
I.J. Intelligent Systems and Applications, 2013, 10, 11-17
Published Online September 2013 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijisa.2013.10.02

Copyright © 2013 MECS I.J. Intelligent Systems and Applications, 2013, 10, 11-17

Using Heuristic-based Search for Zinc Models

Reza Rafeh

Department of Computer Engineering, Faculty of Engineering, Arak University, Arak, Iran

E-mail:r-rafeh@araku.ac.ir

Roya Rashidi

Department of Computer Engineering, Islamic Azad University, Arak Branch, Arak, Iran

E-mail: e.r.rashidi@googlemail.com

Abstract— The Zinc modelling language provides a

rich set of constraints, data structures and expressions to

support high-level modelling. Zinc is the only

modelling language that supports all solving techniques:

constraint programming, mathematical methods, and

local search. By providing search patterns, it allows

users to implement their search methods in a declarative

way. There are currently three search patterns

implemented in Zinc: backtracking search, branch and

bound search, and local search. In this paper we explain

how Zinc efficiently implements user-defined local

search algorithms.

Index Terms— Zinc, ZLoc, Modelling, Local Search

I. Introduction

Zinc [1] is an extensible mathematical modelling

language which not only provides a wide set of

constraints, data types and expressions, but also

supports user-defined types, predicates and functions. A

conceptual Zinc model can be automatically mapped

into different design models (executable models)

suitable for different solving techniques: Constraint

Programming (CP), Mixed Integer Programming (MIP),

and Local Search (LS). Zinc uses default search

techniques for solving models; for CP it uses the first-

fail heuristic , for MIP standard MIP branch and bound

search [2], and for LS it uses a hill-climber with a tabu

facility to prevent cycling on a plateau.

However, to solve Zinc models more efficiently,

users need to implement their own search methods.

Therefore, Zinc has been extended to support model-

specific search algorithms by providing parametric

search patterns. To date, three search patterns have been

implemented in Zinc: backtracking search, branch and

bound and local search [3]. Users must provide these

search patterns the required parameters which are high-

level data structures and user-defined functions. Our

results show that using model-specific search

algorithms gains an outstanding improvement on the

execution time [1]. However, the local search solver

used for Zinc was inefficient. It was due to

implementing the solver in ECLiPSe [4,5] a logic

programming language in which changing the value of

a variable is unnatural and is inefficient. This is while

local search algorithms need changing the value of

variables repeatedly.

Here we address this issue by implementing a new

local search solver for Zinc: ZLoc [6] a C++ library.

Our experimental results show that ZLoc performs as

well as Comet [7] in implementing local search routines

[6]. We also show that ZLoc has greatly improved the

quality of mapping user-defined local search techniques

in Zinc into equivalent design models.

The rest of the paper is organized as follows. In

Section 2, we introduce Zinc and its modeling

capabilities. In Section 3, we briefly explain the search

mechanism in Zinc. Sections 4, 5, and 6 detail the

existing search patterns in Zinc. In Section 7, we

introduce ZLoc as a local search solver for Zinc. In

Section 8, we evaluate the performance of local search

routines in Zinc. Finally, we conclude the paper in

Section 9.

II. Zinc

A Zinc model includes the following components, all

of which may be iteratively used except for the solve

item which must be unique in the model.

 Variable Declaration and Assignment Items

Variables must be declared and possibly initialized.

Declaration of each variable must specify its type and

its instantiation. Zinc supports a variety of types: int,

float, strings, Booleans arrays, sets, lists, tuples, records,

discriminated union (i.e. variant records) and

enumerated types [1]. Zinc also supports array with any

arbitrary index sets over arbitrary data types and sets

over arbitrary data types.

There are two kinds of instantiations for variables

which divide them into two categories: parameters and

decision variables. The default instantiation for

variables assume them to be parameters. The var

keyword is used to distinguish decision variables from

mailto:e.r.rashidi@googlemail.com

12 Using Heuristic-based Search for Zinc Models

Copyright © 2013 MECS I.J. Intelligent Systems and Applications, 2013, 10, 11-17

parameters and is added before decision variables

definition. While decision variables are instantiated

after the model being solved, parameters must be

initialized either in the model or in a data file,

 Constraint Items

Constraints are Boolean expressions which may be

satisfied or violated based on the value of their variables.

Zinc also supports global constraints, such as

alldifferent and sorted which are applied to lists of any

type.

 Assertion Items

An assertion is a type of constraint imposed on

parameters to check their values and prohibit modelling

errors.

 Constrained Type Items

Zinc enables modellers to define a type associated

with a constraint to make the model more concise and

more readable.

 Function and Predicate Items

One of the most powerful features of Zinc is allowing

users to define their own predicates and functions.

Predicates are actually Boolean functions. Predicates

and functions arguments are allowed to be polymorphic.

 Include Items

Libraries are allowed in Zinc models using include

items. This item also allows a model to be split across

multiple files.

 Solve Item

Every model must have exactly one solve item. The

item is used for constraint satisfaction problems as

solve satisfy and for optimization problems as solve

minimize/maximize obj.

 Output Item

After solving the model, the value of variables can be

printed out using the output item. If no output item is

specified, the default output routine prints the name and

value of each decision variable.

 Annotation Item

To specify the non-functional information in the

model modellers can use annotations. Annotations are

used to classify decision variables, constraints and

objective function and define soft constraints in the

model.

As an example, Figure 1 depicts a Zinc model for the

n-queen problem which uses the min-conflict search.

The first line defines a parameter n. In line 2, an integer

range is declared. In line 3 an array of variables is

declared in which a variable shows the column of a

queen. The problem’s constraints are defined in lines 4-

6, which ensure no two queens can take each other.

1. int: n;

2. type Domain = 1..n;

3. array[Domain] of var Domain :q;

4. constraint alldifferent([Q[i]| i in 1..n]);

5. constraint alldifferent([Q[i]+i| i in 1..n]);

6. constraint alldifferent([Q[i]-i| i in 1..n]);

7. solve satisfy;

Fig. 1: n-queen model in Zinc

III. Search in Zinc

If no search algorithm specified, the default search is

applied for the model. However, Zinc modellers may

specify their own search methods using search patterns

and Zinc structures. Our extension to Zinc currently

provides three generic search patterns: backtracking

search, branch and bound, and local search.

IV. Backtracking Search

Zinc supports depth-first search using a propagation

solver with backtracking for solving satisfaction

problems. To do so, the search pattern backtrack (init,

expand) has been added to Zinc. The first argument is

the initial state or the root of the search tree which is

usually the set of variables to label. The second

argument is a user-defined function that takes the local

state for the current node and returns its children as a

list of pairs of the form (ns, c), where the ith pair gives

the state ns for its ith child, and the constraint c that

should be posted right before this child becomes the

current node. Note that expand has implicit access to

the solver state and can, therefore, make use of standard

propagation solver reflection functions such as

domain(V) which returns the current domain of variable

V. For example, the function defined in Figure 2

implements the standard labeling.

unction list of tuple(list of $T, var bool):

std_label(list of $T:Vs) =

if Vs = [] then []

else let {$T: V = head(Vs), list of $T: VRest =

tail(Vs) } in

[(VRest, V == d) | d in domain(V)])

endif;

Fig. 2: Standard labeling

The std_label labels a list of variables Vs in order and,

 Using Heuristic-based Search for Zinc Models 13

Copyright © 2013 MECS I.J. Intelligent Systems and Applications, 2013, 10, 11-17

for each V in Vs, tries the domain values from smallest

to largest. The head and tail functions are provided in

the Zinc library to return the head and tail of the input

list, respectively. The N-queens model can now be

mapped to a design model that uses this labeling by

simply adding an annotation to the solve statement in

the model:

solve satisfy:backtrack(queens, std_label);

To call the search pattern with queens as the initial

local state and std label as the expand function. Note

that in Zinc, lists are syntactic sugar for arrays.

To improve the performance of the model, we can

use a first-fail search that labels from the middle of each

queen’s domain. To do this, the search routing shown in

Figure 3 must be added to the model. The search routine

obtains in middle out a list of domain values ordered

from the middle out, and uses it to return as children a

list of tuples assigning those values to the variable V in

Vs with the minimum domain size (thanks to the

reflection function domain_size and Zinc’s library

function minimizes).

list of Domain: middle_out =

[if (i mod 2==0) then (n-i+1)

div 2 else (n+i) div 2 + 1 endif | i in 0..n-1]

function list of tuple(list of var Domain, var bool):

first_fail_middle_out(list of var Domain:Vs) =

if Vs=[] then []

else let { int: min = minimizes(Vs,domain_size),

var Domain: V = Vs[min],

list of var Domain:

VRest = [Vs[j] | j in Domain where j!= min]) }

in

[(VRest, V=d) | d in middle_out]

endif;

solve

satisfy::backtrack(queens,first_fail_middle_out);

Fig. 3: A backtracking search for n-queen

The backtracking search pattern is surprisingly

powerful thanks to the modeller being able to choose

the init state and the kind of constraints to be posted by

each child node. Thus, for instance, modellers can use a

counter to implement iterative deepening.

V. Branch-and-Bound

For optimization problems, Zinc provides a variant of

the backtracking search pattern extended with branch

and bound: backtrack(init,expand,bound,flags).

The first two parameters are the same as the previous

pattern. The two extra parameters are a function bound

for computing the new bound from the old and current

bounds, and a flag to indicate the kind of branch-and-

bound search performed. The flags are similar to those

provided in ECLiPSe [4], and include:

restart (to restart the search from the root of the

search tree), continue (to continue the search from the

current node in the search tree), and dichotomic (to do

dichotomic search).

To show the usage of this pattern we write a model-

specific labeling routine for 0-1 knapsack, which tries to

find a subset of an initial set of items with maximum

total profit such that the sum of their weights does not

exceed the capacity of the knapsack. The proposed

search routine tries to place items in order of their

expected utility profit/weight. The model and the search

routine are depicted in Figure 4.

1. type item = record(int:id,profit,weight);

2. set of item: All_Items;

3. int: Max_Capacity;

4. var set of All_Items: Selected_Items;

5. constraint

6. sum(X in Selected_Items) (X.weight) =<

Max_Capacity;

7. function list of tuple(list of tuple(var set of

$T,$T),var bool):

8. set_labeling(list of tuple(var set of

$T,$T):L)=

9. if L=[] then []

10. else let{$T:P=head(L), list of $T:Rest=tail(L)}

in

11. [(Rest, P.2 in P.1),(Rest, not (P.2 in P.1))]

12. endif;

13. function int:bound_func(int:old, int:curr) =

curr+1;

14. list of item: Sorted_Items=

15. [X.2 | X in sort([(-X.profit/X.weight,X)|X in

All_Items])];

16. solve maximize sum(S in Selected_Items)

(S.profit)::

17. backtrack([(Selected_Items,j)|j in

18. Sorted_Items],set_labeling,bound_func,restart

);

Fig. 4: A search method for knapsack

In line 1 item is defined as a new type to store the

item’s information: three integers that indicate its

identifier, profit and weight. The model then defines

two parameters: All_items as the initial set of items, and

Max_Capacity as the maximum capacity of the

knapsack. Then it defines Selected_Items as a set

variable which will provide the solution of the problem.

Lines 5 and 6 define a constraint indicating that the sum

of the item weights cannot exceed the knapsack

capacity. And finally, line 16 declares the model to be

an optimization problem with an associated objective

function to be maximized.

The set_labeling function plays the role of the expand

function by taking a list of pairs (each with a set

variable and a possible item) and creating two child

nodes, the first stating that the item is a member of the

list, and the second stating it is not. The remainder of

14 Using Heuristic-based Search for Zinc Models

Copyright © 2013 MECS I.J. Intelligent Systems and Applications, 2013, 10, 11-17

the list is returned as the state of the created nodes. In

this example, bound function forces the search to find a

better solution than the most recent one (at least one

unit more). Every time a better solution is found, we

restart the search from the root of the search tree.

Alternatively, we could use binary search by simply

using the dichotomic flag and the following bound

function:

function float:

bound_func2(float:old,curr)=

min(old,curr)+abs(old-curr)*0.5;

VI. Local Search

To support local search, Zinc provides the following

pattern: local_search(init_valn, init_state, move, finish)

where init_valn is the initial valuation (a list of

variable/value pairs), init_state is the initial state, move

is a function which takes a state and returns a new

valuation to move to and finish is a function which

determines when the search should finish. In each

iteration of the algorithm, the move function is called to

take the current state and return a new state, then the

finish function is called to decide whether the search

should continue or not [3].

We show the usage of the pattern by means of an

example. Figure 5 depicts a local search algorithm for

the n-queen model. The swap function is a polymorphic

function which takes two variables and returns a

valuation in which the value of variables is exchanged

(line 1). In the move function the variable qi with

maximum conflict is swapped with variable qj to

minimize the total conflict (line 4). Then, the number of

remaining steps is decreased.

1. function valuation: swap($T: v1, $T: v2) =

[(v1,val(v2)),(v2,val(v1))];

2. function tuple(int, valuation): move(int:

nmovesleft) =

3. let {int: i=maximizes(q,var_penalty),

4. int: j=minimizes([swap(q[i],q[k])|k in

Domain], new_penalty)

5. } in

6. (nmovesleft-1,swap(q[i],q[j]));

7. function has_ended: finish(int: nmovesleft) =

8. if current_penalty == 0 then sol(get_valuation)

9. elseif nmovesleft =< 0 then end(get_valuation)

10. else continue

11. endif;

12. solve satisfy::local_search([(q[i],i)|i in

Domain], 1000,move,finish);

Fig. 5: A local search method for n-queen

The finish function takes a state and checks the

violation degree. A zero value means that the problem

is solved and search terminates (line14). If the number

of remaining steps is zero the search stops (line 9),

otherwise, search continues (line 10).

The first argument of local_ search initializes the

array q to place the i’th queen in column i. The second

argument defines the number of allowed steps as 1000.

The two next arguments are move and finish function.

The move function is repeatedly called until the search

terminates (line 18).

VII. Zloc

ZLoc is a C++ library for modelling constraint

optimization problems and solving them using local

search methods. ZLoc supports mathematical structures

and expressions, multi dimension arrays with arbitrary

index set over variety of data types, lists, sets, and

constraints over variety of data types and global

constraints such as alldifferent [6].

ZLoc utilizes Zinc with a fast local search solver. The

first local search solver of Zinc was implemented in

ECLiPSe and was inefficient. It was because ECLiPSe

is a logic language in which changing the value of

variables is unnatural, something that is essential for

implementing local search methods.

ZLoc supports Zinc data types, user-defined

functions, predicates, expressions and constraints. In

addition, it provides necessary operations for guiding

local search.

ZLoc is similar to Comet in many aspects.

Nonetheless, Comet has no support for some features of

Zinc models like user-defined functions and predicates

which are the key features in implementing user-defined

search methods [3].

Each ZLoc model consists of two sections:

declaration and search. In the declaration section, the

problem is modelled by defining expressions and

constraints. In the search section the problem is solved

using a local search method. ZLoc users can use C++

structures [8] in addition those existed in ZLoc to

implement the search algorithm. Each ZLoc model

includes the following components:

 Data types: ZLoc supports lists, arrays and sets over

arbitrary data types. While in Zinc array index set is

not necessarily integer, in ZLoc index set of an array

can be an integer range or a set of integers.

 Variables: Based on instantiation, Zinc variables are

classified as parameters and decision variables. A

parameter is initialized before solving the model

while the value of a decision is determined after

solving. ZLoc decision variables may be integers,

floats and sets.

 Expressions and operations: ZLoc supports variety of

mathematic operations, logic expressions, operations

over sets such as union, intersection and membership.

 Using Heuristic-based Search for Zinc Models 15

Copyright © 2013 MECS I.J. Intelligent Systems and Applications, 2013, 10, 11-17

comprehened acts as a loop to initialize lists, arrays

and sets. Other iteration means include forall, sum,

max, prod and min.

 Constraints: ZLoc supports variety of constraints

over integers, floats, sets. Global constraints like

alldifferent are supported as well. Similar to Comet,

ZLoc provides necessary functions to guide local

search such as get_violation (v) to calculate the

violation degree associated with variable v,

get_assign_delta(x, v) to calculate the changing

violation degree by assigning value v to variable x,

get_assign_delta ([x1, x2,..], [v1, v2,..]) to calculate

the changing violation degree by assigning value vi

to variable xi, get_swap_delta (a, b) to calculate the

new violation degree after swapping variables a and

b.

For each constraint the violation degree is computed

accordingly. For instance, the violation degree of

arithmetic constraint l>=r is max (0, r-l) [7]. In ZLoc,

when the value of a variable is changed, the violation

degree of all constraints in which the variable appears,

is automatically updated.

ZLoc uses the pattern local_search<T> (T1 init, T2

move, T3 finish) for implementing local search

algorithms. local_search is a template function whose

type is determined by the output of init function which

equals the input type of both move and finish functions.

The variables of the problem are initialized in the init

function. Similar to Zinc, the move function is

repeatedly called until the finish function terminates the

search.

For example, consider the model of n-queen problem

in Figure 6. The array q is declared in the first line. The

constraints of the problem are declared in lines 3-5 that

check that queens do not threat each other vertically or

diagonally.

1. Array<varInt> q(1,n);

2. elemParameter<int> i;

3. add_cons(all_different(i,1,n,q[i]));

4. add_cons(all_different(i,1,n,q[i]+i));

5. add_cons(all_different(i,1,n,q[i]-i));

6. template <class type1>

7. List<tuple<type1*,type1> > swap1(type1&

var1,type1& var2)

8. {

9. List<tuple<type1*,type1> > l;

10. l=make_list<tuple<type1*,type1>

(make_tuple(&var1,var2))

11. (make_tuple(&var2,var1));

12. return l;

13. }

14. int move(int counter)

15. {

16. int i=maximize(q,get_violation<varInt>);

17. List<List<tuple<varInt*,varInt>>> l;

18. for(int k=1;k<=domain(q).length(); k++)

19. l.insert(swap1(q[i],q[k]));

20. int

j=minimize(l,get_assign_delta<varInt,varInt>);

21. swap(q[i],q[j]);

22. return counter-1;

23. }

24. has_ended finish(int counter)

25. {

26. if(counter<=0)

27. return _end;

28. if(get_violations()==0)

29. return _sol;

30. return _continue;

31. }

32. local_search<int>(init1,move,finish);

Fig. 6: A ZLoc model for n-queens

Function swap1 takes two variables var1 and var2

and returns the list [(*var1, var2), (*var2, var1)] in

which the value of variables is swapped (lines 7-13).

The make_list function is implemented in ZLoc to make

a list. It is a template function and its type is determined

by the elements of the list. The make_tuple function

from boost Library [6] is used to make a tuple.

Function init initializes the array q and also the

maximum number of allowed moves (lines 14-23). Its

output is the input of the move function. Similar to

Figure 1, queen qi with maximum conflict is selected in

the move function (line 16). The maximize function like

in Zinc takes a list (or an array) and a function and for

every element in the list, the function is called and

position of the element that maximize the function is

returned. The get_violation function is a template

function that gets a variable and returns its violation

degree. In this example, the input type of the function is

varInt because its input is an element of array q. In lines

18-20 the index of variable which its swap with the

variable with maximum violation minimizes the total

violation is determined. The get_assign_delta function

takes a list of pairs variable/value and returns the

difference of violation degree after assigning new

values to variables. In line 21 the queens qi and qj are

swapped with each other. In line 22, the number of

remaining steps is decreased.

The finish function takes the number remaining steps

and checks whether the search should continue or not.

Similar to Zinc, the returned value of this function is of

type has-ended which is an enumerated type. If

_continue is returned then the function move is called

again otherwise the search is terminated.

VIII. Evaluation

To evaluate the efficiency of ZLoc, we used 4 well-

known problems as benchmark and compare the

execution time and the quality of final solution with the

previous local search solver of Zinc and with Comet.

16 Using Heuristic-based Search for Zinc Models

Copyright © 2013 MECS I.J. Intelligent Systems and Applications, 2013, 10, 11-17

We used the same search technique for each problem.

For the knapsack problem, we select the most beneficial

items that meet the capacity requirement. At each step,

if there is a violation of the capacity constraint, we

select an item to remove with a probability inversely

proportional to its benefit. If there is no violation, we

compare the total profit of the items currently in the

knapsack with the best profit found so far and, if

necessary, we update the best profit. Also, if there is

some space left, we select an item to put in the

knapsack with a probability proportional to its benefit

value. For n-queen, we used the min-conflict technique.

For open stacks, the search routine uses a tabu facility

and starts with a random permutation of products. Then,

it swaps two products in this sequence to decrease the

maximum number of open stacks. For perfect squares,

simulated annealing is used.

The experimental results are depicted in Table 1. All

experiments were performed on a 3.0 GHz Pentium 4

with 1Gb memory running Windows XP. The timings

are the average of 20 executions.

Table 1: Comparing ZLoc with the current solver of Zinc and Comet

 Zinc Comet ZLoc

Problem
Execution

time(s)

Percentage

of possible

answers(%)

Best

solution

Execution

time(s)

percentage

of possible

answers(%)

Best

solution

Execution

time(s)

percentage

of possible

answers(%)

Best

solution

Knapsack

(34Items)
1.4905 100 139 0.8586 100 143 0.2938 100 139

n-queen

(128 queens)
159.871 100 - 63.9523 100 - 0.4088 100 -

OpenStack

(15customer,
15product)

3.4045 100 9 7.8249 100 10 2.176 100 9

Perfect Square

(7*7)
52.2885 74 - 0.1967 8 - 0.1782 77 -

As can be seen from Table 1, ZLoc outperforms both

Comet and the current local search solver of Zinc. This

is true for both execution times and the quality of

solution. The only exception is Knapsack for which

Comet finds a bit better solution (with 3% rise in

quality).

IX. Conclusion

We introduced ZLoc, a new local search solver for

the Zinc modelling language implemented as a C++

library. ZLoc supports modeling features of Zinc as

well as user-defined local search algorithms. Our results

showed that ZLoc is more efficient than Comet and the

previous local search solver in Zinc. The main goal of

Zinc has been allowing the modellers to employ all

solving techniques for their models automatically and

see which technique gives them the best result.

Deficiency of the previous local search solver of Zinc

jeopardized this goal since the models mapped to local

search techniques were not competitive with tree search

techniques.

Now this problem has been fully addressed and we

are ready to complete mapping Zinc models to existing

solving techniques. In addition, we are currently

working on new search patterns for Zinc.

References

[1] Rafeh R., "The Modelling Language Zinc," in

Clayton School of IT. vol. Ph.d.Thesis: Monash

University, 2008.

[2] N. Jaberi, and R. Rafeh, “A Survey of

Linearization Techniques for Nonlinear Models,”

International Journal of Computational Intelligence

and Information Security, vol. 3, no. 2, 2012.

[3] Rafeh R., Marriott K., and de la Banda M.,

"Adding Search to Zinc," CP 2008, vol. LNCS

5202, pp. 624-629, 2008.

[4] Apt K., and Wallace M., Constraint Logic

programming Using ECLiPSe: Cambridge

University Press, 2007.

[5] R. Rafeh,. "Proposing a new search template for

modelling languages", Procedia CS 3: 1490-1493,

2011.

[6] Rashidi R., Rafeh R., Rahmani M., and Khadem E.

A., "ZLoc: A C++ library for local search,"

International Journal of the Physical Sciences, vol.

6(31), pp. 7095 - 7099, 2011.

[7] Hentenryck P. V., and Michel L., Constraint-

Based Local Search: MIT Press, 2005.

[8] "Boost C++ libraries home page."

 Using Heuristic-based Search for Zinc Models 17

Copyright © 2013 MECS I.J. Intelligent Systems and Applications, 2013, 10, 11-17

Authors’ Profiles

Reza Rafeh is a faculty member at

Arak University (Iran). He got his

PhD from Monash University

(Australia). His interesting areas

are compiler design, constraint

programming and theorem proving.

He is the chief editor of Software

Engineering Journal as well as an

editorial board of Soft Computing Journal.

Roya Rashidi got her master from

Islamic Azad University, Arak

branch (Iran). She is interested in

local search algorithms and

constraint programming.

