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Abstract— Many techniques are used for Transient 

Stability assessment (TSA) of synchronous generators 

encompassing traditional time domain state numerical 

integration, Lyapunov based methods, probabilistic 

approaches and Artificial Intelligence (AI) techniques 

like pattern recognition and artificial neural networks. 

This paper examines another two proposed artificial 

intelligence techniques to tackle the transient stability 

problem. The first technique is based on the Inductive 

Inference Reasoning (IIR) approach which belongs to a 

particular family of machine learning from examples. 

The second presents a simple fuzzy logic classifier 

system for TSA. Not only steady state but transient 

attributes are used for transient stability estimation so as 

to reflect machine dynamics and network changes due 

to faults. 

The two techniques are tested on a standard test 

power system. The performance evaluation 

demonstrated satisfactory results in early detection of 

machine instability. The advantage of the two 

techniques is that they are straightforward and simple 

for on-line implementation. 

 

Index Terms— Transient Stability, Artificial 

Intelligence, Inductive Inference, Decision Trees, Fuzzy 

Logic 

 

I. Introduction 

Various types of disturbance in the power network 

can lead to oscillations in power flows, voltages, 

generator phase angles, etc. In severe cases it is possible 

for one or more generators to loose synchronism and 

being to rotate at a different speed which leads to 

damage to generator plant. Transient stability 

assessment examines the capability of power system to 

return back to an acceptable steady-state condition after 

a large disturbance.   

TSA has been examined by many researches [1, 2, 3] 

the traditional numerical integration method [1] 

discretizes the machine swing equations to obtain the 

evolution with time of the machine rotor angles but it is 

tedious and not suitable for on-line environment. 

Lyapunov stability theory of non-linear systems was 

used in [2]. Even though these methods are accurate, 

they are computationally tedious. In [3] a probabilistic 

assessment of TS for a multi-machine power system 

was suggested and random nature of the fault type and 

location were considered in details. 

Recently, Artificial Intelligence (AI) has been applied 

to power system and improved the solutions in many 

areas. The pattern recognition methodology was used in 

the TS problem by some authors [4, 5]. In [4], different 

classifiers like the Bayes Quadratic classifier, 

Polynomial discriminant method and Nearest 

Neighbour decision rule were used for fast security 

assessment. The K-means clustering pattern recognition 

technique was also used in out-of-step detection [5].  

The authors of [6] discussed the evaluation of the 

effectiveness of neural networks for rapid determination 

of critical clearing times for practical networks with 

varying outages and load patterns. They concluded that 

neural networks have difficulty in returning consistently 

accurate answers under varying network conditions 

using only steady state attributes. 

In [7], an out-of-step prediction approach based on 

neural networks with improving the classification 

performance was presented. The suggested scheme is 

characterized by simple structure based only on local 

measurements. 

The work presented in [8] was the first using the 

Inductive Inference Reasoning (IIR) approach for TSA. 

In [9], the decision tree (DT) transient stability method 

was introduced via a case study carried out on the 

French EHV power system, but the disadvantage of [8, 

9] is that the attributes used to represent the operating 

points were simple pre-fault variables like bus voltages, 

active and reactive power injections. Authors of [10] 

demonstrated how DT can be constructed off-line and 

then utilized on-line for predicting TS in real time using 

post-fault synchronized phasor measurements.  
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In [11], the induction and abduction methodologies 

of AI were utilized to develop the logic for a smart relay 

with early detection of system instabilities. Authors of 

[12] showed how to use DT for predicting loss of 

synchronism on an AC intertie using apparent resistance 

along with its rate of change measured near the 

electrical center of the intertie. Response based control 

by a DT is achieved by turning every time sample from 

every simulation into an input–output pair for the DT 

training set. 

In [13], a new method for eigenvalue region 

prediction of critical stability modes of power systems 

based on decision trees was presented. The paper 

proved that DT‘s are fast, easy to grow, and provide 

high accuracy for eigenvalue region prediction. A 

genetic algorithm is implemented to search for the best 

set of inputs providing the highest performance in 

stability assessment. 

From the other side, the fuzzy sets theory is also 

employed in TSA problem because it can take into 

account qualitative information about transient stability 

that remains unutilized by conventional approaches to 

the problem (human operators stability judging under 

imprecision). It can also provide the margin of system 

stability under a given operating condition. The 

application of fuzzy concepts in TSA was introduced 

for the first time in [14], where an index providing an 

evaluation of the system level of security by 

considering the values of generator accelerations and 

kinetic energies after the occurrence of a large 

disturbance was presented.  

The authors of [15] presented a fuzzy logic classifier 

for TSA using three variables (load condition, fault 

location and clearing time) as inputs of the fuzzy 

classifier. The low correct classification percentage 

obtained (92 %) was due to the nature of the input 

variables. A predictive out-of-step relaying approach 

using fuzzy rule-based classification was presented in 

[16]. The advantage of this approach is that it does not 

need any telemetery equipment since it uses an active 

power transducer fed from local measurements on the 

generator terminals to produce the input features to the 

fuzzy system. 

In [17], a class of fuzzy hyper-rectangular composite 

neural networks which utilize real-time phasor angle 

measurements to provide fast transient stability 

prediction for use with high speed control was 

developed. From the simulation tests on a sample power 

system, it reveals that the proposed tool can yield a 

highly successful prediction rate in real-time. 

The work in [18] presented a methodology to analyze 

transient stability using a neural network based on ART 

architecture (adaptive resonance theory), named fuzzy 

ARTARTMAP neural network for real time 

applications. The security margin is used as a stability 

analysis criterion, considering three-phase short circuit 

faults with a transmission line outage. 

The proposed fuzzy ART-ARTMAP neural network 

has a superior performance, in terms of precision and 

speed, when compared to conventional ARTMAP, and 

much more when compared to the neural networks that 

are trained by conventional back propagation algorithm. 

Authors of [19] presented fuzzy-probabilistic 

modeling techniques for system component outage 

parameters and load curves. Based on the fuzzy-

probabilistic models, a hybrid method of fuzzy set and 

Monte Carlo simulation for power system risk 

assessment was proposed to capture both randomness 

and fuzziness of loads and component outage 

parameters. 

This paper presents two AI methods for TSA based 

on the inductive inference reasoning approach and the 

fuzzy logic approach. The two methods have been 

applied to a small standard test power system to 

demonstrate their validity. Compared with recent 

approaches, the two methods presented in this paper are 

straightforward, accurate, simple for real-time 

implementation and suitable to be applied for large 

power systems. 

 

II. Principle of the Inductive Interference 

Resonating Approach 

The inductive inference reasoning method pertains to 

the domain of artificial intelligence, more particularly, 

the family of machine learning from examples [20]. 

Inductive inference reasoning method builds decision 

rules off-line which are automatically designed in the 

form of Decision Trees (DTs) built in a top down 

fashion. According to the method, a DT is built on the 

basis of a pre analyzed training set, composed of states 

or operating points. Each of these states is represented 

by a group of attributes which are variables characterize 

the condition of the machine in question. These 

attributes are guessed to have a significant influence on 

the machine behavior. The detection of the transient 

stability condition involves traversing the DT for the 

given operating condition. 

A DT classifies each input vector according to a 

series of tests. The diagram of a DT is flow chart in the 

shape of an upside-down tree as shown in Fig. 1. 

Starting at the top node, the flow branches right or left 

depend on the outcome of a simple test. For numerical 

data, the test is whether a particular element of the input 

vector exceeds a threshold. Processing proceeds down 

the tree until a terminal node is reached. The input is 

classified according to the class of the terminal node. 

Even though the inductive inference reasoning 

method chooses the best attributes among the given 

attributes, it is unable to determine whether a 

combination of these attributes would give better 

results. It is also intuitively understood that the quality 

of the training set, with respect to states of system 

behavior on occurrence of the contingency, has 
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considerable effect on the reliability of the DT 

constructed. Hence, the choice of attributes and 

development of a representative training set are very 

crucial for the IIR method. 

 

Fig. 1: Simple Decision Tree for Illustration Purposes 

 

III. Fuzzy Sets and Fuzzy Sets Operations  

Recently the publications on applications of fuzzy set 

theory to power systems has been increased which 

indicates its potential role in dealing with power 

systems problems. Although the obtained results are 

promising, fuzzy set theory is not widely accepted. The 

reasons are: misunderstanding of the concept, excessive 

claims of some researchers, lack of implemented and 

available systems, and its status as a new theory.  Fuzzy 

set theory has been given more attention due to its 

achievements made in applications to other areas and it 

is felt that there is a need to develop more information 

on this subject [21]. 

Fuzzy logic system estimates functions from sample 

data. It is a model free estimator, which estimates a 

function without requiring a mathematical description 

of how the output functionally depends on the input. It 

learns the model only from samples. A fuzzy logical 

system is much closer in spirit to human thinking and 

natural language than traditional logic systems. 

A fuzzy set F in a universe U is characterized by a 

membership function μF which takes values in the 

interval [0, 1] namely, μF : U →  [0, 1]. Thus a fuzzy set 

F in U is represented as a set of ordered pairs of generic 

element u and its grade of membership function: 

 

F = {(u, μF (u)) u │ Є   U}                                      (1) 

 

Let A and B be two fuzzy sets in U with membership 

function μA and μB respectively. The fuzzy set 

operations of union, intersection and complement for 

fuzzy sets are defined via their membership functions. 

Union: The membership function μAUB of the union 

AUB is pointwise defined for all u ЄU by 

 

μAUB (u) = max [μA(u), μB (u)]                              (2) 

 

Intersection: The membership function μA∩B of the 

intersection A∩B is pointwise defined for all u Є U by 

 

μA∩B (u) = min [μA(u), μB(u)]                                 (3) 

 

Complement: The membership function μĀ of the 

complement of a fuzzy set A is pointwise defined for all 

u Є U by 

 

μĀ (u) = 1 – μA (u)                                                    (4) 

 

The components of conventional and fuzzy systems 

are quite alike, differing mainly in that fuzzy system 

contain ―fuzzifiers‖ which convert inputs to their fuzzy 

representations, and ―defuzzifiers‖ which convert the 

output of the fuzzy process logic into ―crisp‖ 

(numerically precise) solution variables. The basic 

configuration of fuzzy logic control or classifier system 

is shown in Fig. 2. 

 

 

Fig. 2: The Basic Configuration of Fuzzy Logic Control 

 

The fuzzification interface measures the values of 

input variables and then converts input data into 

suitable linguistic values which may be viewed as label 

of fuzzy sets. 

The knowledge base comprises knowledge of the 

application domain and the attendant control goals. It 

consists of a ―data base‖ and a ―linguistic fuzzy control 

rule base‖. The database provides necessary definitions, 

which are used to define linguistic control rules and 

fuzzy data manipulation. The rule base characterizes the 

control goals and control policy by means of a set of 

linguistic control rules. 
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The decision-making logic is the core of the 

operation. It has the capability of simulating human 

decision-making based on fuzzy logic concepts and the 

capability of inferring fuzzy control actions employing 

fuzzy implication and the rules of inference in fuzzy 

logic. The inference mechanisms in the fuzzy operation 

are generally much simpler than those used in atypical 

expert system. There are two principal methods of 

inference in fuzzy systems: The Min-Max method and 

the fuzzy additive method. 

Deffuzification is the final phase of fuzzy reasoning. 

The defuzzification interface convertsthe range of 

values of output variables to yield a non-fuzzy control 

action. Defuzzification uses the centroid or center of 

gravity technique to find the ―balance‖ point of the 

solution by calculating the weighted mean of the fuzzy 

region. For fuzzy solution A, the centroid is formulated 

as follows: 
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where d is the i
th

 domain value and μA (di) is the truth 

membership value for that domain point [22]. 

 

Fig. 3: Single Line Diagram of Power System under Study 

 

IV. Application of the Inductive Inference 

Approach to Transient Stability Problem 

In this section, the method and the procedures for 

application of the inductive inference reasoning 

approach to the transient stability problem are 

described. The example system under study is a nine 

bus, three generators standard test power system 

proposed by Western System Coordinating Council in 

Canada. A one line diagram for the system is shown in 

Fig. (3) and the system characteristics are given in [23]. 

For this system, pre-fault and fault-on attributes are 

selected. A training set is generated which is further 

used in the DT construction. Cases, for which stability 

has to be determined, are then generated in the same 

way as the training set. These cases are then applied to 

the DT to determine their stability class. The percentage 

misclassification of these cases gives the reliability of 

the DT. 

 

4.1 Selection of Attributes  

There are many important quantities which have 

significant indication of machine stability and as a 

result their pattern would dominate the pattern of stable 

and unstable classes. The choice of candidate attributes 

is directed by the following heuristics: 

1) The transient stability behavior is a strong function of 

the local variables i.e. the variables which are 

electrically close to the fault location. 

2) The transient stability behavior can not be completely 

understood by considering pre-fault or static 

variables. Dynamic variables like initial accelerations 

of machine are representative as they inherently 

reflect machine dynamics and the changes in the 

network topology.  Chiefly three types of attributes 

have been considered as follows: 

 

Type I: 

 Simple pre-fault attributes like bus voltages, line 

flows, rotor internal angles, and mechanical power 

input to generators. 

 Heuristic pre-fault attributes like mean, minimal and 

maximal bus voltages, total active and reactive power 

load. 

 

Type II: 

 Simple fault-on attributes like machines speeds, 

accelerations at inception of fault and at instant of 

fault clearing. 

 Heuristic fault-on attributes like the kinetic energy 

deviation at instant of fault clearing and mean 

machine accelerations. 

 

Type III: 

A combination of the two types I & II. 

The Decision Trees for each of the attributes types 

have been constructed and their reliability has been 

evaluated. 

 

4.2 Generation of Training Set Samples  

This is an important off-line task of the IIR 

algorithm. The quality of the training set determines the 

reliability of the DT for unseen cases. Two factors have 

been considered when building the training set. 
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 Transient stability depends on the total system load 

level. 

 For any load level, transient stability behavior differs 

with different distributions of loads and generations. 

 

Therefore, generation of the training set samples 

should fulfill the previous two factors. It is assumed that 

the loads are randomly distributed and they have a 

normal distribution shape with the following means: 

 

[PA, PB, PC] = [1.25, 0.9, 1.0] p.u. 

 

For load flow analysis, Bus 1 is taken as the swing 

bus and Buses 2 and 3 are voltage controlled buses with 

voltage magnitude of 1.025 p.u. For each load sample, 

the loading of the generators is determined by 

economical dispatch of the total load among generators, 

followed by a load flow analysis. A three phase short 

circuit is assumed to occur at one line very close to one 

of the buses of the system and the fault is removed by 

tripping out the faulted line. The Runge-Kutta 

numerical integration approach is applied to find the 

class of each sample. A sample is classified as unstable 

if the rotor angle of the critical generator which is 

chosen to be G3 reaches 180 degrees within one second 

[4], otherwise the sample is classified as stable. 

Generation of samples is performed by both of the 

changing of the fault location and the loading 

conditions of the system prior to the occurrence of the 

fault. A group of samples is generated at six different 

fault locations with three different load levels (1.6, 1.0, 

0.4) p.u. for each of the three loads of the power 

network under study and the clearing time is taken 150 

ms. This results in 162 samples. 

Number of stable samples = 146 (90 %). 

Number of unstable samples = 16 (10 %). 

The fault locations are: 

Bus number     4        5      6       7       8         9 

Faulted line   4-6    5-4    6-4    7-5    8-9      9-6 

In order to improve the classification performance, a 

normalization process is performed to all the variables 

of the training set. 

 

4.3 The Chosen Attributes 

Type I: 

 Active power injections at buses 6, 8 and 9. 

 Reactive power injections at buses 6, 8 and 9. 

 Mechanical input power of the critical generator. 

 Total active power load. 

 Total reactive power load. 

 Voltage of each bus. 

 Mean of bus voltages. 

 Pre-fault internal angle of the critical generator. 

 

Type II: 

 Reactive power at the instant after fault inception. 

 Machines speeds at the instant of fault clearing. 

 Machines accelerations at the instant after fault 

inception. 

 Machines accelerations at instant of fault clearing. 

 The kinetic energy deviation of the critical generator 

at the instant of the fault clearing. 

 The average (mean) accelerations of the generators. 

 

Type I attributes are direct outcome of the load flow 

results. The other attributes are determined from a 

transient stability program using the second-order 

model of the machine. 

 

4.4 The Chosen Attributes: 

The decision tree with Types I, II and III attributes 

are shown in Figs. (4), (5) and (6) respectively. The 

shown DTs are chosen after extensive trials and they 

represent the best results obtained. 

 

Mean V = mean of buses voltage 

Total PL = total active power load 

V6 = voltage at bus 6. 

 
Fig. 4: The Best Results Obtained using Decision Tree with Type I 

Attributes 
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α1= acceleration of G3 at instant of fault inception     

αav  =  average acceleration of G3 

K.E. = kinetic energy of G3 at instant of fault clearing 

 

Fig. 5: The Best Results Obtained using Decision Tree with Type II 
Attributes 

 

 

PM = mechanical input power of G3 

 

Fig. 6: The Best Results Obtained using Decision Tree with Type III 
Attributes 

4.5 Testing the Decision Trees Approach 

The last step in the approach is the generalization 

process by which a complete verification of the 

capabilities of the approach in detecting the class of 

unknown samples is performed. The generalization 

ability is best stated in probabilistic terms as the 

probability of correct classification. It can serve as an 

index of satisfactory performance of the classification in 

unknown situations. This step is conducted by testing 

the approach using an adequate test set. 

The samples of the test set should cover a wide 

spectrum of operating conditions and contingencies that 

the machine under study may be subjected to. The 

generation of samples for the test set is performed in a 

similar way to the training set. The test set is generated 

at six fault locations with four different load levels 

(1.75, 1.25, 0.75, 0.25) p.u. for each of the three loads. 

This produces 384 samples. 

Reliability testing of DT is made by comparing the 

results against that obtained from the transient stability 

program. Table (1) shows the percentage 

misclassification with different attribute types. 

 
Table 1: Performance Evaluation of the Approach 

Attribute 

Type 

Misclassification % 

In DT  Building 

Misclassification % in 

Unseen Cases 

Type I 1.85 3.13 (12 samples) 

Type II 1.23 1.56 (6 samples) 

Type III 0.0 0.78 (3 samples) 

 

The percentage error of classification by the DT with 

fault-on attributes is found to be lower than the pre-fault 

attributes. Also, it is concluded that the reliability of the 

DT generated by Type III attributes is better than the 

DTs generated using Types I and II attributes. 

 

V. Application of Fuzzy Concepts to the Transient 

Stability Problem 

The same training and testing sets used for the IIR 

approach are also used for the application of the fuzzy 

concepts to the TSA problem. 

 

5.1 Selection of Most Important Variables 

Only three features are chosen using the Single 

Ranking method based on previous experience of 

applying a pattern recognition technique to the same 

problem [5]. The first is the pre-fault loading of the 

generator or the mechanical input power ‗Pm‘. It is 

known that the higher the loading of generator, the 

higher the risk of instability. The second feature is the 

generator kinetic energy deviation K.E or ‗1/2 M ω
2
‘ at 

t = Tcl +. 
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The third feature is the average acceleration during 

fault ‗αav‘. It is the average value of the two rotor 

angular accelerations α1 at t = Tf
+ 

 and α2 at t = Tcl
+
 . 

Tf is the instant of fault and Tcl is the instant of fault 

clearing. ‗Pm‘ is a direct outcome of the load flow 

results. The other two features are determined from a 

transient stability study using the second-order model of 

the machine. 

 

5.2 Generation of Fuzzy Rules 

The procedure of generating fuzzy rules consists of 

two phases: partitioning the pattern space into fuzzy 

subspaces, then inducing a fuzzy rule for each subspace. 

So, the three previous variables, which are the inputs of 

the proposed fuzzy system, are divided as subsets as 

follows: 

1. Loading condition or mechanical input power of 

the machine (Light, Normal, Heavy). 

2. Kinetic Energy deviation of the generator at the 

instant of fault clearing (Low, High). 

3. Average acceleration of machine (Very Small, 

Small, Medium, Large, Very Large). 

The fuzzy subsets of the three normalized input 

variables relations against their degrees of membership 

are shown in Figs. (7), (8) and (9). 

 

 

Fig. 7: Fuzzy Subsets for the Loading Condition 

 

 

Fig. 8: Fuzzy Subsets for the Kinetic Energy 

 

 

Fig. 9: Fuzzy Subsets for the Average Acceleration 

 

After generating the training set, two different 

schemes are designed using the proposed fuzzy 

classification technique. The first scheme uses the three 

input variables as follows: (Pm: 3 subsets, K.E: 2 

subsets, αav: 3 subsets). The simulation results are used 

as the database to build the rule-base of the fuzzy 

classifier system. Tables 2 & 3 explain the rule base for 

the stability classification of the training set using the 

first fuzzy classifier scheme. 

 
Table 2: Rule Base of the First Scheme (K.E is low) 

Pm 

αav 
Light Normal Heavy 

Small Stable Stable  

Medium Stable Stable Stable 

Large ---- Unstable Unstable 

 

Table 3: Rule Base of the First Scheme (K.E is High) 

Pm 

αav 
Light Normal Heavy 

Small ---- ---- ---- 

Medium ---- Stable Stable 

Large ---- Unstable Unstable 

 

Table 4: Rule Base of the Second Scheme 

Pm 

αav 

Light Normal Heavy 

Very Small Stable Stable  

Small Stable Stable Stable 

Medium ---- Stable Stable 

Large ---- Unstable Unstable 

Very Large ----  Unstable 

 

Using the samples of the training set, the previous 

scheme presents an unacceptable classification 

performance. Six of the sixteen unstable samples are 

classified as stable with a high misclassification 

percentage (37.5%). Also, it is concluded from Tables 

(2) and (3) the insignificance effect of the kinetic 

energy as an effective feature. So, the second scheme is 

designed as follows: (Pm: 3 subsets, αav: 5 subsets). 
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Table (4) shows the rule base for the stability 

classification of the training set using the second fuzzy 

classifier scheme. 

The classification performance of the second fuzzy 

logic classifier was very good. The total number of 

misclassified samples is 2 out of 162 and all the 

unstable samples are correctly classified. In order to test 

the proposed fuzzy classifier system, a test set 

comprising of 384 samples was generated by the same 

way as the training set. Table (5) shows the 

performance of the two different fuzzy classifier 

schemes using both the training and test sets. 

 

Table 5: Results of Fuzzy Classification Based Schemes 

Fuzzy Scheme Used Misclassification of Training Patterns (out of 162) Misclassification of Testing Patterns (out of 384) 

Scheme (1) 

(Pm : 3 subsets, K.E.: 2 

Subsets,    αav : 3 subsets) 

6/16 unstable, 37.5 % 

0/14 stable, 0% 

6/162 total, 3.7 % 

4/40 unstable, 10 % 

8/344 stable, 203% 

12/384 total, 3.5 % 

Scheme 2 
(Pm: 3 subsets, 

αav: 3subsets) 

0/16 unstable, 0 % 
2/146 stable, 1.4% 

2/162 total, 1.2 % 

1/40 unstable, 2.5 % 
3/344 stable, 0.8% 

4/384 total, 1.04 % 

 

5.3 Discussion 

The first author has presented different AI techniques 

for solving the TSA problem [5, 7] beside the work in 

this paper. It is concluded that the correct classification 

percentage is almost the same for the different schemes 

(ranging from 97 - 99%). The common advantages of 

all the AI techniques used are: 

1- They do not need prior knowledge of the system 

and/or any mathematical model of the machines. 

2- The prediction of the transient stability in real time is 

based on simple computation. 

3- These schemes are inherently adaptive since they are 

trained using different fault locations and load levels. 

 

The difficulty in designing the classifier may limit 

the use of the pattern recognition technique. The DT 

and fuzzy logic schemes are characterized rather than 

the pattern recognition and neural networks 

methodologies by their simplicity since they used just 

only two features (Pm, αav). Consequently, it is just 

needed to measure the values of the active power of the 

machine before fault, at the instant of fault inception 

and at the instant of fault clearing to calculate the two 

features. 

 

VI. Conclusion 

Two AI techniques (IIR and fuzzy logic) for transient 

stability assessment are presented. The successful 

identification of stable and unstable classes is 

significantly dependent on the chosen attributes. For 

example, voltage magnitudes usually vary in a narrow 

band near rated values and are unlikely to be 

sufficiently discriminatory. Also, voltage angles are not 

normally available in actual systems. So, the chosen 

attributes should assess the properties of each class and 

should fulfill discrimination, reliability and 

independence. 

The significant reduction in misclassification error 

demonstrates that the implicit assumption of regarding 

the sufficiency of steady state variables for presentation 

of stable and unstable classes is unjustified. This means 

that selection of only steady state variables as input 

attributes would result in overlapping of stable and 

unstable classes and consequently some level of error. 

This error cannot be reduced with any refinement in the 

process of feature extraction. 

The introduction of transient variables as input 

attributes guarantees a low error which is acceptable 

from a practical point of view. Since transient variables 

are closely related to the phenomenon of stability, it is 

expected that the misclassification error would not 

change significantly with the size of the system. 

Unlike most of the existing methods, the two 

approaches do not impose any tradeoff between 

modeling sophistication and simplicity in use. In other 

words, modeling and on-line capabilities are almost 

independent issues. The computational burden linked to 

modeling refinements is to be faced during the off-line 

phase only, while building DTs. The on-line use of 

those DTs is scarcely to influence the computation 

times. 

The degree of accuracy of the fuzzy rule-based 

classifier scheme is high and computation is fast enough 

for the program to be used for on-line transient stability 

assessment. Compared with other AI approaches used 

for the same problem, this scheme reveals simplicity, 

speed and comparable correct classification 

performance. 

Future extension of the work is the application of the 

two proposed techniques to large-scale power systems. 
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