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Abstract— The notion of rough set captures 

indiscernibility of elements in a set. But, in many real 

life situations, an information system establishes the 

relation between different universes. This gave the 

extension of rough set on single universal set to rough 

set on two universal sets. In this paper, we introduce 

rough equality of sets on two universal sets and rough 

inclusion of sets employing the notion of the lower and 

upper approximation. Also, we establish some basic 

properties that refer to our knowledge about the 

universes.  

 

Index Terms— Rough Set, Solitary Set, Boolean 

Matrix, Rough Equality, Rough Inclusion 

 

I. Introduction 

In modern era of computing, there is a need of 

development in data analysis and knowledge 

representation. Many new mathematical modeling tools 

are emerging to the thrust of the real world task. Fuzzy 

set by Zadeh [1], rough set theory [2, 3], soft set by 

Molodtsov [4] are such mathematical models gained its 

popularity in past few decades. Development of these 

techniques and tools are studied under different 

domains like knowledge discovery in database, 

computational intelligence, knowledge engineering, 

granular computing etc. [5, 6, 7, 8, 9, 10].  

The rough set [2, 3] philosophy specifies about the 

depth understanding of the object and its attributes 

influencing the object with a depicted value. So, there is 

a need to classify objects of the universe based on the 

indiscernibility relation between them. The basic idea of 

rough set is based upon the approximation of sets by 

pair of sets known as lower approximation and upper 

approximation. Here, the lower approximation and 

upper approximation operators are based on 

equivalence relation. However, the requirement of 

equivalence relation is a restrictive condition that may 

limit the application of rough set model. Therefore, 

rough set is generalized to some extent. For instance, 

the equivalence relation is generalized to binary 

relations [11, 12, 13, 14, 15, 16], neighborhood systems 

[17], coverings [18], Boolean algebras [19, 20], fuzzy 

lattices [21], and completely distributive lattices [22]. 

On the other hand, rough set is generalized to fuzzy 

environment such as fuzzy rough set [23], and rough 

fuzzy set [24]. Further, the indiscernibility relation is 

generalized to almost indiscernibility relation to study 

many real life problems. The concept of rough set on 

fuzzy approximation spaces based on fuzzy proximity 

relation is studied by Acharjya and Tripathy [25, 26]. 

Further it is generalized to intuitionistic fuzzy proximity 

relation, and the concept of rough set on intuitionistic 

fuzzy approximation space is studied by Tripathy [27]. 

The different applications are also studied by the 

authors [28, 29, 30]. Further rough set of Pawlak is 

generalized to rough set on two universal sets with 

generalized approximation spaces and interval structure 

[31]. We continue a further study in the same direction.  

The rest of the paper is organized as follows: Section 

2 presents the foundations of rough set based on two 

universal sets and its topological characterization. In 

Section 3, we study the measures of uncertainty due to 

rough sets on two universal sets. Rough equality of sets 

on two universal sets and its properties are studied in 

Section 4. In Section 5, we introduce rough inclusion of 

sets on two universal sets. This is further followed by a 

conclusion in Section 6. 

 

II. Rough Set Based on Two Universal Sets 

An information system is a table that provides a 

convenient way to describe a finite set of objects called 

the universe by a finite set of attributes thereby 

representing all available information and knowledge. 

But, in many real life situations, an information system 

establishes the relation between different universes. 

This gave the extension of rough set on single universal 

set to rough set on two universal sets. Wong et. al [31] 

generalized the rough set models using two distinct but 

related universal sets. Let U and V be two universal sets 

and R  (UV) be a binary relation. By a knowledge 

base, we understand the relational system (U, V, R) an 

approximation space. For an element x U , we define 

the right neighborhood or the R-relative set of x in U, 
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( )r x
as

( ) { : ( , ) }r x y V x y R  
. Similarly for an 

element yV, we define the left neighborhood or the R-

relative set of y in V, 
( )l y

 as 
( ) { : ( , )l y x U x y  

 

}R
. 

For any two elements 1 2,x x U
, we say 1x

and 2x
 

are equivalent if 1 2( ) ( )r x r x
. Therefore, 1 2( , ) Ux x E

 

if and only if 1 2( ) ( )r x r x
, where UE

denote the 

equivalence relation on U. Hence, UE
partitions the 

universal set U into disjoint subsets. Similarly for any 

two elements 1 2, ,y y V
we say 1y

and 2y
are 

equivalent if 1 2( ) ( )l y l y
. Thus, 1 2( , ) Vy y E

if and 

only if 1 2( ) ( )l y l y
, where VE

denote the equivalence 

relation on V and partitions the universal set V into 

disjoint subsets. Therefore for the approximation space 

(U, V, R), it is clear that V UE R R R E 
, where 

VE R
 is the composition of R and VE

. 

For any Y  V and the binary relation R, we associate 

two subsets 
RY

and RY called the R-lower and R-upper 

approximations of Y respectively, which are given by: 

{ : ( ) }RY x U r x Y  
                                    (1) 

{ : ( ) }RY x U r x Y     
                             (2) 

The R-boundary of Y is denoted as 
( )RBN Y

 and is 

given as 
( )RBN Y RY RY 

. The pair 
( , )RY RY

 is 

called as the rough set of Y V if 
RY RY

or 

equivalently
( )RBN Y 

. Further, if U and V are finite 

sets, then the binary relation R from U to V can be 

represented as 
( , )R x y

, where 

1 if ( , )
( , )

0 if ( , )

x y R
R x y

x y R


 

  

The characteristic function of X U  is defined for 

each x U as follows: 

1 if
( )

0 if

x U
X x

x U


 

  

Therefore, the R-lower and R-upper approximations 

can be also presented in an equivalent form as shown 

below, where   and  denotes the minimum and 

maximum operators respectively. 

( ) ((1 ( , )) ( ))
y V

RY x R x y Y y


   
                          (3) 

( ) ( ( , ) ( ))
y V

RY x R x y Y y


  
                                (4) 

Example 2.1 Let 1 2 3 4 5{ , , , , }U x x x x x
and 1{ ,V y

 

2 3 4 5 6, , , , }y y y y y
. Consider the relation R given by its 

Boolean matrix: 

1 1 0 0 1 0

0 0 1 0 0 1

0 1 0 1 0 0

1 0 1 1 1 1

1 1 0 0 1 0

R

 
 
 
 
 
 
 
   

From the above relation R it is clear that, 

1 1 2 5( ) { , , };r x y y y 2 3 6( ) { , };r x y y
 3 2 4( ) { , };r x y y

  

4 1 3 4 5 6( ) { , , , , }r x y y y y y
 and 5 1 2 5( ) { , , }.r x y y y

 

Therefore, we get 1 5 2 3 4/ {{ , },{ },{ },{ }}UU E x x x x x
. 

Similarly, 1 5 3 6 2 4/ {{ , },{ , },{ },{ }}VV E y y y y y y
.Let 

us consider the target set 1 2 4 5{ , , , }Y y y y y
. Therefore, 

the R-lower approximation, 
RY

 is given as 

1 3 5{ , , }RY x x x
 whereas the R-upper approximation, 

RY  is given as 1 3 4 5{ , , , }RY x x x x
. The R-boundary of Y 

is given as 4( ) { }RBN Y x
. 

 

Definition 2.1  Let U and V be two universal sets. Let 

R be a binary relation from U to V. If x U and 

( )r x 
, then we call x  is a solitary element with 

respect to R. The set of all solitary elements with 

respect to the relation R is called as solitary set and is 

denoted as S. Mathematically, 

{ : ( ) }S x U r x   
                                         (5)  

2.1 Algebraic Properties of Rough Set based on 

Two Universal Sets 

In this section, we list the algebraic properties as 

established by Guilong Liu [32] that are interesting and 

valuable in the theory of rough sets as below. Let R be 

an arbitrary binary relation from U to V. Let S be a 

solitary set with respect to the relation R. For subsets X, 

Y, in V 

(i) 
( )

y Y
RY l y


 

                                                  (6) 

(ii) 
, ,R S R RV U    

 and RV S ,  

where S   denotes the complement of S in U.    (7) 

(iii) 
S RX

and RX S                 (8) 

(iv) 
RX S RX 

                (9) 

(v) 
RX U

 if and only if 
( ) ;

x U
r x X


 

 
RX 

 

if and only if 
( ( ))

x U
X r x


 
                     (10) 
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(vi) If 
S 

, then 
RX RX

 for all 
( )X P V

,  

where 
( )P V

 denotes the power set of V.     (11) 

(vii) For any given index set I, 
( ),iX P V

 

( )i i
i I i I

R X RX
 
  

 and 
( )i i

i I i I
R X RX

 
  

.  (12) 

(viii) If X Y , then 
RX RY

 and RX RY  (13) 

(ix) 
( ),RX RY R X Y  

and  

( )R X Y 
 RX RY                                (14) 

(x) 
( ) ,RX RX 

 and 
( ) ;RX RX 

               (15) 

(xi) There exists some 
( )X P U

 such that  

RX RX
 if and only if R is serial.             (16) 

(xii) If G  is another binary relation from U to V and  

RX GX  for all 
( )x P V

, then R G .   (17) 

(xiii) If G  is another binary relation from U to V and  

RX GX
 for all 

( )x P V
, then R G .    (18) 

2.2 Topological Characterization of Rough Set 

based on Two Universal Sets 

In this section, we introduce an interesting 

topological characterization of rough set on two 

universal sets employing the notion of the lower and 

upper approximation. It results four important and 

different types of rough sets on two universal sets as 

discussed by Acharjya and Tripathy [33].  

Type 1: If 
RY 

 and RY U , then we say that Y is 

roughly R-definable on two universal sets.  

Type 2: If 
RY 

 and RY U , then we say that Y is 

internally R-undefinable on two universal sets. 

Type 3: If 
RY 

 and RY U , then we say that Y is 

externally R-undefinable on two universal sets. 

Type 4: If 
RY 

 and RY U , then we say that Y is 

totally R-undefinable on two universal sets. 

2.3 Table of Union 

In this section, we discuss the set theoretic operations 

such as union on types of rough sets on two universal 

sets. We state the corresponding tables for the set 

theoretic operation union. From the Table 1, it is clear 

that seven cases consist of ambiguous. In one case it can 

be any one of the four types. These ambiguities are due 

to inclusion 
( )RX RY R X Y  

. The necessary proofs 

of ambiguity cases are thoroughly studied by Acharjya 

and Tripathy [33]. 

 
Table 1:  Table of union 

 
Type 1 Type 2 Type 3 Type 4 

Type 1 Type 1 / Type 3 Type 1 / Type 3 Type 3 Type 3 

Type 2 Type 1 / Type 3 Type 1 / Type 2 / Type 3 / Type 4 Type 3 Type 3 / Type 4 

Type 3 Type 3 Type 3 Type 3 Type 3 

Type 4 Type 3 Type 3 / Type 4 Type 3 Type 3 / Type 4 

 

2.4 Table of Intersection 

Unlike union operation, it is interesting to see from 

the Table 2 that, out of sixteen cases for intersection, 

seven cases are ambiguous. Also it is observed that, in 

one case it can be any one of the four types. These 

ambiguities are due to inclusion ( )R X Y RX RY   . 

The necessary proofs of ambiguity cases are thoroughly 

studied by Acharjya and Tripathy [33]. 

 
Table 2:  Table of intersection 

 
Type 1 Type 2 Type 3 Type 4 

Type 1 Type 1 / Type 2 Type 2 Type 1 / Type 2 Type 2 

Type 2 Type 2 Type 2 Type 2 Type 2 

Type 3 Type 1 / Type 2 Type 2 Type 1 / Type 2 / Type 3 / Type 4 Type 2 / Type 4 

Type 4 Type 2 Type 2 Type 2 / Type 4 Type 2 / Type 4 

 

III. Measures of Uncertainty 

The rough set [2, 3] philosophy specifies about the 

understanding of the objects and their attributes 

influencing the objects with a depicted value. So, there 

is a need to classify objects of the universe based on the 

indiscernibility relation between them. The basic idea of 

rough set is based upon the approximation of sets by a 
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pair of sets known as the lower approximation and 

upper approximation of the set. Here, the lower and 

upper approximation operators are based on 

equivalence relation. However, the requirement of 

equivalence relation is a restrictive condition that may 

limit the application of rough set model. Therefore, 

rough set is generalized by Guilong Liu [32] to rough 

set on two universal sets. Because we are interested in 

classifications based on binary relation, it is interesting 

to have the idea of approximation of classifications. It is 

because classifications of universes play central roles in 

rough set theory. Recently Acharjya and Tripathy [34] 

have established important results and measures of 

uncertainty such as accuracy and quality of 

approximation employing the binary relation R and 

discuss on properties of classifications. However, for 

completeness of the paper, we state the basic definitions 

and notions of measures of uncertainty. 

Definition 3.1 Let 1 2{ , , , }nF Y Y Y
, where 1n   

be a family of non empty sets defined over V. We say 

that F is a classification of V if and only if 
( )i jY Y  

 

for 
i j

 and 1

n

k

k

Y V



.  

 

Definition 3.2 Let 1 2{ , , , }nF Y Y Y
 be a family of 

non empty classification of V and let R be a binary 

relation from U V . Then the R-lower and R-upper 

approximation of the family F is given as 

1 2{ , , , }nRF RY RY RY
 and 1 2{ , , , }nRF RY RY RY

 

respectively. 

 

Definition 3.3 The accuracy of approximation of F 

that expresses the percentage of possible correct 

decisions when classifying objects employing the 

binary relation R is defined as 

( )
( )

( )

i

R

i

card RY
F

card RY
 


  for 

1, 2, 3, ,i n
. 

 

Definition 3.4 The quality of approximation of F 

that expresses the percentage of objects which can be 

correctly classified to classes of F by the binary relation 

R is defined as 

( )
( )

( )

i

R

card RY
F

card V
 



 for 
1, 2, 3, ,i n

 

 

Definition 3.5 We say that 1 2{ , , , }nF Y Y Y
 is R-

definable if and only if 
RF RF

; that is i iRY RY
 for 

1, 2, 3, ,i n
. 

 

Theorem 3.1 Let R be a binary relation from 

U V  and let 1 2{ , , , }nF Y Y Y
, where 1n   be a 

classification of V. For any R-definable classification F 

in U, 
( ) ( ) 1R RF F  

. Hence, if a classification F is 

R-definable then it is totally independent on R. 

 

Theorem 3.2 Let R be a binary relation from 

U V  and let 1 2{ , , , }nF Y Y Y
, where 1n  be a 

classification of V. If 
( ) ( ) 1R RF F  

, then F is R-

definable in V. 

 

Theorem 3.3 Let R be a binary relation from 

U V  and for any classification 1 2{ , , , }nF Y Y Y
, 

1n  in V, 
0 ( ) ( ) 1R RF F   

.  

 

IV. Rough Equality of Sets on Two Universal Sets 

The concept of rough set differs essentially from the 

ordinary concept of the set in that for the rough sets we 

are unable to define uniquely the membership relation. 

In set theory, two sets are said to be equal if they have 

same elements. However it is not true in case of rough 

sets. Therefore, the concept of rough (approximate) 

equality is introduced by Novotny and Pawlak [35]. 

Thus two sets can be unequal in set theory, but can be 

approximately equal. This is an important feature and 

according to our state of knowledge, the sets have close 

features which are enough to be assumed approximately 

equal. This is due to the indiscernibility relation 

between the objects of the universe. But, the 

indiscernibility relation is a restrictive relation that may 

limit the application of rough set. Therefore, rough set 

has extended to the settings of rough set on two 

universal sets based on binary relation. Hence the above 

concept of rough equality of sets can be extended to the 

settings of rough equality of sets on two universal sets. 

In fact we introduce three kinds of rough equality of 

sets on two universal sets. Now we present the formal 

definitions. 

Definition 4.1 Let U and V be two universal sets 

and
( )R U V 

be a binary relation. Let the relational 

system (U, V, R) be a knowledge base, and 1 2, .Y Y V
 

We say that 

(i)     Sets 1Y
 and 2Y

 are bottom R-equal in V if 

1 2RY RY
. We write it as 1 2BY Y

. 

(ii) Sets 1Y
 and 2Y

 are top R-equal in V if 

1 2RY RY
. We write it as 1 2TY Y

. 

(iii) Sets 1Y
 and 2Y

 are R-equal in V if 1 2BY Y
 

and 1 2TY Y
. We write it as 1 2Y Y

. 

We associate the following physical interpretations, 

with the above notion of rough equality of sets on two 

universal sets. If 1 2BY Y
, this means that positive 
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examples of the sets 1Y
 and 2Y

 in V are equal. If 

1 2TY Y
, then the negative examples of the sets 1Y

 and 

2Y
 in V are equal. If 1 2Y Y

, this means that both 

positive and negative examples of the sets 1Y
 and 2Y

 in 

V are the same. 

 

Example 4.1 Let 1 2 3 4 5{ , , , , }U x x x x x
 and V   

1 2 3 4 5 6 7 8{ , , , , , , , }y y y y y y y y
. Consider the binary 

relation R as  1 2{( , ),R x y
 1 3( , ),x y

 2 1( , ),x y
 2 4( , ),x y

 

2 5( , ),x y
 3 3( , ),x y

 3 6( , ),x y
 3 7( , ),x y

 4 1( , ),x y
 4 7( , ),x y

 

4 8( , ),x y
 5 2( , ),x y

 5 3( , )}x y
. Thus R can be written in its 

Boolean matrix form as: 

0 1 1 0 0 0 0 0

1 0 0 1 1 0 0 0

0 0 1 0 0 1 1 0

1 0 0 0 0 0 1 1

0 1 1 0 0 0 0 0

R

 
 
 
 
 
 
 
   

From the above relation R it is clear that, 1( )r x 
 

2 3{ , };y y 2 1 4 5( ) { , , };r x y y y 3 3 6 7( ) { , , };r x y y y 4( )r x
   

1 4 5{ , , };y y y
 and 5 2 3( ) { , }r x y y

. Therefore, we get 

1 5 2 3 4| {{ , },{ },{ },{ }}UU E x x x x x
. 

For sets 1 1 2 3{ , , }Y y y y
and 2 2 3 7{ , , }Y y y y

we have 

1 1 5 2{ , } ,RY x x RY 
therefore 1 2BY Y

. Hence 1Y
 and 

2Y
 are bottom R-equal in V. Again, on considering 

1 1 2 7{ , , }Y y y y
and 2 2 3 4 8{ , , , }Y y y y y

we have 1RY 
 

1 2 3 4 5 2{ , , , , }x x x x x RY
, therefore 1 2TY Y

. Hence 1Y
 

and 2Y
 are top R-equal in V. Similarly on taking 1Y 

 

2 4 6{ , , }y y y
 and 2 3 4 6{ , , }Y y y y

we have 1 2RY RY 
, 

and 1 1 2 3 5 2{ , , , }RY x x x x RY 
, therefore 1 2Y Y

. Hence 

1Y
 and 2Y

 are R-equal in V. 

 

Proposition 4.1 The following properties of relations 

B , T , and   are immediate consequences of the 

definitions. Let U and V be two universal sets and R   

( )U V
 be a binary relation. Then for 1 2,Y Y V

, the 

following properties holds. 

(a) 1 2BY Y
 if and only if 1 2 1( ) BY Y Y 

 and 

1 2 2( ) BY Y Y 
.  

(b) 1 2TY Y
 if and only if 1 2 1( ) TY Y Y 

 and 

1 2 2( ) TY Y Y 
. 

(c) If 1 1TY Y 
and 2 2TY Y 

, then 1 2( ) TY Y 
 

1 2( )Y Y 
. 

(d) If 1 1BY Y 
and 2 2BY Y 

, then 1 2( ) BY Y 
 

1 2( )Y Y 
. 

(e) If 1 2Y Y
 and 2 TY 

, then 1 TY 
.   

(f) If 1 2Y Y
 and 1 TY V

, then 2 TY V
. 

(g) If 1 BY 
 or 2 BY 

, then 1 2( ) BY Y  
. 

(h) If 1 TY V
 or 2 TY V

, then 1 2( ) TY Y V 
. 

Proof (a) Assume that 1 2 1( ) BY Y Y 
 and 1 2( ) BY Y 

 

2Y
. It implies that 1 2 1( ) ( )R Y Y R Y 

 and 1 2( )R Y Y 
 

2( )R Y
. Therefore, 1 2( ) ( )R Y R Y

 and hence 1 2BY Y
. 

Conversely assume that 1 2BY Y
. It implies that 1( )R Y

 

2( )R Y
. But, 1 2 1 2 1( ) ( ) ( ) ( )R Y Y R Y R Y R Y   

 and 

1 2 1 2 2( ) ( ) ( ) ( )R Y Y R Y R Y R Y   
. Therefore, we have 

1 2 1( ) BY Y Y 
 and 1 2 2( ) BY Y Y 

.  

Proof (b) Assume that 1 2 1( ) TY Y Y 
 and 1 2( ) TY Y 

 

2Y
. It implies that 1 2 1( ) ( )R Y Y R Y 

 and 1 2( )R Y Y 
 

2( )R Y
. Therefore, 1 2( ) ( )R Y R Y

 and hence 1 2TY Y
. 

Conversely assume that 1 2TY Y
. It implies that 1( )R Y

 

2( )R Y
. But, 1 2 1 2 1( ) ( ) ( ) ( )R Y Y R Y R Y R Y   

 and 

1 2 1 2 2( ) ( ) ( ) ( )R Y Y R Y R Y R Y   
. Therefore, we have 

1 2 1( ) TY Y Y 
 and 1 2 2( ) TY Y Y 

. 

Proof (c) Assume that 1 1TY Y 
and 2 2TY Y 

. It implies 

that 1 1RY RY 
 and 2 2RY RY 

. But, 1 2 1( )R Y Y RY 
 

2 1 2 1 2( )RY RY RY R Y Y       
. Therefore, 1 2( )Y Y

 

1 2( )T Y Y  
. 

Proof (d) Assume that 1 1BY Y 
and 2 2BY Y 

. Thus we 

have 1 1RY RY 
 and 2 2RY RY 

. But, 1 2 1( )R Y Y RY 
 

2 1 2 1 2( )RY RY RY R Y Y       
. Therefore, 1 2( )Y Y

 

1 2( )B Y Y  
. 

Proof (e) Assume that 1 2Y Y
 and 2 TY 

. It implies 

that 1 2RY RY
 and 2RY R

. Therefore, 1 2RY RY 
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R 
, i.e., 1RY 

. So definitely, 1RY R  
. 

Hence, 1 TY 
. 

Proof (f) Assume that 1 2Y Y
 and 1 .TY V

 It implies 

that 1 2RY RY
 and 1RY RV S 

. But 2 1RY RY S 
, 

i.e., 2RY S 
. Since S   is the complement of the 

solitary set, definitely 2RY S
. Therefore, 2RY S  

 

RV . It implies that 2 TY V
. 

Proof (g) Let us assume 1 BY 
. It implies that 1RY 

 

R S 
. Therefore, 1 2 1 2 2( )R Y Y RY RY S RY    

. 

Since S is a solitary set, definitely 2S RY
 is equal to S. 

Thus, 1 2( )R Y Y S R  
, i.e., 1 2( )R Y Y R 

. 

Hence, 1 2( ) BY Y  
. Similarly it can be verified that 

if 2 BY 
, then 1 2( ) BY Y  

. 

Proof (h) Let us assume 1 TY V
. It implies that 1RY 

 

RV S . But, 1 2 1 2 2( )R Y Y RY RY S RY S       
 

RV . It indicates that, 1 2( ) TY Y V 
. Similarly it can 

be verified that if 2 TY V
, then 1 2( ) TY Y V 

. 

 

V. Rough Inclusion of Sets on Two Universal Sets 

Inclusion relation is one of the fundamental concepts 

in set theory. An analogous notion in rough set is 

introduced by Pawlak [2]. Hence, rough inclusion of 

sets can be extended to the settings of rough inclusion 

of sets on two universal sets. We define the rough 

inclusion of sets on two universal sets in the same way 

as rough equality of sets on two universal sets. The 

formal definition of rough inclusion of sets on two 

universal sets is as follows. 

Definition 5.1 Let U and V be two universal sets 

and
( )R U V 

be a binary relation. Let the relational 

system (U, V, R) be a knowledge base, and 1 2, .Y Y V
 

We say that 

(i)     Set 1Y
 is bottom R-included in 2Y

 if and only if 

1 2RY RY
. We denote it as 1 2BY Y

.  

(ii) Set 1Y
 is top R-included in 2Y

 if and only if 

1 2RY RY
. We denote it as 1 2TY Y

. 

(iii) Set 1Y
 is said to be R-included in 2Y

 if and 

only if 1 2BY Y
 and 1 2TY Y

. We denote it as 1 2Y Y
. 

Example 5.1 Let us consider the knowledge base as 

in Example 4.1. In this knowledge base for sets 1Y 
 

2 3 4{ , , }y y y
 and 2 2 3 6 7{ , , , }Y y y y y

 we have 1 1{ ,RY x
 

5}x
 and 2 1 3 5{ , , }RY x x x

. Therefore, 1 2RY RY
. It 

implies that 1Y
 is bottom R-included in the set 2Y

. 

Again on taking 1 2 3 6{ , , }Y y y y
  and 2 2 7{ , }Y y y

 we 

have 1 1 3 5{ , , }RY x x x
 and 2 1 3 4 5{ , , , }RY x x x x

. Thus, 

we get 1 2RY RY
. It indicates that 1Y

 is top R-included 

in the set 2Y
. Similarly on taking 1 2 3{ , }Y y y

 and 2Y 
 

2 3 6 7{ , , , }y y y y
 we have 1 1 5{ , };RY x x

 2 1 3{ , ,RY x x
 

5};x
 1 1 5{ , }RY x x

 and 2 1 3 4 5{ , , , }RY x x x x
. Therefore, 

we get 1 2RY RY
 and 1 2RY RY

. It indicates that 1Y
 is 

R-included in the set 2Y
. 

Proposition 5.1 The following properties of relations 

B , T , and  are immediate consequences of the 

definitions. Let U and V be two universal sets and R   

( )U V
 be a binary relation. Then for 1 2,Y Y V

, the 

following properties holds. 

(i) If 1 2Y Y
, then 1 2BY Y

, 1 2TY Y
, and 1 2Y Y

.  

(j) 1 2BY Y
 and 2 1BY Y

, then 1 2BY Y
. 

(k) 1 2TY Y
 and 2 1TY Y

, then 1 2TY Y
. 

(l) If 1 2Y Y
 and 2 1Y Y

, then 1 2Y Y
. 

(m) 1 2TY Y
 if and only if 1 2 2( ) TY Y Y 

. 

(n) 1 2BY Y
 if and only if 1 2 1( ) BY Y Y 

. 

(o) If 1 2Y Y
, 1 1BY Y 

 and 2 2BY Y
, then 

1 2BY Y 
. 

(p) If 1 2Y Y
, 1 1TY Y 

 and 2 2TY Y
, then 

1 2TY Y 
. 

(q) If 1 2Y Y
, 1 1Y Y 

 and 2 2Y Y
, then 1 2Y Y 

. 

(r) If 1 1TY Y
 and 2 2TY Y

, then 1 2( ) TY Y 
 

1 2( )Y Y
.  

(s) If 1 1BY Y
 and 2 2BY Y

, then 1 2( ) BY Y 
 

1 2( )Y Y
. 

(t) 1 2 1 1 2( ) ( )B TY Y Y Y Y 
. 

(u) If 1 2BY Y
 and 1 3BY Y

, then 3 2BY Y
. 
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(v) If 1 2TY Y
 and 1 3TY Y

, then 3 2TY Y
. 

(w) If 1 2Y Y
 and 1 3Y Y

, then 3 2Y Y
. 

Proof (a) Assume that 1 2Y Y
. It implies that 

1 2RY RY
 and 1 2RY RY

. Therefore, 1 2BY Y
; 1 2TY Y

 

and thus 1 2Y Y
. 

Proof (b) Suppose that 1 2BY Y
 and 2 1BY Y

. It implies 

that 1 2RY RY
 and 2 1RY RY

. Therefore, 1 2RY RY
. It 

indicates that 1 2BY Y
. 

Proof (c) Suppose that 1 2TY Y
 and 2 1TY Y

. It implies 

that 1 2RY RY
 and 2 1RY RY

. Therefore, 1 2RY RY
. It 

indicates that 1 2TY Y
. 

Proof (d) Suppose that 1 2Y Y
 and 2 1Y Y

. It implies 

that 1 2BY Y
; 1 2TY Y

; 2 1BY Y
 and 2 1TY Y

. Therefore, 

by above property (b) and (c) we get 1 2BY Y
 and 

1 2TY Y
. Hence, we have 1 2Y Y

. 

Proof (e) Assume that 1 2TY Y
. It implies that 

1 2RY RY
. But, 1 2 1 2 2( )R Y Y RY RY RY   

. Thus we 

get, 1 2 2( ) TY Y Y 
. Conversely, suppose that 1 2( )Y Y

 

2T Y
. It implies that 1 2 2( )R Y Y RY 

, i.e., 1 2RY RY
 

2RY
. It is possible only when 1 2RY RY

 or 1RY 
. 

Therefore, in either case 1 2TY Y
. 

Proof (f) Assume that 1 2BY Y
. It implies that 

1 2RY RY
. But, 1 2 1 2 1( )R Y Y RY RY RY   

. Thus we 

get, 1 2 1( ) BY Y Y 
. Conversely, suppose that 1 2( )Y Y

 

1B Y
. It implies that 1 2 1( )R Y Y RY 

, i.e., 1 2RY RY
 

1RY
. It is possible only when 1 2RY RY

. Therefore, 

in either case 1 2BY Y
. 

Proof (g) Assume that 1 2Y Y
; 1 1BY Y 

 and 2 2BY Y 
. 

It implies that 1 2RY RY
; 1 1RY RY 

 and 2 2RY RY 
. 

Therefore, 1 2RY RY 
. It indicates that 1 2BY Y 

.   

Proof (h) Assume that 1 2Y Y
; 1 1TY Y 

 and 2 2TY Y 
. 

It implies that 1 2RY RY
; 1 1RY RY 

 and 2 2RY RY 
. 

Therefore, 1 2RY RY 
. It indicates that 1 2TY Y 

. 

Proof (i) Assume that 1 2Y Y
; 1 1Y Y 

 and 2 2Y Y 
. It 

implies that 1 2RY RY
; 1 2RY RY

; 1 1RY RY 
; 

1 1RY RY 
; 2 2RY RY 

 and 2 2RY RY 
. Therefore, we 

have 1 1 2 2RY RY RY RY   
, i.e., 1 2RY RY 

. It 

indicates that 1 2BY Y 
. Similarly,  1 1 2RY RY RY   

 

2RY 
, i.e., 1 2RY RY 

. It indicates that 1 2TY Y 
. Thus 

on combining the results we get 1 2Y Y 
.   

Proof (j) Suppose that 1 1TY Y
 and 2 2TY Y

. It implies 

that 1 1RY RY 
 and 2 2RY RY 

. But, 1 2 1( )R Y Y RY   
 

2RY 
   1 2RY RY

   1 2( )R Y Y
. Thus, 1 2( )R Y Y 

 

1 2( )R Y Y 
 and hence 1 2 1 2( ) ( )TY Y Y Y  

.  

Proof (k) Suppose that 1 1BY Y
 and 2 2BY Y

. It implies 

that 1 1RY RY 
 and 2 2RY RY 

. But, 1 2 1( )R Y Y RY   
 

2RY 
   1 2RY RY

   1 2( )R Y Y
. Thus, 1 2( )R Y Y 

 

1 2( )R Y Y 
 and hence 1 2 1 2( ) ( )BY Y Y Y  

. 

Proof (l) We know that 1 2 1( )Y Y Y 
. Therefore, 

1 2 1( )R Y Y RY 
. It indicates that 1 2 1( ) BY Y Y

. 

Similarly, 1 1 2( )Y Y Y 
. Therefore, 1 1 2( )RY R Y Y 

 

and hence 1 1 2( )TY Y Y
. On combining the results we 

get 1 2 1 1 2( ) ( )B TY Y Y Y Y 
.   

Proof (m) Suppose that 1 2BY Y
 and 1 3BY Y

. It 

implies that 1 2RY RY
 and 1 3RY RY

. Hence, we have 

3 1 2RY RY RY 
, i.e., 3 2RY RY

. It indicates that 

3 2BY Y
.  

Proof (n) Suppose that 1 2TY Y
 and 1 3TY Y

. It implies 

that 1 2RY RY
 and 1 3RY RY

. Hence, we have 3RY 
 

1 2RY RY
, i.e., 3 2RY RY

. It indicates that 3 2TY Y
. 

Proof (o) Suppose that 1 2Y Y
 and 1 3TY Y

. It implies 

that 1 2BY Y
; 1 2TY Y

; 1 3BY Y
 and 1 3TY Y

. 

Therefore, by property (m) and (n)  
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VI. Conclusion 

In this paper, we compare the concepts of classical 

set with that of rough set on two universal sets. Basic 

properties of rough set on two universal sets like 

topological characteristics, measures of uncertainty, 

equality and inclusion of sets are expressed in terms of 

binary relation. It is also observed that equality and 

inclusion of sets can not be decided in the absolute 

sense, but depend on what we know about the sets. It is 

also clear that, all properties of rough set on two 

universal sets are not absolute, but are related to what 

we know about them. Therefore, rough set on two 

universal set approach could be viewed as a subjective 

counterpart of the classical set theory. These results 

obtained are important for their application in the 

design of knowledge bases. 
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