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Abstract— Distinct sleep phases are related to different 

dynamical patterns in electroencephalogram (EEG) 

signals. In this article, the relationship between the 

sleep stages and nonlinear behavior of sleep EEG is 

explored. In particular, analysis of approximate entropy 

(ApEn) and the largest Lyapunov exponent is evaluated 

in patients with sleep apnea, which is defined as 

respiratory flow that is suspended or decreased for more 

than 10 s. The pathological sleep EEG signals for 

analysis were obtained from the MIT-BIH 

polysomnography database available online at the 

PhysioBank. The results show that for the both normal 

and apneic sleep epochs, ApEn decreased significantly 

as the sleep goes into deeper stages. Therefore, it 

indicated that as sleep becomes deeper, the brain 

function becomes less activated. Compared with normal 

sleep, the mean value of largest lyapunov exponents 

was also significantly lower than that of normal epochs 

during deep sleep stages. The results also show that the 

average largest lyapunov exponents of EEG signals 

increased in the REM state. Because during this stage of 

sleep, the cortex becomes more active and more 

neurons incorporate in the information processing. In 

conclusion, the nonlinear dynamical measures obtained 

from the nonlinear dynamical analysis such as the 

approximate entropy and largest lyapunov exponents 

can be useful for characterizing the physiological or 

pathological states of the brain. 

 

Index Terms— Approximate Entropy, 

Electroencephalogram, Largest Lyapunov Exponents, 

Nonlinear Analysis, Sleep Apnea 

I. Introduction 

The most common respiratory disturbance in human 

sleeping is sleep apnea. Traditionally, sleep apnea is 

defined as respiratory flow that is suspended or 

decreased for more than 10 s. Apnea often means that 

the amplitude of respiratory flow decreases to below 

20%. According to recent epidemiological studies, 

approximately 20% of people suffer from sleep apnea 

[1,2]. 

Typically, Sleep is characterized by a cyclic 

alternating pattern of non-rapid eye movement (REM) 

and REM sleep [3-8]. Non- REM sleep includes the 

deeper stages of sleep (sleep stages 1 and 2, and slow 

wave sleep with sleep stages 3 and 4), whereas REM 

sleep is a highly activated state of the brain 

accompanied by dreaming. 

To make the diagnosis of sleep apnea, physiologic 

monitoring is required. Commonly, the patient sleeps in 

the sleep laboratory and the measurement of multiple 

physiological parameters is made. This process is called 

polysomnography which is the current gold standard. 

One of the major limitations of polysomnograph in 

diagnosing sleep breathing disorders is the need for 

relatively complex procedures as well as bulky and 

costly equipment. 

Alternatively, quantification of breathing 

abnormalities during sleep, such as sleep apnea can be 

performed by means of new and sophisticated 

computer-based signal processing methodologies (both 

linear and nonlinear approaches), to timely diagnose 

and treat patients during an early step of the disorder. 
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These new methods must enable the design of systems 

to measure sleep and other physiological variables at 

home providing high accuracy measurements.  

Therefore, many novel diagnosis and treatment 

methods for sleep apnea are proposed by healthcare 

professionals and sleep researchers in recent years 

[9,10]. Specifically, capturing and quantifying the 

dynamical states of the brain during sleep apnea is an 

important tool in distinguishing normal and 

pathological sleep and lead to new insights into sleep 

neurodynamics. The reason can be expressed by terms 

of due to the cessation of breath in sleep apnea, the 

subject might experience related changes in the 

electrical activity of the brain. 

Since the electroencephalographic (EEG) signal 

shows patterns of electrical activity, quantative analysis 

of this signal provides an objective method for detecting 

changes in cortical activity. The electroencephalogram 

is a complex signal resulting from postsynaptic 

potentials of cortical pyramidal cells. In addition, 

multiple feedback loops have been detected on each of 

the hierarchic levels of the central nervous system. 

Credibility of using chaos theory and nonlinear 

methods in the analysis of biological systems was 

established. Several features of these approaches have 

been proposed to detect the hidden important dynamical 

properties of the physiological phenomenon. 

Fell et al. [11] have calculated the first lyapunov 

exponents (L1) for different sleep EEG signals in 15 

healthy subjects corresponding to the sleep stages 1—4 

and REM. They found statistically significant 

differences between the values of L1 for different sleep 

stages. Acharya et al. [12] have studied the normal sleep 

stages using the nonlinear techniques like: correlation 

dimension, fractal dimension, largest lyapunov entropy , 

approximate entropy, Hurst exponent, phase space plot 

and recurrence plots.  

To investigate any possible changes in the human 

electroencephalographic activity due to Obstructive 

Sleep Apnoea Hypopnoea Syndrome (mild case of 

cessation of breath) occurrences, the nonlinear and 

linear time series methods are applied by Cvetkovic et 

al [13]. Recently, using nonlinear analysis that 

quantified the recurrence properties of the EEG, 

Carrubba et al. [14] described a novel method for 

producing dynamic markers of brain states during sleep. 

In this work, the five different types of sleep stages 

during apnea is studied using nonlinear parameters: 

approximate antropy and largest lyapunov exponent. 

The outline of this study is as follows. In the next 

section, we briefly describe the set of EEG time series 

used in the study. Then, the computation of the 

approximate entropy and the largest Lyapunov 

exponent is explained. Finally, the results of present 

study are shown and the study is concluded. 

 

II. Methods 

2.1 Data Selection 

In this study, six EEG data for analysis were obtained 

from the MIT-BIH polysomnography database available 

from the Physionet databank [15]. It consists of four -

channel polysomnographic recordings from male 

subjects with or without sleep apnea syndrome, each 

with an EEG signal annotated with respect to sleep 

stages [16,17]. The mean age of the subjects was 40 

(range: 32–56). Records vary in duration from 2 to 7 h 

and have been sampled at 250 samples per second. 

Sleep stage was annotated at 30-s intervals according to 

the criteria of RechtschaHen and Kales with six discrete 

levels — 1, 2, 3, 4, rapid eye movement (REM) and 

wake.  

Table 1 shows the stage distribution of MIT-BIH 

polysomnography data that were used in our study.  

 
Table 1: The stage distribution of MIT-BIH polysomnography data used in the current study 

State Apnea Normal 

Sleep Stage Wakefulness 1 2 3 4 REM Wakefulness 1 2 3 4 REM 

Slp01a 1 0 21 0 0 9 5 0 33 6 1 4 

Slp01b 6 9 47 0 0 3 172 18 62 0 0 19 

Slp02a 12 8 55 0 0 8 31 4 139 5 2 64 

Slp02b 14 5 8 0 0 14 88 5 75 0 0 14 

Slp03 14 61 112 4 0 45 136 43 195 74 0 28 

Slp04 11 28 273 1 0 2 151 29 152 28 0 21 

 

Since the 30-s intervals of sleep stage 4 are not 

sufficient, in this study we omitted this stage for further 

analysis. 

 

2.2 Lyapunov Exponents 

Consider two (usually the nearest) neighboring points 

in phase space at time 0 and at a time t, distances of the 
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points in the ith direction being 
 0x i

and
 tx i

, 

respectively. The lyapunov exponent is then defined by 

the average growth rate λi of the initial distance 
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An exponential divergence of initially nearby 

trajectories in phase space coupled with the folding of 

trajectories, ensures that the solutions will remain finite, 

and is the general mechanism for generating 

deterministic randomness and unpredictability. 

Therefore, the existence of a positive λ for almost all 

initial conditions in a bounded dynamical system is 

widely used.  

In order to discriminate between chaotic dynamics 

and periodic behavior of signals, lyapunov exponent (λ) 

is often calculated.  

Lyapunov exponent is a measure of the rate at which 

the trajectories separate from each other. For the chaotic 

signals the trajectories follow typical patterns in phase 

space. The trajectories which are closely spaced, 

converge and diverge exponentially, relative to each 

other. In addition, for dynamical systems, sensitivity to 

initial conditions is quantified by the lyapunov exponent 

(λ). They characterize the average rate of divergence of 

these neighboring trajectories.  

 A negative exponent implies that the orbits approach 

a common fixed point.  

 A zero exponent means the orbits maintain their 

relative positions; they are on a stable attractor.  

 A positive exponent implies the orbits are on a 

chaotic attractor [18,19]. 

 

The reason why chaotic systems, such as brain, show 

aperiodic dynamics is that phase space trajectory that 

have nearly identical initial states will separate from 

each other at an exponentially increasing rate captured 

by the so-called lyapunov exponent. 

 

2.3 Approximate Entropy 

Approximate entropy is defined as the logarithmic 

likelihood that the patterns of the data that are close to 

each other will remain close for the next comparison 

with a longer pattern. Therefore, the generalized 

measure of regularity can be provided by ApEn. A 

deterministic signal with high regularity has a greater 

probability of remaining close for longer vectors of the 

series and hence has a very small ApEn value. In 

addition, a random signal has a very low regularity and 

causes high ApEn value. 

Approximate entropy is a measure of complexity and 

is applied to relatively short and noisy data [20,21]. In 

EEG analysis, there are very few reported results [22] 

of the application of ApEn.  

Two parameters m and r must be chosen prior to the 

computation of ApEn, where m identifies the pattern 

length and r is the effective filter. Here, one has to 

compute the correlation integral Cm(r) (with embedding 

dimension m and time lag 1). This measure is finally 

obtained as follows: 
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Thus, ApEn quantifies the (log) likelihood that sets of 

patterns that are close on next incremental comparison. 

Smaller values of ApEn imply a greater likelihood that 

certain patterns of measurements will be followed by 

similar measurements. If the time-series is highly 

irregular, the occurrence of similar patterns in the future 

is less likely. For this study, m is set to 2 and r is set to 

15% of the standard deviation of each time-series. 

 

2.4 Statistical Analysis  

In this study, the t-test of the null hypothesis that data 

in the vector x are a random sample from a normal 

distribution with mean 0 and unknown variance, against 

the alternative that the mean is not 0 is performed. The 

result of the test is returned in p-value. P-value→0 

indicates a rejection of the null hypothesis at the 5% 

significance level (p<0.05). P-value→1 indicates a 

failure to reject the null hypothesis at the 5% 

significance level. 

 

III. Results 

An example of electroencephalogram signal (8-s or 

2000 sample) is shown in Fig. 1. In this figure, different 

sleep stages of EEG of a patient during apnea is 

demonstrated. 
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Fig. 1: Example of electroencephalogram signal associated with 
waking, stage 1, stage 2, slow wave sleep (stage 3 and 4), and REM 

(from top to bottom) during apnea in a subject 

 

Largest lyapunov exponents and approximate entropy 

of EEG signals of all subjects for each sleep stage are 

calculated. The mean and standard deviation of largest 

lyapunov exponents and approximate entropy in normal 

and apnea episodes are displayed in Table 2 and Table 3, 

respectively. 

As shown in Table 2 and Table 3, the largest 

lyapunov exponent has higher mean value for wakening 

state in normal and apneic states due to the highly 

active cortex and desynchronized EEG signals. In this 

state, the EEG signals are highly chaotic; whereas, this 

value falls gradually in sleep 1-4 states both in normal 

and pathological states.  

One may state that this decrement is due to the 

reduction in the variability of EEG signals or it may be 

claimed that the cortex is more inactive in these states 

than that of the wakefulness. Since the variation of EEG 

signals is increased in the REM state, it is expected that 

the lyapunov exponent increases (as one can see in 

Table 2 and Table 3). 

 

 

 

Table 2: Result of nonlinear parameters of normal EEGs for various sleep stages 

 Normal 

Parameters Wakefulness 1 2 3 4 REM 

ApEn 0.34±0.44 1.21±0.28 0.31±0.44 0.26±0.4 0.29±0.22 0.2±0.33 

Lya 0.84±0.11 0.76±0.1 0.68±0.11 0.52±0.07 0.47±0.02 0.74±0.06 

Note- ApEn: approximate entropy; Lya: Lyapunov exponent. 

 

Table 3: Result of nonlinear parameters of apneic EEGs for various sleep stages 

 Normal 

Parameters Wakefulness 1 2 3 REM 

ApEn 0.27±0.35 0.18±0.3 0.32±0.45 0.13±0.24 0.16±0.25 

Lya 0.82±0.12 0.76±0.08 0.69±0.08 0.55±0.09 0.73±0.06 

Note- ApEn: approximate entropy; Lya: Lyapunov exponent. 

 

For the average lyapunov exponent results, a 

decrease was revealed from normal (mean=0.8422, 

SD=0.1067 and mean=0.7417, SD=0.0607 for waken 

and REM stages, respectively) to during-apnea 

(mean=0.82, SD=0.1174 and mean=0.7352, SD=0.0569 

for waken and REM stages, respectively) at waken and 

REM stages, as shown in Table 2 and Table 3; whereas, 

this value was increased from normal to apneic EEGs in 

the other states. 

As an example, the variation of the approximate 

entropy in sleep 3 stage in normal and during apnea for 

one subject is shown in Fig. 2. 

As shown in Table 2 and Table 3, the mean 

approximate entropy was decreased from normal to 

apnea episodes in all stages (except for stage 2 of sleep 

in which this value was approximately remained 

constant). 

 

Fig. 2: Example of EEG ApEn in stage 3 of sleep for a subject in 

normal and during apnea 

 

Statistical test (t-test) was utilized to determine 

whether or not there is statistical significance in features 

between two different groups. It was demonstrated that 

normal and apneic values of ApEn in all stages have a 

statistically significant difference, with all p<0.05. 
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IV. Discussion 

It was shown that the biological system in an 

unhealthy condition lacks the nonlinear properties and 

is marked by periodical dynamics and loss of the ability 

to adapt. Therefore, in this study, two nonlinear 

parameters (approximate entropy and largest lyapunov 

exponents) of overnight EEG were evaluated in normal 

and apnea episodes. 

The results demonstrated that for the both normal and 

apneic sleep epochs, ApEn decreased significantly as 

the sleep goes into deeper stages. In addition, it 

indicated that as sleep becomes deeper, the brain 

function becomes less activated. The results of the 

current study are consistent with previous studies in 

which it has shown that, as sleep becomes deeper, the 

complexity of brain activity characterized by fractal 

dimension of EEG signal was reduced [23]. 

During deep sleep stages the mean value of largest 

lyapunov exponents in apnea episodes was also 

significantly lower than that of normal epochs (as 

demonstrated in Table 2 and Table 3). Because the EEG 

activity is most regular in deeper stages. This regularity 

leads to lower values of largest lyapunov exponents that 

we obtained. As a result, one can claim that there is a 

loss in complexity or dimensionality of the underlying 

dynamics of neuronal networks corresponding to deeper 

sleep stages. 

The results also showed that the average largest 

Lyapunov exponents of EEG signals are increased in 

the REM state (as demonstrated in Table 2 and Table 3). 

As the blood flow of the brain is increased during this 

stage of sleep, the cortex becomes more active and 

more neurons incorporate in the information processing. 

This result is in line with the previous studies. By 

analyzing the correlation dimensions, Kobayashi et al. 

[24] showed that this measure also decreased from the 

‘awake’ stage to sleep stages 1—3 and increased during 

rapid eye movement sleep of a healthy male subject. 

Acharya et al. [12] have also represented that nonlinear 

parameters (correlation dimension, fractal dimension, 

largest lyapunov entropy, approximate entropy, Hurst 

exponent) of healthy volunteers decreased from sleep 

state 0 (wake) to 4 and these values increased in sleep 5 

state (REM). The results from the Cvetkovic et al. [13] 

study indicated that at C3 EEG electrode site the 

average lyapunov exponent values were significantly 

lower during the hypopoea (a certain class of apnea in 

which the amplitude of respiratory flow decreases 

between 20% and 50%) in comparison to pre-

hypopnoea. 

 

V. Conclusion 

In this work, we have analyzed the cortical 

functioning at different pathological sleep stages using 

the nonlinear parameters: approximate entropy and 

largest lyapunov exponents. The results of this article 

suggested that the underlying dynamics of neuronal 

networks in the brain associated with different sleep 

stages and in different states (normal against 

pathological) are different. In addition, the nonlinear 

dynamical measures obtained from the nonlinear 

dynamical analysis such as the approximate entropy and 

largest lyapunov exponents can be useful for 

characterizing the physiological or pathological states 

of the brain. 

There are some limitations for our analysis. For 

example, it is desirable to study these parameters 

separately in different apnea classes such as central, 

obstructive and mixed apnea syndromes. Although our 

results show that the nonlinear parameter was 

significantly different in various sleep stages, further 

studies with a larger sample size are required to prove 

the usefulness of this methodology. According to the 

clinical guideline, sleep apnea is divided into mild, 

moderate and severe, based on the apnea/hypopnea 

index [25]. Therefore, the association between the 

nonlinear parameters and severity of symptoms will 

also be very informative and should be included in the 

design of the future study protocols. 
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