

mixed experience working with a mix of rigid and less

than rigid requirements

Embedded projects - developed within a set of

"tight" constraints. It is also combination of organic and

semi-detached projects (hardware, software, operational,

etc.

The basic COCOMO equations take the form

Effort Applied,

E = a × (SLOC)
b

[man-months] (1)

Development Time,

D = c × (Effort Applied)
d

 [months] (2)

People required,

 [count] (3)

where, SLOC is the estimated number of delivered

lines (expressed in thousands) of code for project, The

coefficients a, b, c and d are dependent upon the three

modes of development of projects..

2.2 Intermediate COCOMO Model

The Basic COCOMO does not take account of the

software development environment. Boehm introduced

a set of 15 cost drivers in the Intermediate COCOMO

that adds accuracy to the Basic COCOMO. The cost

drivers are grouped into four categories:

1. Product attributes

(a) Required software reliability (RELY)

(b) Database size (DATA)

(c) Product complexity (CPLX)

2. Computer attributes

(a) Execution time constraint (TIME)

(b) Main storage constraint (STOR)

70 An Analysis of Fuzzy Approaches for COCOMO II

Copyright © 2013 MECS I.J. Intelligent Systems and Applications, 2013, 05, 68-75

(c) Virtual machine volatility (VIRT)

(d) Computer turnaround time (TURN)

3. Personnel attributes

(a) Analyst capability (ACAP)

(b) Application experience (AEXP)

(c) Programmer capability (PCAP)

(d) Virtual machine experience (VEXP)

(e) Programming language experience (LEXP)

4. Project attributes

(a) Modern programming practices (MODP)

(b) Use of software tools (TOOLS)

(c) Required development schedule (SCED)

The Cost drivers have up to six levels of rat ing: Very

Low, Low, Nominal, High, Very High, and Extra High.

Each rat ing has a corresponding real number known as

effort mult iplier, based upon the factor and the degree

to which the factor can in fluence productivity. The

estimated effo rt in person-months (PM) for the

intermediate COCOMO is given as:

Effort = a×[SIZE]
b
 × i=1Π

15
EM i (4)

In equation (4) the coefficient ―a‖ is known as

productivity coefficient and the coefficient ―b‖ is the

scale factor. They are based on the different

development modes of the project. The contribution of

effort multip liers corresponding to the respective cost

drivers is introduced in the effort estimation formula by

multip lying them together. The numerical value of the

ith cost driver is EMi (Effort Multiplier).

2.3 Detailed COCOMO Model

Detailed COCOMO incorporates all characteristics

of the intermediate version with an assessment of the

cost driver's impact on each step (analysis, design, etc.)

of the software engineering process. The detailed model

uses different efforts mult ipliers fo r each cost drivers

attribute. These Phase Sensitive effort multip liers are

each to determine the amount of effort required to

complete each phase. In detailed COCOMO, the effort

is calculated as function of program size and a set of

cost drivers given according to each phase of software

life cycle.

The Four phases of detailed COCOMO are:-

 Plan and requirement.

 System design.

 Detailed design.

 Module code and test.

Though it was one of the stable models of its time

but it had number of drawbacks like it strict ly gears

toward traditional development life cycle model; i.e.

custom software is build from precisely stated

specifications and an assumption over here is that

software requirements are already defined and stable;

which is not always true. It relies on LOC; and

measuring LOC at very early stages of development

leads to uncertainty and results in inaccurate estimat ion.

Here success depends largely on using historical data

which isn’t always available. It does not cope up with

the current development environment like RAD and

4GL etc., Thereafter COCOMO II was published that

overcomes most of the drawbacks of COCOMO.

III. COCOMO II Model

The COCOMO II model is a regression based

software cost estimat ion model and thought to be the

most cited, best known and the most p lausible of all

traditional cost prediction models.

COCOMO II comprises of the fo llowing models

[11]:-

Application Composition Model— Th is model

assumes that systems are created from reusable

components, scripting or database programming. This

model involves prototyping efforts to resolve potential

high-risk issues such as user interfaces,

software/system interaction, performance, or

technology maturity. It is used during the early stages

of development when prototype of user interface is

available. Software size estimates are based on

application points / object points, and a simple

size/productivity formula is used to estimate the effort

required. Object points include screens, user interface,

reports, and components that are likely to be used.

Early Design Model-To get rough estimates of a

project's cost and duration before have determined its

entire architecture. It uses a small set of new cost

drivers and new estimat ing equations. It uses

Unadjusted Function Points (UFP) as the measure of

size.

Post Architecture Model: Once the system

architecture has been designed, a more accurate

estimate of the software size can be made. – It involves

the actual development and maintenance of a software

product. This model proceeds most cost effectively if a

software life-cycle architecture has been developed;

validated with respect to the system’s mission, concept

of operation, and risk; and established as the framework

for the product. One could use function points or LOC

as size estimates with this model. COCOMO II

describes 17 cost drivers that are used in the Post

Architecture model. The cost drivers for COCOMO II

are rated on a scale from Very Low to Extra High.

COCOMO II post architecture model is given as:

 An Analysis of Fuzzy Approaches for COCOMO II 71

Copyright © 2013 MECS I.J. Intelligent Systems and Applications, 2013, 05, 68-75

PM = A × [∑

 ∏

 (5)

where, PM is the effort expressed in person months, A

is a multip licat ive constant, size is the projected size of

the software project expressed in thousands of lines of

code KLOC, EMi (i=1,2....17) are effo rt multip liers and

SFi (i=1,2....5) are exponent scale factors. Scale factor

is a particular characteristic of the software

development that has an exponential effect of

increasing or decreasing the amount of development

effort and they are Precedentness, Development

flexib ility, Architecture/Risk resolution, Team cohesion

and Process maturity. The seventeen effort mult ipliers

are grouped into four categories and they are Product,

Platform, Personnel and Product. Their product is used

to adjust the nominal effort. Table I and Table II lists

the COCOMO II cost drivers and scale factors.

Table 1: COCOMO II cost drivers

Cost Drivers Range

Reliability required (RELY) 0.82-1.26

Database size (DATA) 0.90-1.28

Product complexity (CPLX) 0.73-1.74

Required reusability (RUSE) 0.95-1.25

Documentation (DOCU) 0.81-1.23

Execution time constraint (TIME) 1.00-1.63

Main storage constraint (STOR) 1.00-1.46

Platform volatility (PVOL) 0.87-1.30

Analyst capability (ACAP)+ 1.42-0.72

Programmers capability (PCAP) 1.34-0.76

Personnel continuity (PCON) 1.29-0.81

Analyst experience (AEXP) 1.22-0.81

Programmer experience (PEXP) 1.19-0.85

Language & tool experience (LTEX) 1.20-0.84

Use of software tool (TOOL) 1.17-0.78

Multi site development SITE) 1.22-0.80

Schedule (SCED) 1.43-1.00

Table 2: COCOMO II Scale Factors

Scale factor Range

Precedentedness (PREC) 0.00-6.2O

Development flexibility (FLEX) 0.00-5.07

Architecture/risk resolution (RESL) 0.00-7.07

Team cohesion (TEAM) 0.00-5.48

Process maturity (PMAT) 0.00-7.80

IV. Fuzzy Logic

Fuzzy Logic is a methodology to solve problems

which are too complex to be understood quantitatively.

It is based on fuzzy set theory and introduced in 1965

by Prof. Zadeh in the paper fuzzy sets [13].

The fuzzy theory provides a mechanism for

representing linguistic constructs such as ―many‖,

―low‖, ―medium,‖ ―often,‖ ―few.‖ In general, the fuzzy

logic provides an inference structure that enables

appropriate human reasoning capabilit ies. On the

contrary, the traditional binary set theory describes

crisp events, events that either do or do not occur. It

uses probability theory to exp lain if an event will occur

measuring the chance with which a given event is

expected to occur .

Fuzzy Systems: Fuzzy systems are knowledge based

or rule based system. The heart of fuzzy systems is a

knowledge base consisting of the so called Fuzzy If-

Then rules in which some words are characterized by

continuous member functions. The popular fuzzy logic

systems can be categorized into three types: pure fuzzy

logic systems, Takagi and Sugeno’s fuzzy system and

fuzzy logic system with fuzzifier and defuzzifier. Since

most of the engineering applications produce crisp data

as input and expects crisp data as output, the last type is

the most widely used one fuzzy logic system with

fuzzifier and defuzzifier. It was first proposed by

Mamdani. It has been successfully applied to a variety

of industrial processes and consumer products.

Fig. 1: Fuzzy system with Fuzzifier & Defuzzifier

It consists of four main components shown in Figure

1:

Fuzzifier- It converts the crisp input into a fuzzy set.

Membership Functions are used to graphically describe

a situation.

Fuzzy Rule Base- It uses if-then rules.

Fuzzy Inference Engine - A collection of if -then

rules stored in fuzzy ru le base is known as inference

engine. It performs two operations i.e . aggregation and

composition.

Defuzzification- It is the process that refers to the

translation of fuzzy output into crisp output.

V. Proposed System

Inaccurate software cost estimat ion has plagued

software projects for decades. Poor estimates have not

72 An Analysis of Fuzzy Approaches for COCOMO II

Copyright © 2013 MECS I.J. Intelligent Systems and Applications, 2013, 05, 68-75

only led projects to exceed budget and schedule but

also, in many cases, be terminated entirely [12].The

ability to accurately estimate software development

time, cost, and manpower, changes as newer

methodologies replace old ones. Therefore, an accurate

software cost estimat ion model is highly required in

software project management.

The Fuzzy Logic COCOMO II: The new FL-

COCOMO II is based on the COCOMO II and FL. The

COCOMO II includes a set of input software attributes:

17 EMs, 5 SFs, 1 SS and one output, Effort estimat ion.

The architecture of the FL-COCOMO II is shown in

Figure 2.

All these input variables are changed to fuzzy

variables using fuzzy sets for each linguistic value such

as very low, low, nominal, high, very high and extra

high. as applicable to each cost driver and scale factor.

For each cost driver a separate fuzzy inference system

is designed. Rules are developed as cost driver in the

antecedent part and corresponding effort multiplier in

the consequent part. The defuzzified value for each of

the effort multip lier is obtained from indiv idual fuzzy

inference systems.

Fig. 2: Architecture of proposed model

Gaussian Membership Function (GMF), Triangular

Membership Function (TMF) and Trapezoidal

membership Function (Trapmf) are used for the

analysis and their corresponding results are compared.

Fuzzy ru le defin ition: Fuzzy rules for the fuzzy

logic-COCOMO-II are defined through linguistic

variables in fuzzification process. These rules are based

on the connective ―AND‖ between the input variables.

Some of the examples of rules framed are:-

If (RELY is VL) Then (EFFORT is VL)

If (RELY is L) THEN (EFFORT is L)

If (PREC is VL) then (Effort is XH

If (PMAT is VH) then (Effort is L)

The following rules are used in Figures 3,4 and 5:-

If (ACAP is Very Low) then (EFFORT is Increased

Significantly)

If (ACAP is Low) then (EFFORT is Increased)

If (ACAP is Nominal) then (EFFORT is Unchanged)

If (ACAP is High) then (EFFORT is Decreased)

If (ACAP is Very High) then (EFFORT is Decreased

Significantly)

Fig. 3: Fuzzification of ACAP cost driver using Gaussian membership function

 An Analysis of Fuzzy Approaches for COCOMO II 73

Copyright © 2013 MECS I.J. Intelligent Systems and Applications, 2013, 05, 68-75

Fig. 4: Fuzzification of ACAP cost driver using Trapezoidal membership function

Fig. 5: Fuzzification of ACAP cost driver using Triangular membership function

Fig. 6: Interface used for Effort Evaluation

74 An Analysis of Fuzzy Approaches for COCOMO II

Copyright © 2013 MECS I.J. Intelligent Systems and Applications, 2013, 05, 68-75

Figure 6 shows the graphical user interface (GUI)

developed for our model Fuzzy COCOMO II, which

eases our work. We can directly enter the values and

get the corresponding effort.

VI. Experimental Results

The data set NASA 93, used in the present study

comes from PROMISE Software Engineering

Repository data set [14] made publicly available for

research purpose. It consists of 93 NASA projects from

different centres for various years. It consists of 26

attributes: 17 standard COCOMO attributes and 5

scaling factors in the range Very Low to Extra High;

one lines of code measure (KLOC), the actual effort in

person months, total defects and last being development

time in months. The estimated efforts using COCOMO

II, Triangular MF, Trapezo idal MF and Gaussian MF

obtained are tabulated and compared. They are shown

in Table III.

The evaluation consists in comparing the accuracy of

the estimated effort with the actual effort. There are

many evaluation criteria for software effort estimat ion,

among them we applied the most frequent one which is

Magnitude of Relative Error (MRE) and is defined as

equation (6).

MRE=
| |

 (6)

The software development effort obtained when

using conventional COCOMO II and fuzzy

membership functions were compared. After analysing

the results obtained by means of applying triangular,

Trapezoidal and Gaussian MF’s, it is observed that the

effort estimated by fuzzifying the size, scale factors and

all the 17 cost drivers using Gaussian MF is yielding

better estimate.

Table 3: Estimated Effort Using Different MF’s

P.ID Actual Effort
Effort by

Trapezoidal MF

Effort by

Triangular MF

Effort by

Gaussian MF

Effort by

CO CO MO II

1 117.6 166.68 165.25 125.90 149.6

2 117.6 98.87 99.39 114.13 144.9

3 31.2 42.56 42.79 36.27 42.9

4 36 48.10 48.36 36.64 40.1

5 25.2 39.79 40.01 37.38 41.5

6 8.4 0.12 3.65 5.24 18.4

7 10.8 3.63 3.65 13.81 19.3

8 352.8 444.90 447.09 330.60 369.9

9 72 29.21 60.83 64.44 81.9

10 72 45.32 45.71 61.45 79.8

Fig. 7: Graphical representation of Effort Estimation

Figure 7 shows the bar graph representing

comparative analysis of the actual effort with that of the

effort estimated using COCOMO II, t rapezoidal MF,

triangular MF, Gaussian MF. Effort in person moths is

scaled along y- axis. Actual effort , COCOMO II

effort ,effort estimated using Gaussian MF, Triangular

MF, Trapezo idal MF, were represented for each

sample project which were taken along x- axis.

The magnitude of relative error (MRE) was

calculated using equation (7). For example, the MRE

calculated for p roject ID (P.ID) 4for COCOMO II,

triangular, Trapezoidal and Gaussian MF is 11.38,

34.331, 33.66 and 1.77 respectively. This clearly shows

that there is a decrement in the relative error, so the

proposed model is more suitable for effort estimation.

VII. Conclusion

Referring to Table III, effort estimation using

Gaussian member function yields better results for

maximum criterions when compared with the other

methods. It has been found that Gaussian function is

performing better than trapezoidal function and

0

100

200

300

400

500

1 3 5 7 9

Ef
fo

rt
 in

 p
e

rs
o

n
 m

o
n

th
s

Project ID

act.effort

trapmf

tri mf

gaussmf

COCOMO II

 An Analysis of Fuzzy Approaches for COCOMO II 75

Copyright © 2013 MECS I.J. Intelligent Systems and Applications, 2013, 05, 68-75

triangular function, as it demonstrates a smoother

transition in its intervals, and the achieved results were

closer to the actual effort (refer table III and Figure

7).Thus it is concluded that the new approach using

Gaussian MF is better than Triangular MF (triangular

membership function), Trapezo idal MF and COCOMO

II. By suitably ad justing the values of the parameters in

FIS we can optimize the estimated effort. Future work

includes Newer techniques like Type-2 fuzzy can also

be applied for more accurate predictions of software.

References

[1] S.G. MacDonell, and A. R. Gray, ―A comparison

of techniques for software development effort

prediction‖, International Conference on Neural

Information Processing and Intelligent Control

Systems, NewZealand, 1997, pp. 1-4.

[2] A.C. Hodgkinson, and P.W. Garratt, ― A neuro

fuzzy cost estimator‖, Proceedings of Third

International Conference on Software Engineering

and Applications, 1999, pp. 401-406.

[3] Mockus A., Weiss D.M. and Zhang P.

―Understanding and Predicting Efforts in Software

Projects‖, IEEE Proceedings of 25th International

Conference on Software Engineering (ICSE’03),

pp. 274-84.

[4] I. Somerv ille, Software Engineering, 6th ed.,

Addison– Wesley Publishers Limited, 2001.

[5] B. W. Boehm, Software Engineering Economics ,

Englewoods Cliffs, NJ,Prentice-Hall, 1981.

[6] B.Boehm, C. Abts, S.Chulani,‖Software

Development Cost Estimation Approaches: A

Survey,‖ University of Southern California Centre

for Software Engineering, Technical Report, USC-

CSE-2000-505, 2000.

[7] L.H. Putnam, ―A general empirical solution to the

macro software sizing and estimating problem‖,

IEEE t ransactions on Software Engineering, 1978,

Vol. 2, pp. 345- 361.

[8] Hodgkinson, A.C. and P.W. Garratt, ― A neuro

fuzzy cost estimator, ‖ Proceedings of the 3
rd

International Conference on Software Engineering

and Applications,(SEA’99), pp.401-406.

[9] Burgess C.J. and Lefley M., ―Can genetic

programming improve software effort estimation?

A comparative evaluation‖, Informat ion and

Software Technology, 2001, Vol. 43, No. 14, pp.

863 -873.

[10] A. Idri, A. Abrian, and L. Kjiri, ―COCOMO Cost

Model using Fuzzy Logic‖, International

Conference on Fuzzy Theory and Technology

Atlantic, New Jersey, 2000.

[11] B. Boehm, B. Clark, E. Horwitz, R. Madachy, C.

Abts, S.Chulan i, A.W.Brown and B. Steece,

―COCOMO II model definition manual‖,

Universityof South Californ ia Center for Software

Engineering, 2000.

[12] M. Jorgenson and D.I.K. Sjoberg, ―The impact of

customer expectation on software development

effort estimates‖, International Journal of Pro ject

Management,2004, Vol. 22, No. 4, pp. 317-325

[13] Zadeh. L. A., Fuzzy Sets, In formation and Control,

1965, Vol. 8, pp. 338-353.

[14] www.promisedata.org

Authors’ Profiles

Ashita Malik is a student pursuing her B.Tech from

Department of Information Technology of Maharaja

Surajmal Institute of Technology. This work was a part

of her pro ject on Software Cost Estimation. Her

research area includes Software Engineering and

Artificial Neural Networks.

Varun Pandey is a student pursuing his B.Tech from

Department of Information Technology of Maharaja

Surajmal Institute of Technology. This work was a part

of his project on Software Cost Estimation. His

research area includes Software Engineering and

Artificial Neural Networks.

Anupama Kaushik received her B.E (Computer

Science)from Bharathiyar University and M.Tech

(Informat ion Technology) from Tezpur University. She

joined Department of Informat ion Technology of

Maharaja Surajmal Institute of Technology as an

Assistant Professor in 2004. Her research area includes

Software Engineering, Object Oriented Software

Engineering and Soft Computing.

How to cite this paper: Ashita Malik, Varun Pandey,

Anupama Kaushik,"An Analysis of Fuzzy Approaches for
COCOMO II", International Journal of Intelligent Systems

and Applications(IJISA), vol.5, no.5, pp.68-75, 2013.DOI:

10.5815/ijisa.2013.05.08

