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Abstract— The Zinc modelling language provides a 

rich set of constraints, data structures and expressions to 

support high-level modelling. Zinc is the only 

modelling language that supports all solving techniques: 

constraint programming, mathematical methods, and 

local search. By providing search patterns, it allows 

users to implement their search methods in a declarative 

way. There are currently three search patterns 

implemented in Zinc: backtracking search, branch and 

bound search, and local search. In this paper we explain 

how Zinc efficiently implements user-defined local 

search algorithms. 

 

Index Terms— Zinc, ZLoc, Modelling, Local Search  

 

I. Introduction 

Zinc [1] is an extensible mathematical modelling 

language which not only provides a wide set of 

constraints, data types and expressions, but also 

supports user-defined types, predicates and functions. A 

conceptual Zinc model can be automatically mapped 

into different design models (executable models) 

suitable for different solving techniques: Constraint 

Programming (CP), Mixed Integer Programming (MIP), 

and Local Search (LS). Zinc uses default search 

techniques for solving models; for CP it uses the first-

fail heuristic , for MIP standard MIP branch and bound 

search [2], and for LS it uses a hill-climber with a tabu 

facility to prevent cycling on a plateau. 

However, to solve Zinc models more efficiently, 

users need to implement their own search methods. 

Therefore, Zinc has been extended to support model-

specific search algorithms by providing parametric 

search patterns. To date, three search patterns have been 

implemented in Zinc: backtracking search, branch and 

bound and local search [3]. Users must provide these 

search patterns the required parameters which are high-

level data structures and user-defined functions. Our 

results show that using model-specific search 

algorithms gains an outstanding improvement on the 

execution time [1]. However, the local search solver 

used for Zinc was inefficient. It was due to 

implementing the solver in ECLiPSe [4,5] a logic 

programming language in which changing the value of 

a variable is unnatural and is inefficient. This is while 

local search algorithms need changing the value of 

variables repeatedly. 

Here we address this issue by implementing a new 

local search solver for Zinc: ZLoc [6] a C++ library. 

Our experimental results show that ZLoc performs as 

well as Comet [7] in implementing local search routines 

[6]. We also show that ZLoc has greatly improved the 

quality of mapping user-defined local search techniques 

in Zinc into equivalent design models.  

The rest of the paper is organized as follows. In 

Section 2, we introduce Zinc and its modeling 

capabilities. In Section 3, we briefly explain the search 

mechanism in Zinc. Sections 4, 5, and 6 detail the 

existing search patterns in Zinc. In Section 7, we 

introduce ZLoc as a local search solver for Zinc. In 

Section 8, we evaluate the performance of local search 

routines in Zinc. Finally, we conclude the paper in 

Section 9. 

 

II. Zinc 

A Zinc model includes the following components, all 

of which may be iteratively used except for the solve 

item which must be unique in the model.  

 

 Variable Declaration and Assignment Items 

Variables must be declared and possibly initialized. 

Declaration of each variable must specify its type and 

its instantiation. Zinc supports a variety of types: int, 

float, strings, Booleans arrays, sets, lists, tuples, records, 

discriminated union (i.e. variant records) and 

enumerated types [1]. Zinc also supports array with any 

arbitrary index sets over arbitrary data types and sets 

over arbitrary data types. 

There are two kinds of instantiations for variables 

which divide them into two categories: parameters and 

decision variables. The default instantiation for 

variables assume them to be parameters. The var 

keyword is used to distinguish decision variables from 
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parameters and is added before decision variables 

definition. While decision variables are instantiated 

after the model being solved, parameters must be 

initialized either in the model or in a data file,  

 

 Constraint Items 

Constraints are Boolean expressions which may be 

satisfied or violated based on the value of their variables. 

Zinc also supports global constraints, such as 

alldifferent and sorted which are applied to lists of any 

type. 

 

 Assertion Items 

An assertion is a type of constraint imposed on 

parameters to check their values and prohibit modelling 

errors. 

 

 Constrained Type Items 

Zinc enables modellers to define a type associated 

with a constraint to make the model more concise and 

more readable. 

 

 Function and Predicate Items 

One of the most powerful features of Zinc is allowing 

users to define their own predicates and functions. 

Predicates are actually Boolean functions. Predicates 

and functions arguments are allowed to be polymorphic. 

 

 Include Items 

Libraries are allowed in Zinc models using include 

items. This item also allows a model to be split across 

multiple files. 

 

 Solve Item 

Every model must have exactly one solve item. The 

item is used for constraint satisfaction problems as 

solve satisfy and for optimization problems as solve 

minimize/maximize obj. 

 

 Output Item 

After solving the model, the value of variables can be 

printed out using the output item. If no output item is 

specified, the default output routine prints the name and 

value of each decision variable. 

 

 Annotation Item 

To specify the non-functional information in the 

model modellers can use annotations. Annotations are 

used to classify decision variables, constraints and 

objective function and define soft constraints in the 

model. 

As an example, Figure 1 depicts a Zinc model for the 

n-queen problem which uses the min-conflict search. 

The first line defines a parameter n. In line 2, an integer 

range is declared. In line 3 an array of variables is 

declared in which a variable shows the column of a 

queen. The problem’s constraints are defined in lines 4-

6, which ensure no two queens can take each other. 

 

1. int: n; 

2. type Domain = 1..n; 

3. array[Domain] of var Domain :q; 

4. constraint alldifferent([Q[i]| i in 1..n]); 

5. constraint alldifferent([Q[i]+i| i in 1..n]); 

6. constraint alldifferent([Q[i]-i| i in 1..n]); 

7. solve satisfy; 

Fig. 1: n-queen model in Zinc 

 

III. Search in Zinc 

If no search algorithm specified, the default search is 

applied for the model. However, Zinc modellers may 

specify their own search methods using search patterns 

and Zinc structures. Our extension to Zinc currently 

provides three generic search patterns: backtracking 

search, branch and bound, and local search. 

 

IV. Backtracking Search 

Zinc supports depth-first search using a propagation 

solver with backtracking for solving satisfaction 

problems. To do so, the search pattern backtrack (init, 

expand) has been added to Zinc. The first argument is 

the initial state or the root of the search tree which is 

usually the set of variables to label. The second 

argument is a user-defined function that takes the local 

state for the current node and returns its children as a 

list of pairs of the form (ns, c), where the ith pair gives 

the state ns for its ith child, and the constraint c that 

should be posted right before this child becomes the 

current node. Note that expand has implicit access to 

the solver state and can, therefore, make use of standard 

propagation solver reflection functions such as 

domain(V) which returns the current domain of variable 

V. For example, the function defined in Figure 2 

implements the standard labeling. 

 

unction list of tuple(list of $T, var bool):  

std_label(list of $T:Vs) = 

if Vs = [] then [] 

else let {$T: V = head(Vs), list of $T: VRest = 

tail(Vs) } in 

[ (VRest, V == d) | d in domain(V)]) 

endif; 

Fig. 2: Standard labeling  

 

The std_label labels a list of variables Vs in order and, 
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for each V in Vs, tries the domain values from smallest 

to largest. The head and tail functions are provided in 

the Zinc library to return the head and tail of the input 

list, respectively. The N-queens model can now be 

mapped to a design model that uses this labeling by 

simply adding an annotation to the solve statement in 

the model: 

solve satisfy:backtrack(queens, std_label); 

To call the search pattern with queens as the initial 

local state and std label as the expand function. Note 

that in Zinc, lists are syntactic sugar for arrays. 

To improve the performance of the model, we can 

use a first-fail search that labels from the middle of each 

queen’s domain. To do this, the search routing shown in 

Figure 3 must be added to the model. The search routine 

obtains in middle out a list of domain values ordered 

from the middle out, and uses it to return as children a 

list of tuples assigning those values to the variable V in 

Vs with the minimum domain size (thanks to the 

reflection function domain_size and Zinc’s library 

function minimizes). 

 

list of Domain: middle_out = 

[if (i mod 2==0) then (n-i+1)  

div 2 else (n+i) div 2 + 1 endif | i in 0..n-1] 

function list of tuple(list of var Domain, var bool): 

first_fail_middle_out(list of var Domain:Vs) = 

if Vs=[] then [] 

else let { int: min = minimizes(Vs,domain_size), 

var Domain: V = Vs[min], 

list of var Domain: 

VRest = [ Vs[j] | j in Domain where j!= min]) } 

in 

[(VRest, V=d) | d in middle_out] 

endif; 

solve 

satisfy::backtrack(queens,first_fail_middle_out); 

Fig. 3: A backtracking search for n-queen  

 

The backtracking search pattern is surprisingly 

powerful thanks to the modeller being able to choose 

the init state and the kind of constraints to be posted by 

each child node. Thus, for instance, modellers can use a 

counter to implement iterative deepening. 

 

V. Branch-and-Bound 

For optimization problems, Zinc provides a variant of 

the backtracking search pattern extended with branch 

and bound: backtrack(init,expand,bound,flags). 

The first two parameters are the same as the previous 

pattern. The two extra parameters are a function bound 

for computing the new bound from the old and current 

bounds, and a flag to indicate the kind of branch-and-

bound search performed. The flags are similar to those 

provided in ECLiPSe [4], and include: 

restart (to restart the search from the root of the 

search tree), continue (to continue the search from the 

current node in the search tree), and dichotomic (to do 

dichotomic search). 

To show the usage of this pattern we write a model-

specific labeling routine for 0-1 knapsack, which tries to 

find a subset of an initial set of items with maximum 

total profit such that the sum of their weights does not 

exceed the capacity of the knapsack. The proposed 

search routine tries to place items in order of their 

expected utility profit/weight. The model and the search 

routine are depicted in Figure 4. 

 

1. type item = record(int:id,profit,weight); 

2. set of item: All_Items; 

3. int: Max_Capacity; 

4. var set of All_Items: Selected_Items; 

5. constraint 

6.    sum(X in Selected_Items) (X.weight) =< 

Max_Capacity; 

7. function list of tuple(list of tuple(var set of 

$T,$T),var bool): 

8.   set_labeling(list of tuple(var set of 

$T,$T):L)= 

9.   if L=[] then [] 

10. else let{$T:P=head(L), list of $T:Rest=tail(L)} 

in 

11. [(Rest, P.2 in P.1),(Rest, not (P.2 in P.1))] 

12. endif; 

13. function int:bound_func(int:old, int:curr) = 

curr+1; 

14. list of item: Sorted_Items= 

15. [X.2 | X in sort([(-X.profit/X.weight,X)|X in 

All_Items])]; 

16. solve maximize sum(S in Selected_Items) 

(S.profit):: 

17. backtrack([(Selected_Items,j)|j in  

18. Sorted_Items],set_labeling,bound_func,restart

); 

Fig. 4: A search method for knapsack 

 

In line 1 item is defined as a new type to store the 

item’s information: three integers that indicate its 

identifier, profit and weight. The model then defines 

two parameters: All_items as the initial set of items, and 

Max_Capacity as the maximum capacity of the 

knapsack. Then it defines Selected_Items as a set 

variable which will provide the solution of the problem. 

Lines 5 and 6 define a constraint indicating that the sum 

of the item weights cannot exceed the knapsack 

capacity. And finally, line 16 declares the model to be 

an optimization problem with an associated objective 

function to be maximized. 

The set_labeling function plays the role of the expand 

function by taking a list of pairs (each with a set 

variable and a possible item) and creating two child 

nodes, the first stating that the item is a member of the 

list, and the second stating it is not. The remainder of 
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the list is returned as the state of the created nodes. In 

this example, bound function forces the search to find a 

better solution than the most recent one (at least one 

unit more). Every time a better solution is found, we 

restart the search from the root of the search tree.  

Alternatively, we could use binary search by simply 

using the dichotomic flag and the following bound 

function: 

function float: 

bound_func2( float:old,curr)= 

min(old,curr)+abs(old-curr)*0.5; 

 

VI. Local Search 

To support local search, Zinc provides the following 

pattern: local_search(init_valn, init_state, move, finish) 

where init_valn is the initial valuation (a list of 

variable/value pairs), init_state is the initial state, move 

is a function which takes a state and returns a new 

valuation to move to and finish is a function which 

determines when the search should finish. In each 

iteration of the algorithm, the move function is called to 

take the current state and return a new state, then the 

finish function is called to decide whether the search 

should continue or not [3].  

We show the usage of the pattern by means of an 

example. Figure 5 depicts a local search algorithm for 

the n-queen model. The swap function is a polymorphic 

function which takes two variables and returns a 

valuation in which the value of variables is exchanged 

(line 1). In the move function the variable qi with 

maximum conflict is swapped with variable qj to 

minimize the total conflict (line 4). Then, the number of 

remaining steps is decreased.  

 

1. function valuation: swap($T: v1, $T: v2) = 

[(v1,val(v2)),(v2,val(v1))]; 

2. function tuple(int, valuation): move(int: 

nmovesleft) = 

3. let {int: i=maximizes(q,var_penalty), 

4. int: j=minimizes([swap(q[i],q[k])|k in 

Domain], new_penalty) 

5.      } in 

6. (nmovesleft-1,swap(q[i],q[j])); 

7. function has_ended: finish(int: nmovesleft) = 

8. if current_penalty == 0 then sol(get_valuation) 

9. elseif nmovesleft =< 0 then end(get_valuation) 

10. else continue 

11. endif; 

12. solve satisfy::local_search( [(q[i],i)|i in 

Domain], 1000,move,finish); 

Fig. 5: A local search method for n-queen 

 

The finish function takes a state and checks the 

violation degree. A zero value means that the problem 

is solved and search terminates (line14). If the number 

of remaining steps is zero the search stops (line 9), 

otherwise, search continues (line 10).  

The first argument of local_ search initializes the 

array q to place the i’th queen in column i. The second 

argument defines the number of allowed steps as 1000. 

The two next arguments are move and finish function. 

The move function is repeatedly called until the search 

terminates (line 18). 

 

VII. Zloc 

ZLoc is a C++ library for modelling constraint 

optimization problems and solving them using local 

search methods. ZLoc supports mathematical structures 

and expressions, multi dimension arrays with arbitrary 

index set over variety of data types, lists, sets, and 

constraints over variety of data types and global 

constraints such as alldifferent [6].  

ZLoc utilizes Zinc with a fast local search solver. The 

first local search solver of Zinc was implemented in 

ECLiPSe and was inefficient. It was because ECLiPSe 

is a logic language in which changing the value of 

variables is unnatural, something that is essential for 

implementing local search methods.  

ZLoc supports Zinc data types, user-defined 

functions, predicates, expressions and constraints. In 

addition, it provides necessary operations for guiding 

local search.  

ZLoc is similar to Comet in many aspects. 

Nonetheless, Comet has no support for some features of 

Zinc models like user-defined functions and predicates 

which are the key features in implementing user-defined 

search methods [3].   

Each ZLoc model consists of two sections: 

declaration and search. In the declaration section, the 

problem is modelled by defining expressions and 

constraints. In the search section the problem is solved 

using a local search method. ZLoc users can use C++ 

structures [8] in addition those existed in ZLoc to 

implement the search algorithm. Each ZLoc model 

includes the following components: 

 Data types: ZLoc supports lists, arrays and sets over 

arbitrary data types. While in Zinc array index set is 

not necessarily integer, in ZLoc index set of an array 

can be an integer range or a set of integers. 

 Variables: Based on instantiation, Zinc variables are 

classified as parameters and decision variables. A 

parameter is initialized before solving the model 

while the value of a decision is determined after 

solving. ZLoc decision variables may be integers, 

floats and sets. 

 Expressions and operations: ZLoc supports variety of 

mathematic operations, logic expressions, operations 

over sets such as union, intersection and membership. 
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comprehened acts as a loop to initialize lists, arrays 

and sets. Other iteration means include forall, sum, 

max, prod and min. 

 Constraints: ZLoc supports variety of constraints 

over integers, floats, sets. Global constraints like 

alldifferent are supported as well. Similar to Comet, 

ZLoc provides necessary functions to guide local 

search such as get_violation (v) to calculate the 

violation degree associated with variable v, 

get_assign_delta(x, v) to calculate the changing 

violation degree by assigning value v to variable x, 

get_assign_delta ([x1, x2,..], [v1, v2,..]) to calculate 

the changing violation degree by assigning value vi 

to variable xi, get_swap_delta (a, b) to calculate the 

new  violation degree after swapping variables a and 

b. 

 

For each constraint the violation degree is computed 

accordingly. For instance, the violation degree of 

arithmetic constraint l>=r is max (0, r-l) [7]. In ZLoc, 

when the value of a variable is changed, the violation 

degree of all constraints in which the variable appears, 

is automatically updated.  

ZLoc uses the pattern local_search<T> (T1 init, T2 

move, T3 finish) for implementing local search 

algorithms. local_search is a template function whose 

type is determined by the  output of init function which 

equals the input type of both move and finish functions. 

The variables of the problem are initialized in the init 

function. Similar to Zinc, the move function is 

repeatedly called until the finish function terminates the 

search.  

For example, consider the model of n-queen problem 

in Figure 6. The array q is declared in the first line. The 

constraints of the problem are declared in lines 3-5 that 

check that queens do not threat each other vertically or 

diagonally.  

 

1. Array<varInt> q(1,n); 

2. elemParameter<int> i; 

3. add_cons(all_different(i,1,n,q[i])); 

4. add_cons(all_different(i,1,n,q[i]+i)); 

5. add_cons(all_different(i,1,n,q[i]-i)); 

6. template <class type1> 

7. List<tuple<type1*,type1> > swap1(type1& 

var1,type1& var2) 

8. { 

9.     List<tuple<type1*,type1> > l; 

10.     l=make_list<tuple<type1*,type1> 

(make_tuple(&var1,var2)) 

11. (make_tuple(&var2,var1));     

12.     return l; 

13. } 

14. int move(int counter) 

15. { 

16.     int i=maximize(q,get_violation<varInt>); 

17. List<List<tuple<varInt*,varInt>>> l; 

18. for(int k=1;k<=domain(q).length(); k++) 

19.   l.insert(swap1(q[i],q[k])); 

20.     int 

j=minimize( l,get_assign_delta<varInt,varInt>);  

21.     swap(q[i],q[j]);   

22.     return counter-1;      

23. } 

24. has_ended finish(int counter) 

25. { 

26.     if(counter<=0) 

27.         return _end; 

28.     if(get_violations()==0) 

29.    return _sol; 

30.     return _continue; 

31. } 

32. local_search<int>(init1,move,finish); 

Fig. 6: A ZLoc model for n-queens 

 

Function swap1 takes two variables var1 and var2 

and returns the list [(*var1, var2), (*var2, var1)] in 

which the value of variables is swapped (lines 7-13). 

The make_list function is implemented in ZLoc to make 

a list. It is a template function and its type is determined 

by the elements of the list. The make_tuple function 

from boost Library [6] is used to make a tuple.  

Function init initializes the array q and also the 

maximum number of allowed moves (lines 14-23). Its 

output is the input of the move function. Similar to 

Figure 1, queen qi with maximum conflict is selected in 

the move function (line 16). The maximize function like 

in Zinc takes a list (or an array) and a function and for 

every element in the list, the function is called and 

position of the element that maximize the function is 

returned. The get_violation function is a template 

function that gets a variable and returns its violation 

degree. In this example, the input type of the function is 

varInt because its input is an element of array q. In lines 

18-20 the index of variable which its swap with the 

variable with maximum violation minimizes the total 

violation is determined. The get_assign_delta function 

takes a list of pairs variable/value and returns the 

difference of violation degree after assigning new 

values to variables. In line 21 the queens qi and qj are 

swapped with each other. In line 22, the number of 

remaining steps is decreased.  

The finish function takes the number remaining steps 

and checks whether the search should continue or not. 

Similar to Zinc, the returned value of this function is of 

type has-ended which is an enumerated type. If 

_continue is returned then the function move is called 

again otherwise the search is terminated.  

 

VIII. Evaluation 

To evaluate the efficiency of ZLoc, we used 4 well-

known problems as benchmark and compare the 

execution time and the quality of final solution with the 

previous local search solver of Zinc and with Comet. 
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We used the same search technique for each problem. 

For the knapsack problem, we select the most beneficial 

items that meet the capacity requirement. At each step, 

if there is a violation of the capacity constraint, we 

select an item to remove with a probability inversely 

proportional to its benefit. If there is no violation, we 

compare the total profit of the items currently in the 

knapsack with the best profit found so far and, if 

necessary, we update the best profit. Also, if there is 

some space left, we select an item to put in the 

knapsack with a probability proportional to its benefit 

value. For n-queen, we used the min-conflict technique.  

For open stacks, the search routine uses a tabu facility 

and starts with a random permutation of products. Then, 

it swaps two products in this sequence to decrease the 

maximum number of open stacks. For perfect squares, 

simulated annealing is used.  

The experimental results are depicted in Table 1. All 

experiments were performed on a 3.0 GHz Pentium 4 

with 1Gb memory running Windows XP. The timings 

are the average of 20 executions. 

 

Table 1: Comparing ZLoc with the current solver of Zinc and Comet 

 Zinc Comet ZLoc 

Problem 
Execution 

time(s) 

Percentage 

of possible 

answers(%) 

Best 

solution 

Execution 

time(s) 

percentage 

of possible 

answers(%) 

Best 

solution 

Execution 

time(s) 

percentage 

of possible 

answers(%) 

Best 

solution 

Knapsack 

(34Items) 
1.4905 100 139 0.8586 100 143 0.2938 100 139 

n-queen 

(128 queens) 
159.871 100 - 63.9523 100 - 0.4088 100 - 

OpenStack 

(15customer, 
15product) 

3.4045 100 9 7.8249 100 10 2.176 100 9 

Perfect Square 

(7*7) 
52.2885 74 - 0.1967 8 - 0.1782 77 - 

 

As can be seen from Table 1, ZLoc outperforms both 

Comet and the current local search solver of Zinc. This 

is true for both execution times and the quality of 

solution. The only exception is Knapsack for which 

Comet finds a bit better solution (with 3% rise in 

quality). 

 

IX. Conclusion 

We introduced ZLoc, a new local search solver for 

the Zinc modelling language implemented as a C++ 

library. ZLoc supports modeling features of Zinc as 

well as user-defined local search algorithms. Our results 

showed that ZLoc is more efficient than Comet and the 

previous local search solver in Zinc. The main goal of 

Zinc has been allowing the modellers to employ all 

solving techniques for their models automatically and 

see which technique gives them the best result. 

Deficiency of the previous local search solver of Zinc 

jeopardized this goal since the models mapped to local 

search techniques were not competitive with tree search 

techniques.  

Now this problem has been fully addressed and we 

are ready to complete mapping Zinc models to existing 

solving techniques. In addition, we are currently 

working on new search patterns for Zinc.  
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