
I.J. Intelligent Systems and Applications, 2012, 9, 22-28

Published Online August 2012 in MECS (http://www.mecs -press.org/)

DOI: 10.5815/ijisa.2012.09.03

Copyright © 2012 MECS I.J. Intelligent Systems and Applications, 2012, 9, 22-28

COCOMO Estimates Using Neural Networks

Anupama Kaushik,

Assistant Professor, Dept. of IT, Maharaja Surajmal Institute of Technology, GGSIP University, Delhi, India

anupama@msit.in

Ashish Chauhan, Deepak Mittal, Sachin Gupta

Dept. of IT, Maharaja Surajmal Institute of Technology, GGSIP University, Delhi, India

Ashish.chauhan004@gmail.com; deepakm905@gmail.com; sachin.gupta_15@yahoo.com

Abstract— Software cost estimation is an important

phase in software development. It predicts the amount

of effort and development time required to build a

software system. It is one of the most critical tasks and

an accurate estimate provides a strong base to the

development procedure. In this paper, the most widely

used software cost estimat ion model, the Constructive

Cost Model (COCOMO) is discussed. The model is

implemented with the help of artificial neural networks

and trained using the perceptron learning algorithm.

The COCOMO dataset is used to train and to test the

network. The test results from the trained neural

network are compared with that of the COCOMO

model. The aim of our research is to enhance the

estimation accuracy of the COCOMO model by

introducing the artificial neural networks to it.

Index Terms— Art ificial Neural Network,

Constructive Cost Model, Perceptron Network,

Software Cost Estimation

I. Introduction

Software cost estimat ion is one of the most

significant activities in software project management.

Accurate cost estimat ion is important because it can

help to classify and priorit ize development projects to

determine what resources to commit to the project and

how well these resources will be used. The accuracy of

the management decisions will depend on the accuracy

of the software development parameters. These

parameters include effort estimation, development time

estimation, cost estimation, team size estimation, risk

analysis, etc. These estimates are calculated in the early

development phases of the project. So, we need a good

model to calculate these parameters. An early and

accurate estimation model reduces the possibilities of

conflicts between members in the later stages of project

development.

In the last few decades many software cost

estimation models have been developed. The

algorithmic models also known as conventional models

use a mathematical formula to predict project cost

based on the estimates of pro ject size, the number of

software engineers, and other process and product

factors [1]. These models can be built by analysing the

costs and attributes of completed projects and finding

the closest fit formula to actual experience. COCOMO

(Constructive Cost Model), is the best known

algorithmic cost model published by Barry Boehm in

1981 [2]. It was developed from the analysis of sixty

three software projects. These conventional approaches

lacks in terms of effectiveness and robustness in their

results. These models require inputs which are difficu lt

to obtain during the early stages of a software

development project. They have difficu lty in modelling

the inherent complex relationships between the

contributing factors and are unable to handle

categorical data as well as lack of reasoning capabilities

[3]. The limitations of algorithmic models led to the

exploration of the non-algorithmic models which are

soft computing based.

Non algorithmic models for cost estimat ion

encompass methodologies on fuzzy logic (FL),

artificial neural networks (ANN) and evolutionary

computation (EC).These methodologies handle real life

situations by providing flexib le informat ion processing

capabilit ies. This paper proposed a neural network

technique using perceptron learning algorithm for

software cost estimation which is based on COCOMO

model. Neural networks have been found as one of the

best techniques for software cost estimat ion. Now-a-

days many researchers and scientists are constantly

working on developing new software cost estimation

techniques using neural networks [4, 5, 6, 7].

The rest of the paper is organized as follows: section

2 and 3 describes the COCOMO model and artificial

neural network concepts respectively.Section3 and 4

discusses the related work and proposed neural model.

Section 4 and 5 presents the proposed model and the

training algorithm implemented. Section 6 discusses the

experimental results and evaluation criteria. Finally

Section 7 concludes the paper.

II. COCOMO Model

The COCOMO model [2] is the most widely used

algorithmic cost estimation technique due to its

mailto:Ashish.chauhan004@gmail.com
mailto:deepakm905@gmail.com
mailto:sachin.gupta_15@yahoo.com

 COCOMO Estimates Using Neural Networks 23

Copyright © 2012 MECS I.J. Intelligent Systems and Applications, 2012, 9, 22-28

simplicity. This model provides us with the effort in

person months, the development time in months and the

team size in persons. It makes use of mathematical

equations to calculate these parameters. The COCOMO

model is a hierarchy of software cost estimation models

and they are:

1. Basic Model- It estimates effort for the small to

medium sized software p rojects in a quick and rough

fashion and takes the form

E = a (SIZE)
b
 (1)

where E is effort applied in Person-Months and SIZE is

measured in thousand delivered source instructions.

The coefficients a and b are dependent upon the three

modes of development of projects. Boehm proposed

three modes of projects:

(a) Organic mode- It is for small sized projects upto

2-50 KLOC (thousand lines of code) with

experienced developers in a familiar environment.

(b) Semi detached mode- It is for medium sized

projects upto 50-300 KLOC with average

previous experience on similar projects.

(c) Embedded mode- It is for large and complex

projects typically over 300 KLOC with developers

having very little previous experience.

2. Intermediate Model- The Basic COCOMO does not

take account of the software development environment.

Boehm introduced a set of 15 cost drivers in the

Intermediate COCOMO that adds accuracy to the Basic

COCOMO. The cost drivers are grouped into four

categories:

1. Product attributes

(a) Required software reliability (RELY)

(b) Database size (DATA)

(c) Product complexity (CPLX)

2. Computer attributes

(a) Execution time constraint (TIME)

(b) Main storage constraint (STOR)

(c) Virtual machine volatility (VIRT)

(d) Computer turnaround time (TURN)

3. Personnel attributes

(a) Analyst capability (ACAP)

(b) Application experience (AEXP)

(c) Programmer capability (PCAP)

(d) Virtual machine experience (VEXP)

(e) Programming language experience (LEXP)

4. Project attributes

(a) Modern programming practices (MODP)

(b) Use of software tools (TOOLS)

(c) Required development schedule (SCED)

Table I Coefficients for Intermediate COCOMO

MO DE a b

Organic 3.2 1.05

Semi-Detached 3 1.12

Embedded 2.8 1.20

The Cost drivers have up to six levels of rat ing: Very

Low, Low, Nominal, High, Very High, and Extra High.

Each rat ing has a corresponding real number known as

effort mult iplier, based upon the factor and the degree

to which the factor can in fluence productivity. The

estimated effo rt in person-months (PM) for the

intermediate COCOMO is given as:

Effort = a×[SIZE]
b
 × i=1Π

15
EM i (2)

In equation (2) the coefficient “a” is known as

productivity coefficient and the coefficient “b” is the

scale factor. They are based on the different modes of

project as given in Table I. The contribution of effort

multip liers corresponding to the respective cost drivers

is introduced in the effort estimat ion formula by

multip lying them together. The numerical value of the

ith cost driver is EMi (Effort Multiplier).

3. Detailed Model- Boehm introduced two more

capabilit ies in this model and they are, Phase sensitive

effort mult ipliers which help in determining the

manpower allocation fo r each phase of the project and

three level product hierarchy. These are module,

subsystem and system levels. The ratings of the cost

drivers are done at appropriate level.

This research used intermediate COCOMO model

because it has estimat ion accuracy that is greater than

the basic version, and at the same time comparable to

the detailed version.

III. Artificial Neural Networks

Artificial neural networks (ANN) [8] are the

interconnection of the artificial neurons. They are used

to solve the artificial intelligence problems without the

need for creating a real b iological model. These

networks focus on hypothetical matters from an

informat ion processing point of view. ANN’s possess

large number of h ighly interconnected processing

elements called neurons. Each neuron is connected with

the other by a connection link. Each connection link is

associated with weights which contain information

about the input signal. This informat ion is used by the

neuron net to solve a particular problem. Each neuron

has an internal state of its own. This internal state is

called the activation level of neuron, which is the

function of the inputs the neuron receives . There are a

number of activation functions that can be applied over

net input such as Gaussian, Linear, Sigmoid and Tanh.

Figure 1 shows the structure of a basic neural network.

24 COCOMO Estimates Using Neural Networks

Copyright © 2012 MECS I.J. Intelligent Systems and Applications, 2012, 9, 22-28

Fig.1 Basic Neural Network

A basic neural network consists of a number of

inputs applied by some weights, combined together to

give an output. The feedback from the output is again

put into the inputs to adjust the applied weights and to

train the network. This structure of the neural networks

help to solve the practical, non linear, decision making

problems easily.

The neural network used in our approach is

perceptron neural network [9]. The perceptron is a

network that learns concepts, i.e. it can learn to respond

with True (1) or False (0) for inputs presented to it, by

repeatedly studying examples provided to it. This

network weights and biases could be trained to p roduce

a correct target vector when presented with the

corresponding input vector. The training technique used

is called the perceptron learning rule. Perceptron Neural

Network is selected due to its ability to generalize from

its training vectors and work with randomly distributed

connections.

Vectors from a train ing set are presented to the

network one after another. If the network's output is

correct, no change is made. Otherwise, the weights and

biases are updated using the perceptron learning rule.

An entire pass through all of the input training vectors

is called an epoch. When such an entire pass of the

training set has occurred without error, train ing is

complete. At this t ime any input training vector may be

presented to the network and it will respond with the

correct output vector. If a vector P not in the training

set is presented to the network, the network will tend to

exhibit generalizat ion by responding with an output

similar to target vectors for input vectors close to the

previously unseen input vector P.

The activation function is one of the key components

of the perceptron as in the most common neural

network architectures. It determines, based on the

inputs, whether the perceptron activates or not.

Basically, the perceptron takes all of the weighted input

values and adds them together. If the sum is above or

equal to some value (called the threshold) then the

perceptron fires. Otherwise, the Perceptron does not.

The output of the perceptron network is given by

y = f(yin) (3)

where f(yin) is activation function and is defined as

f(yin) = (4)

IV. Relevant Work

Artificial neural networks are good at modeling

complex non linear relat ionships. Since last many years,

there have been many researchers who have worked

upon the cost estimation of the projects using the

artificial neural networks. Many researchers have

applied the neural networks approach to estimate

software development effort [10, 11, 12, 13, 14, 15 and

16]. A recent study by Jorgensen [17] provides a

detailed review of different studies on the software

development effo rt. Prasad Reddy P.V.G.D, Sudha K.R,

Rama Sree P and Ramesh S.N.S.V.S.[18] explain the

radial study of the Neural Network. Another study by

Samson et al. [12] uses an albus multilayer perceptron

in order to predict software effo rt. They use Boehm’s

COCOMO dataset. Srinivasan and Fisher [15] report

the use of a neural network with a back propagation

learning algorithm. They found that the neural network

outperformed other techniques. K. Vinay Kumar, V.

Ravi, Mahil Carr, and N. Raj Kiran [19] use the

wavelet neural network for pred icting software

development cost. N. Tadayon [20] also reports the use

of neural network with a back propagation learning

algorithm. However it was not clear how the dataset

was divided for training and validation purposes. B.

Tirimula Rao et al. [21] provided a novel neural

network approach for software cost estimat ion using

functional link artificial neural network. COCOMO is

arguably the most popular and widely used software

estimation model, which integrates valuable expert

knowledge [2].

Fig. 2 Architecture of the proposed Neural Network

V. Proposed Neural Network

Figure 2 shows the basic structure of the proposed

 COCOMO Estimates Using Neural Networks 25

Copyright © 2012 MECS I.J. Intelligent Systems and Applications, 2012, 9, 22-28

network. The performance of a neural network depends

on its architecture and their parameter settings. There

are many parameters governing the architecture of the

neural network including the number of layers, the

number of nodes in each layer, the transfer function in

each node, learning algorithm parameters and the

weights which determine the connectivity between

nodes. Inappropriate selection of network patterns and

learning rules may cause serious difficult ies in network

performance and training. The prob lem is to decide the

number of layers and number of nodes in the layers and

the learning algorithm as well. However, the criterion

is to select the minimum nodes which would not impair

the network performance. The number of layers and

nodes should be min imized to amplify the performance.

In our network, there are 17 inputs to the network

which are size of the pro ject in KLOC, 15 effort

multip liers, actual effort o f the project and one bias

value. These inputs enter the network as weighted

inputs. The effort is calculated using equation (5).The

weights are init ialized as Wi = 1 for i = 1 to 17,

learning rate, α = 0.001 and bias b = 1. The inputs, as

received, are multiplied to the weights and provided to

the network. As the Propagation network uses

summation of the inputs but the COCOMO model uses

its multiplication, a log function is used to neutralize

them. So, the equation (2) is modified as:

log (Effort) = log (a×[SIZE]
b
 × i=1Π

15
EM i) (5)

The output obtained by the above equation, is

compared using the activation function and the output

signal is sent forward. According to the output of the

activation function, the weights applied on the inputs

are modified. When the output of activation function is

1, the difference between actual effort and effort

calculated is found to check if it is in permissible limit

or not. If it is in the permissible limit, the output is

accepted else the weights are adjusted. This completes

with one epoch of the project.

The algorithm for train ing the above network and for

calculating new set of weights is depicted in the

following steps:

Step 1: Initialize the weights, bias and learning rate α.

Step 2: Perform steps 3-8 until stopping condition is

false.

Step 3: Perform steps 4-7 for each training pair.

Step 4: The input layer receives input signal and sends

it to the hidden layer by applying identity

activation functions on all the input units from

i=1 to 17.

Step 5: Each hidden unit j= 1 to 5 sums its weighted

input signals to calculate net input given by:

The activation functions as given by equation (4) are

applied over the above net input to calculate the output

response: =)

Step 6: Calculate the output i.e. effort at the output

layer using the same procedure as in step 5 and

considering all the weights for j=1 to 5 as 1.

Step 7: Compare the actual effort with the computed

effort, if the d ifference is within the

permissible limit the output is accepted else

the weights are updated as follow:

wi(new) = wi(old) + α × input(i)

Step 8: Check for the stopping condition i.e. if there is

no change in weights then stop the training process,

else start again from Step 3.

VI. Evaluation Criteria and Results

The experiments are done with the proposed neural

network model by taking some of the original pro jects

from COCOMO dataset. COCOMO dataset is publicly

available which consists of 63 projects [22]. We have

divided the entire dataset into two sets, training set and

validation set to get more accuracy of prediction. The

model is implemented in Matlab.

The evaluation consists in comparing the accuracy of

the estimated effort with the actual effort. There are

many evaluation criteria for software effort estimation

among them we applied the most frequent one which is

Magnitude of Relat ive Error (MRE) which is defined as

in equation (6).

MRE= (6)

Table 1 shows some of the experimental values

which were tested. These values are then compared

with the actual effort of the model. The comparison

tells us about the efficiency of our network. Each row

of the table corresponds to a project data which

specifies the size of the project, the actual effort of the

project, the effort multip lier values and finally the

effort calculated by our project. The input values are

entered in the project through a GUI (Graphical User

Interface). The model is implemented in Matlab.

Table 2 shows the actual effort, the estimated effort

and the MRE value for the experimented projects.

Figure 3 is the graphical representation of the actual

and the calculated effort of 15 projects of COCOMO

dataset [22]. Through this graph, it can be observed that

the difference between the actual and the calculated

effort is quite less which shows that the proposed

algorithm is an accurate and precise algorithm.

26 COCOMO Estimates Using Neural Networks

Copyright © 2012 MECS I.J. Intelligent Systems and Applications, 2012, 9, 22-28

Table 1 Experimental Studies

Project

No.

Size

(KLOC)

Actual
Effort

(person
months)

Effort Multipliers
Calculated Effort

(person months) Low Ems Nominal Ems High Ems Very High EMs

P1 29.5 120
DATA, VIRT,
TURN, SCED

TIME, STOR, ACAP,
AEXP, PCAP,
VEXP, TOOL

RELY, CPLX,
LEXP, MODP

 104.17

P2 14 60
DATA, VIRT,

TURN, SCED

TIME, STOR, ACAP,

AEXP, PCAP, VEXP,
TOOL

RELY, CPLX,

LEXP, MODP
 53.64

P3 5.5 18
DATA, VIRT,
TURN, SCED

TIME, STOR, ACAP,
AEXP, PCAP, VEXP,
TOOL

RELY, CPLX,
LEXP, MODP

 18.69

P4 48.5 239
VIRT, VEXP,

SCED
RELY, PCAP

CPLX, TURN,

AEXP, LEXP

DATA, TIME,

STOR, ACAP,
MODP, TOOL

240.00

P5 32.6 170
VIRT, VEXP,
SCED

RELY, VEXP
CPLX, TURN,
AEXP, LEXP

DATA, TIME,
STOR, ACAP,
MODP, TOOL

154.87

P6 115.8 480
DATA, VIRT,

TURN, SCED

TIME, STOR, ACAP,
AEXP, PCAP, VEXP,

TOOL

RELY, CPLX,

LEXP, MODP
 439.17

P7 66.6 300
DATA, VIRT,
TURN, SCED

TIME, STOR, ACAP,
AEXP, PCAP, VEXP,
TOOL

RELY, CPLX,
LEXP, MODP

 245.39

P8 5.5 18
DATA, VIRT,

TURN, SCED

TIME, STOR, ACAP,
AEXP, PCAP, VEXP,

TOOL

RELY, CPLX,

LEXP, MODP
 17.79

P9 10.4 50
DATA, VIRT,
TURN, SCED

TIME, STOR, ACAP,
AEXP, PCAP, VEXP,
TOOL

RELY, CPLX,
LEXP, MODP

 38.42

P10 38 210

DATA, TIME, STOR,
VIRT, TURN, ACAP,

VEXP, LEXP, MODP,
TOOL, SCED

RELY, CPLX,

AEXP, PCAP
 194.64

P11 12.8 62
VIRT, VEXP,
SCED

RELY, PCAP
CPLX, TURN,
AEXP, LEXP

DATA, TIME,
STOR, ACAP,
MODP, TOOL

54.22

P12 15.4 70
VIRT, VEXP,

SCED
RELY, PCAP

CPLX, TURN,

AEXP, LEXP

DATA, TIME,
STOR, ACAP,

MODP, TOOL

66.74

P13 16.3 82
VIRT, VEXP,
SCED

RELY, PCAP
CPLX, TURN,
AEXP, LEXP

DATA, TIME,
STOR, ACAP,
MODP, TOOL

71.13

P14 7.7 31.2
DATA, VIRT,

TURN, SCED

TIME, STOR, ACAP,
AEXP, PCAP, VEXP,

TOOL

RELY, CPLX,

LEXP, MODP

DATA, TIME,
STOR, ACAP,

MODP, TOOL

30.14

P15 9.7 25.2
DATA, VIRT,
TURN, SCED

TIME, STOR, ACAP,
AEXP, PCAP, VEXP,
TOOL

RELY, CPLX,
LEXP, MODP

 20.55

Table 2 Comparisons of Results

Project No. Actual Effort (person months) Calculated Effort (person months) MRE

P1 120 104.17 13.19

P2 60 53.64 10.6

P3 18 18.69 3.83

P4 239 240.00 0.41

P5 170 154.87 8.9

P6 480 439.17 8.5

P7 300 245.39 18.20

P8 18 17.79 1.16

P9 50 38.42 23.16

P10 210 194.64 7.31

P11 62 54.22 12.54

P12 70 66.74 4.65

P13 82 71.13 13.25

P14 31.2 30.14 3.39

P15 25.2 20.55 18.45

 COCOMO Estimates Using Neural Networks 27

Copyright © 2012 MECS I.J. Intelligent Systems and Applications, 2012, 9, 22-28

Fig. 3: Actual and Calculated Effort

VII. Conclusion

A reliab le and accurate estimate of software

development effort has always been a challenge for

both the industrial and academic communit ies. There

are several software effort forecasting models that can

be used in forecasting future software development

effort. We have constructed a cost estimation model

based on artificial neural networks. Our idea consists in

the use of a model that maps COCOMO model to a

neural network with minimal number of layers and

nodes to increase the performance of the network. The

neural network that we have used to predict the

software development effort is the Perceptron network.

We have used the COCOM0’81 dataset to train and to

test the network. It is observed that the obtained

accuracy of the network is acceptable.

Thus, it is concluded that the use of the artificial

neural network algorithm to model the COCOMO

estimation algorithm is an efficient way to find the

values of the project estimates. It provides us with

nearly accurate values.

Acknowledgement

The authors would like to thank the anonymous

reviewers for their carefu l reading of this paper and for

their helpful comments.

References

[1] Ch. Satyananda Reddy, KVSN Raju,“An

Improved Fuzzy Approach for COCOMO’s

EffortEstimation using Gaussian Membership

Function,” Journal of Software”, Volume 4, No. 5,

July 2009.

[2] Boehm, B.W., “Software Engineering

Economics,” Prentice-Hall, Englewood Cliffs, NJ,

USA, 1994.

[3] M.O. Saliu, M.Ahmed, “Soft Computing based

Effort Prediction Systems –A Survey, in :

E.Damiani, L.C. Jain (Eds),” Computational

Intelligence in Software Engineering, Springer-

Verlag, July 2004, ISBN 3-540-22030-5.

[4] Dawson, C.W., “A neural network approach to

software projects effort estimation,” Transaction

Information and Communication Technologies,

Vol.16, pages 9, 1996.

[5] Idri, A. Khoshgoftaar, T.M. Abran, A., “Can

neural networks be easily interpreted in software

cost estimat ion?,” Proceedings of the IEEE

Internation Conference on Fuzzy Systems, FUZZ -

IEEE’02, Vol.:2, 1162-1167, 2002.

[6] Finnie, G.R. and Wittig, G.E., “AI tools for

software development effo rt estimation,” In

proceedings of the IEEE International Conference

on Software Engineering: Education and Practice,

Washington DC, pp 346-353, 1996.

[7] B. Tirimula Rao, B. Sameet, G. Kiran Swathi, K.

Vikram Gupta, Ch. Ravi Teja, S. Sumana, “A

novel neural network approach for software cost

estimation using Functional Link Art ificial Neural

Network(FLANN)”, International Journal of

Computer Science and Network Society, Vol.9

No.6, June 2009.

[8] Stephen Marsland , Jonathan Shapiro, and Ulrich

Nehmzow. “A self-organising network that grows

when required”, Journal Neural Networks, Vol. 15

Issue (8-9):1041- 1058, 2002.

[9] S.N. Sivanandam, S.N. Deepa, Principles of Soft

Computing, Wiley India (2007).

[10] Ch. Satyananda Reddy and KVSVN Raju, “ An

Optimal Neural Network Model for Software

Effort Estimation”, Int.J. of Software Engineering,

IJSE Vol.3 No.1 January 2010

[11] Jorgerson, M., “Experience with accuracy of

software maintenance task effort prediction

models,” IEEE Transactions on Software

Engineering, Volume 21 (8), 674–681, 1995.

28 COCOMO Estimates Using Neural Networks

Copyright © 2012 MECS I.J. Intelligent Systems and Applications, 2012, 9, 22-28

[12] Samson, B., Ellison, D., Dugard, P., “Software

cost estimation using an Albus perceptron

(CMAC),” Journal of Information and Software

Technology, Volume 39 (1), 55–60, 1997.

[13] Schofield, C., “Non-algorithmic effort estimat ion

techniques,” Technical Report TR98-01, 1998.

[14] Seluca, C., “An investigation into software effort

estimation using a back propagation neural

network,” M.Sc.Thesis, Bournemouth University,

UK, 1995.

[15] Srinivasan, K., Fisher, D., “ Machine learn ing

approaches to estimating software development

effort,” IEEE Transactions on Software

Engineering, Volume 21 (2), 126–137, 1995.

[16] Wittig, G., Finnie, G., “Estimating software

development effort with connectionist models,”

Journal of Informat ion and Software Technology,

Volume 39 (7), 469–476, 1997.

[17] Hughes, R.T., “An evaluation of machine learn ing

techniques for software effort estimation,”

University of Brighton, 1996.

[18] Prasad Reddy P.V.G.D, Sudha K.R, Rama Sree P

and Ramesh S.N.S.V.S., “Software Effort

Estimation using Radial Basis and Generalized

Regression Neural Networks”, Journal of

Computing, Volume 2, Issue 5, May 2010, ISSN

2151-9617

[19] K. Vinay Kumar, V. Ravi, Mahil Carr, N. Raj

Kiran, “Software development cost estimat ion

using wavelet neural networks”, The journal of

Systems and Software 81(2008) 1853-1867.

[20] N. Tadayon, “Neural Network Approach for

Software Cost Estimation”, proceedings of the

International Conference on Informat ion

Technology: Coding and Computing(ITCC’05),

Vol. 2, pp. 815-818, 2005.

[21] B. Tirimula Rao, B. Sameet, G. Kiran Swathi, K.

Vikram Gupta, Ch. Rav i Teja, S. Sumana, “A

novel neural network approach for software cost

estimation using Functional Link Art ificial Neural

Network (FLANN)”, International Journal of

Computer Science and Network Society, Vol. 9

No.6, June 2009.

[22] www.promisedata.org

Anupama Kaushik received her B.E (Computer

Science) from Bharathiyar University and M.Tech

(Informat ion Technology) from Tezpur University.

She jo ined Department of Information Technology of

Maharaja Surajmal Institute of Technology as an

Assistant Professor in 2004. Her research area includes

Software Engineering, Object Oriented Software

Engineering and Soft Computing.

Ashish Chauhan is a student pursuing his B.Tech from

Department of Information Technology of Maharaja

Surajmal Institute of Technology. This work was a part

of their pro ject on Software Cost Estimation. His

research area includes Software Engineering and

Artificial Neural Networks.

Deepak Mittal is a student pursuing his B.Tech from

Department of Information Technology of Maharaja

Surajmal Institute of Technology. This work was a part

of their pro ject on Software Cost Estimation. His

research area includes Software Engineering and

Artificial Neural Networks.

Sachin Gupta is a student pursuing his B.Tech from

Department of Information Technology of Maharaja

Surajmal Institute of Technology. This work was a

part of their project on Software Cost Estimation. His

research area includes Software Engineering and

Artificial Neural Networks.

How to cite this paper: Anupama Kaushik,Ashish

Chauhan,Deepak Mittal,Sachin Gupta,"COCOMO Estimates

Using Neural Networks", International Journal of Intelligent

Systems and Applications(IJISA), vol.4, no.9, pp.22-28, 2012.

DOI: 10.5815/ijisa.2012.09.03

http://www.promisedata.org/

