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Abstract— Software cost estimation is an important 

phase in software development. It predicts the amount 

of effort and development time required to build a 

software system. It is one of the most critical tasks and 

an accurate estimate provides a strong base to the 

development procedure. In this paper,  the most widely 

used software cost estimat ion model, the Constructive 

Cost Model (COCOMO) is discussed. The model is 

implemented with the help of artificial neural networks 

and trained using the perceptron learning algorithm. 

The COCOMO dataset is used to train and to test the 

network. The test results from the trained neural 

network are compared with that of the COCOMO 

model. The aim of our research is to enhance the 

estimation accuracy of the COCOMO model by 

introducing the artificial neural networks to it. 

 

Index Terms— Art ificial Neural Network, 

Constructive Cost Model, Perceptron Network, 

Software Cost Estimation 

 

 

I. Introduction 

Software cost estimat ion is one of the most 

significant activities in software project management. 

Accurate cost estimat ion is important because it can 

help to classify and priorit ize development projects to 

determine what resources to commit to the project and 

how well these resources will be used. The accuracy of 

the management decisions will depend on the accuracy 

of the software development parameters. These 

parameters include effort estimation, development time 

estimation, cost estimation, team size estimation, risk 

analysis, etc. These estimates are calculated in the early 

development phases of the project. So, we need a good 

model to calculate these parameters. An early and 

accurate estimation model reduces the possibilities of 

conflicts between members in the later stages of project 

development. 

In the last few decades many software cost 

estimation models have been developed. The 

algorithmic models also known as conventional models 

use a mathematical formula to predict project cost 

based on the estimates of pro ject size, the number of 

software engineers, and other process and product 

factors [1]. These models can be built by analysing the 

costs and attributes of completed projects and finding 

the closest fit formula to actual experience. COCOMO 

(Constructive Cost Model), is the best known 

algorithmic cost model published by Barry Boehm in 

1981 [2]. It was developed from the analysis of sixty 

three software projects. These conventional approaches 

lacks in terms of effectiveness and robustness in their 

results. These models require inputs which are difficu lt 

to obtain during the early stages of a software 

development project. They have difficu lty in modelling 

the inherent complex relationships between the 

contributing factors and are unable to handle 

categorical data as well as lack of reasoning capabilities 

[3]. The limitations of algorithmic models led to the 

exploration of the non-algorithmic models which are 

soft computing based. 

Non algorithmic models for cost estimat ion 

encompass methodologies on fuzzy logic (FL), 

artificial neural networks (ANN) and evolutionary 

computation (EC).These methodologies handle real life 

situations by providing flexib le informat ion processing 

capabilit ies.  This paper proposed a neural network 

technique using perceptron learning algorithm for 

software cost estimation which is based on COCOMO 

model. Neural networks have been found as one of the 

best techniques for software cost estimat ion. Now-a-

days many researchers and scientists are constantly 

working on developing new software cost estimation 

techniques using neural networks [4, 5, 6, 7]. 

The rest of the paper is organized as follows: section 

2 and 3 describes the COCOMO model and artificial 

neural network concepts  respectively.Section3 and 4 

discusses the related work and proposed neural model. 

Section 4 and 5 presents the proposed model and the 

training algorithm implemented. Section 6 discusses the 

experimental results  and evaluation criteria. Finally 

Section 7 concludes the paper. 

 

II. COCOMO Model 

The COCOMO model [2] is the most widely  used 

algorithmic cost estimation technique due to its 
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simplicity. This model provides  us with the effort in 

person months, the development time in months and the 

team size in persons. It makes use of mathematical 

equations to calculate these parameters. The COCOMO 

model is a hierarchy of software cost estimation models 

and they are: 

 

1. Basic Model- It estimates effort for the small to 

medium sized software p rojects in a quick and rough 

fashion and takes the form  

E = a (SIZE) 
b
                                                         (1) 

 

where E is effort  applied  in  Person-Months and SIZE is 

measured in thousand delivered source instructions. 

The coefficients a and b are dependent upon the three 

modes of development of projects. Boehm proposed 

three modes of projects: 

(a) Organic mode- It is for small sized projects upto 

2-50 KLOC (thousand lines of code) with 

experienced developers in a familiar environment. 

(b) Semi detached mode- It is for medium sized  

projects upto 50-300 KLOC with average 

previous experience on similar projects. 

(c) Embedded mode- It is for large and complex 

projects typically over 300 KLOC with developers 

having very little previous experience. 

 

 

2. Intermediate Model- The Basic COCOMO does not 

take account of the software development environment. 

Boehm introduced a set of 15 cost drivers in the 

Intermediate COCOMO that adds accuracy to the Basic 

COCOMO. The cost drivers are grouped into four 

categories: 

1. Product attributes 

(a) Required software reliability (RELY) 

(b) Database size (DATA) 

(c) Product complexity (CPLX) 

 

2. Computer attributes 

(a) Execution time constraint (TIME) 

(b) Main storage constraint (STOR) 

(c) Virtual machine volatility (VIRT) 

(d) Computer turnaround time (TURN) 

 

3. Personnel attributes 

(a) Analyst capability (ACAP) 

(b) Application experience (AEXP) 

(c) Programmer capability (PCAP) 

(d) Virtual machine experience (VEXP) 

(e) Programming language experience (LEXP) 

 

4. Project attributes 

(a) Modern programming practices (MODP) 

(b) Use of software tools (TOOLS) 

(c) Required development schedule (SCED) 
 

Table I  Coefficients for Intermediate COCOMO 

MO DE a b 

Organic 3.2 1.05 

Semi-Detached 3 1.12 

Embedded 2.8 1.20 

 

The Cost drivers have up to six levels of rat ing: Very  

Low, Low, Nominal, High, Very High, and Extra High. 

Each rat ing has a corresponding real number known as 

effort mult iplier, based upon the factor and the degree 

to which the factor can in fluence productivity. The 

estimated effo rt in  person-months (PM) for the 

intermediate COCOMO is given as: 

Effort = a×[SIZE]
b
 × i=1Π

15 
EM i                           (2) 

 

In equation (2) the coefficient “a” is known as 

productivity coefficient and the coefficient “b” is the 

scale factor. They are based on the different modes of 

project as given in Table I. The contribution of effort 

multip liers corresponding to the respective cost drivers 

is introduced in the effort estimat ion formula by 

multip lying them together. The numerical value of the 

ith cost driver is EMi (Effort Multiplier).  

 

3. Detailed Model- Boehm introduced two more 

capabilit ies in this model and they are, Phase sensitive 

effort mult ipliers which help in determining the 

manpower allocation fo r each phase of the project and 

three level product hierarchy. These are module, 

subsystem and system levels. The ratings of the cost 

drivers are done at appropriate level. 

This research used intermediate COCOMO model 

because it has estimat ion accuracy that is greater than 

the basic version, and at the same time comparable to 

the detailed version. 

 

III. Artificial Neural Networks 

Artificial neural networks (ANN) [8] are the 

interconnection of the artificial neurons. They are used 

to solve the artificial intelligence problems without the 

need for creating a real b iological model. These 

networks focus on hypothetical matters from an 

informat ion processing point of view. ANN’s possess 

large number of h ighly interconnected processing 

elements called neurons. Each neuron is connected with 

the other by a connection link. Each connection link is 

associated with weights which contain information 

about the input signal. This informat ion is used by the 

neuron net to solve a particular problem. Each neuron 

has an internal state of its own. This internal state is 

called the activation level of neuron, which is the 

function of the inputs the neuron receives . There are a 

number of activation functions that can be applied over 

net input such as Gaussian, Linear, Sigmoid and Tanh. 

Figure 1 shows the structure of a basic neural network.  
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Fig.1 Basic Neural Network 

 

A basic neural network consists of a number  of 

inputs applied by some weights, combined together to 

give an output. The feedback from the output is again 

put into the inputs to adjust the applied weights and to 

train the network. This structure of the neural networks 

help to solve the practical, non linear, decision making 

problems easily. 

The neural network used in our approach is 

perceptron neural network [9]. The perceptron is a 

network that learns concepts, i.e. it can learn to respond 

with True (1) or False (0) for inputs presented to it, by 

repeatedly studying examples provided to it. This 

network weights and biases could be trained to p roduce 

a correct target vector when presented with the 

corresponding input vector. The training technique used 

is called the perceptron learning rule. Perceptron Neural 

Network is selected due to its ability to generalize from 

its training vectors and work with randomly distributed 

connections.  

Vectors from a train ing set are presented to the 

network one after another. If the network's output is 

correct, no change is made. Otherwise, the weights and 

biases are updated using the perceptron learning rule. 

An entire pass through all of the input training vectors 

is called an epoch. When such an entire pass of the 

training set has occurred without error, train ing is 

complete. At this t ime any input training vector may  be 

presented to the network and it will respond with the 

correct output vector. If a vector P not in the training 

set is presented to the network, the network will tend to 

exhibit generalizat ion by responding with an output 

similar to target vectors for input vectors close to the 

previously unseen input vector P. 

The activation function is one of the key  components 

of the perceptron as in the most common neural 

network architectures. It determines, based on the 

inputs, whether the perceptron activates or not. 

Basically, the perceptron takes all of the weighted input 

values and adds them together. If the sum is above or 

equal to some value (called the threshold) then the 

perceptron fires. Otherwise, the Perceptron does not. 

The output of the perceptron network is given by  

y = f(yin)                                                                 (3) 

where f(yin) is activation function and is defined as 

f(yin) =                              (4) 

 

IV. Relevant Work 

Artificial neural networks are good at modeling 

complex non linear relat ionships. Since last many years, 

there have been many researchers who have worked 

upon the cost estimation of the projects using the 

artificial neural networks. Many researchers have 

applied the neural networks approach to estimate 

software development effort [10, 11, 12, 13, 14, 15 and 

16]. A recent study by Jorgensen [17] provides a 

detailed review of different studies on the software 

development effo rt. Prasad Reddy P.V.G.D, Sudha K.R, 

Rama Sree P and Ramesh S.N.S.V.S.[18] explain the 

radial study of the Neural Network. Another study by 

Samson et al. [12] uses an albus multilayer perceptron 

in order to predict software effo rt. They use Boehm’s 

COCOMO dataset. Srinivasan and Fisher [15] report 

the use of a neural network with a back propagation 

learning algorithm. They found that the neural network 

outperformed other techniques. K. Vinay Kumar, V. 

Ravi, Mahil Carr, and N. Raj Kiran [19] use the 

wavelet neural network for pred icting software 

development cost. N. Tadayon [20] also reports the use 

of neural network with a back propagation learning 

algorithm. However it was not clear how the dataset 

was divided for training and validation purposes. B. 

Tirimula Rao  et al. [21] provided a novel neural 

network approach for software cost estimat ion using  

functional  link  artificial neural network. COCOMO is 

arguably the most popular and widely used software 

estimation model, which integrates valuable expert 

knowledge [2].  

 
Fig. 2 Architecture of the proposed Neural Network 

 

V. Proposed Neural Network 

Figure 2 shows the basic structure of the proposed 
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network. The performance of a neural network depends 

on its architecture and their parameter settings. There 

are many parameters governing the architecture of the 

neural network including the number of layers, the 

number of nodes in each layer, the transfer function in 

each node, learning algorithm parameters and the 

weights which determine the connectivity between 

nodes. Inappropriate selection of network patterns and 

learning rules may  cause serious difficult ies in  network 

performance and training. The prob lem is to decide the 

number of layers and number of nodes in the layers and 

the learning algorithm as well. However, the criterion 

is to select the minimum nodes which would not impair 

the network performance. The number of layers and 

nodes should be min imized to amplify the performance.  

In our network, there are 17 inputs to the network 

which are size of the pro ject in KLOC, 15 effort 

multip liers, actual effort o f the project and one bias 

value. These inputs enter the network as weighted 

inputs. The effort  is calculated using equation (5).The 

weights are init ialized as Wi = 1 for i = 1 to 17, 

learning rate, α = 0.001 and bias b = 1. The inputs, as 

received, are multiplied to the weights and provided to 

the network. As the Propagation network uses 

summation of the inputs but the COCOMO model uses 

its multiplication, a  log function is used to neutralize 

them. So, the equation (2) is modified as: 

log (Effort) = log (a×[SIZE]
b
 × i=1Π

15 
EM i)            (5) 

 

The output obtained by the above equation, is 

compared using the activation function and the output 

signal is sent forward. According to the output of the 

activation function, the weights applied on the inputs 

are modified. When the output  of activation function is 

1, the difference between actual effort and effort 

calculated is found to check if it is in permissible limit 

or not. If it is in the permissible limit, the output is 

accepted else the weights are adjusted. This completes 

with one epoch of the project.  

The algorithm for train ing the above network and for 

calculating new set of weights is depicted in the 

following steps: 

Step 1: Initialize the weights, bias and learning rate α. 

Step 2: Perform steps 3-8 until stopping condition is 

false. 

Step 3: Perform steps 4-7 for each training pair. 

Step 4: The input layer receives input signal and sends 

it to the hidden layer by applying identity 

activation functions on all the input units  from 

i=1 to 17. 

Step 5: Each hidden unit j= 1 to 5 sums its weighted 

input signals to calculate net input given by: 

 

The activation functions as given by equation (4) are 

applied over the above net input to calculate the output 

response: = ) 

Step 6: Calculate the output i.e. effort at  the output 

layer using the same procedure as in step 5 and 

considering all the weights for j=1 to 5 as 1. 

Step 7: Compare the actual effort with the computed 

effort, if the d ifference is within the 

permissible limit  the output is accepted else 

the weights are updated as follow: 

wi(new) = wi(old) + α × input(i) 

Step 8: Check for the stopping condition i.e. if there is 

no change in weights then stop the training process, 

else start again from Step 3. 

 

VI. Evaluation Criteria and Results  

The experiments are done with the proposed neural 

network model by taking some of the original pro jects 

from COCOMO dataset. COCOMO dataset is publicly 

available which consists of 63 projects [22]. We have 

divided the entire dataset into two sets, training set and 

validation set to get more accuracy of prediction. The 

model is implemented in Matlab. 

The evaluation consists in comparing the accuracy of 

the estimated effort with the actual effort. There are 

many evaluation criteria for software effort estimation 

among them we applied the most frequent one which  is 

Magnitude of Relat ive Error (MRE) which  is defined as 

in equation (6). 

 

MRE=             (6) 

Table 1 shows some of the experimental values 

which were tested. These values are then compared 

with the actual effort of the model. The comparison 

tells us about the efficiency of our network. Each  row 

of the table corresponds to a project data which 

specifies the size of the project, the actual effort of the 

project, the effort multip lier values and finally the 

effort calculated by our project. The input values are 

entered in the project through a GUI (Graphical User 

Interface). The model is implemented in Matlab. 

Table 2 shows the actual effort, the estimated effort  

and the MRE value for the experimented projects. 

Figure 3 is the graphical representation of the actual 

and the calculated effort of 15 projects of COCOMO 

dataset [22]. Through this graph, it can be observed that 

the difference between the actual and the calculated 

effort  is quite less which shows that the proposed 

algorithm is an accurate and precise algorithm. 
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Table 1 Experimental Studies 

Project 

No. 

Size  

(KLOC) 

Actual 
Effort 

(person 
months) 

Effort Multipliers 
Calculated Effort 

(person months) Low Ems Nominal Ems High Ems Very High EMs 

P1 29.5 120 
DATA, VIRT, 
TURN, SCED 

TIME, STOR, ACAP, 
AEXP, PCAP, 
VEXP, TOOL 

RELY, CPLX, 
LEXP, MODP 

 104.17 

P2 14 60 
DATA, VIRT, 

TURN, SCED 

TIME, STOR, ACAP, 

AEXP, PCAP, VEXP, 
TOOL 

RELY, CPLX, 

LEXP, MODP 
 53.64 

P3 5.5 18 
DATA, VIRT, 
TURN, SCED 

TIME, STOR, ACAP, 
AEXP, PCAP, VEXP, 
TOOL 

RELY, CPLX, 
LEXP, MODP 

 18.69 

P4 48.5 239 
VIRT, VEXP, 

SCED 
RELY, PCAP 

CPLX, TURN, 

AEXP, LEXP 

DATA, TIME, 

STOR, ACAP, 
MODP, TOOL 

240.00 

P5 32.6 170 
VIRT, VEXP, 
SCED 

RELY, VEXP 
CPLX, TURN, 
AEXP, LEXP 

DATA, TIME, 
STOR, ACAP, 
MODP, TOOL 

154.87 

P6 115.8 480 
DATA, VIRT, 

TURN, SCED 

TIME, STOR, ACAP, 
AEXP, PCAP, VEXP, 

TOOL 

RELY, CPLX, 

LEXP, MODP 
 439.17 

P7 66.6 300 
DATA, VIRT, 
TURN, SCED 

TIME, STOR, ACAP, 
AEXP, PCAP, VEXP, 
TOOL 

RELY, CPLX, 
LEXP, MODP 

 245.39 

P8 5.5 18 
DATA, VIRT, 

TURN, SCED 

TIME, STOR, ACAP, 
AEXP, PCAP, VEXP, 

TOOL 

RELY, CPLX, 

LEXP, MODP 
 17.79 

P9 10.4 50 
DATA, VIRT, 
TURN, SCED 

TIME, STOR, ACAP, 
AEXP, PCAP, VEXP, 
TOOL 

RELY, CPLX, 
LEXP, MODP 

 38.42 

P10 38 210  

DATA, TIME, STOR, 
VIRT, TURN, ACAP, 

VEXP, LEXP, MODP, 
TOOL, SCED 

RELY, CPLX, 

AEXP, PCAP 
 194.64 

P11 12.8 62 
VIRT, VEXP, 
SCED 

RELY, PCAP 
CPLX, TURN, 
AEXP, LEXP 

DATA, TIME, 
STOR, ACAP, 
MODP, TOOL 

54.22 

P12 15.4 70 
VIRT, VEXP, 

SCED 
RELY, PCAP 

CPLX, TURN, 

AEXP, LEXP 

DATA, TIME, 
STOR, ACAP, 

MODP, TOOL 

66.74 

P13 16.3 82 
VIRT, VEXP, 
SCED 

RELY, PCAP 
CPLX, TURN, 
AEXP, LEXP 

DATA, TIME, 
STOR, ACAP, 
MODP, TOOL 

71.13 

P14 7.7 31.2 
DATA, VIRT, 

TURN, SCED 

TIME, STOR, ACAP, 
AEXP, PCAP, VEXP, 

TOOL 

RELY, CPLX, 

LEXP, MODP 

DATA, TIME, 
STOR, ACAP, 

MODP, TOOL 

30.14 

P15 9.7 25.2 
DATA, VIRT, 
TURN, SCED 

TIME, STOR, ACAP, 
AEXP, PCAP, VEXP, 
TOOL 

RELY, CPLX, 
LEXP, MODP 

 20.55 

 
Table 2 Comparisons of Results 

Project No. Actual Effort (person months) Calculated Effort (person months) MRE 

P1 120 104.17 13.19 

P2 60 53.64 10.6 

P3 18 18.69 3.83 

P4 239 240.00 0.41 

P5 170 154.87 8.9 

P6 480 439.17 8.5 

P7 300 245.39 18.20 

P8 18 17.79 1.16 

P9 50 38.42 23.16 

P10 210 194.64 7.31 

P11 62 54.22 12.54 

P12 70 66.74 4.65 

P13 82 71.13 13.25 

P14 31.2 30.14 3.39 

P15 25.2 20.55 18.45 
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Fig. 3: Actual and Calculated Effort  

 

VII. Conclusion 

A reliab le and accurate estimate of software 

development effort has always been a challenge for 

both the industrial and academic communit ies. There 

are several software effort  forecasting models that can 

be used in forecasting future software development 

effort. We have constructed a cost estimation model 

based on artificial neural networks. Our idea consists in 

the use of a model that maps COCOMO model to a 

neural network with minimal number of layers and 

nodes to increase the performance of the network. The 

neural network that we have used to predict the 

software development effort is the Perceptron network. 

We have used the COCOM0’81 dataset to train and to 

test the network.  It  is observed that the obtained 

accuracy of the network is acceptable. 

Thus, it is concluded that the use of the artificial 

neural network algorithm to model the COCOMO 

estimation algorithm is an efficient way to find the 

values of the project estimates. It provides us with 

nearly accurate values. 
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