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Abstract—This paper presents a detailed study and 

comparison of some Kernelized Fuzzy C-means 

Clustering based image segmentation algorithms Four 

algorithms have been used Fuzzy Clustering, Fuzzy C-

Means(FCM) algorithm, Kernel Fuzzy C-

Means(KFCM), Intuitionistic Kernelized Fuzzy C-

Means(KIFCM), Kernelized Type-II Fuzzy C-

Means(KT2FCM).The four algorithms are  studied and 

analyzed both quantitatively and qualitatively. These 

algorithms are implemented on synthetic images in case 

of without noise along with Gaussian and salt and 

pepper noise for better review and comparison. Based 

on outputs best algorithm is suggested. 

 

Index Terms —Fuzzy Clustering, Fuzzy C-

Means(FCM) algorithm, Kernel Fuzzy C-

Means(KFCM),Intuitionistic Kernelized Fuzzy C-

Means(KIFCM) ,Kernelized Type-II Fuzzy C-

Means(KT2FCM),kernel width. 
 

I. Introduction 

Image segmentation plays an important role in image 

analysis and computer vision. The goal of image 

segmentation is partitioning of an image into a set of 

disjoint regions with uniform and homogeneous 

attributes such as intensity, color, tone etc. The image 

segmentation approaches can be divided into four 

categories: thresholding, clustering, edge detection, and 

region extraction. In image processing, two terms are 

usually seen very close to each other: clustering and 

segmentation. When we analyze the color information 

of the image, e.g. trying to separate regions or ranges of 

color components having same characteristics, the 

process is called color clustering and mapping the 

clusters onto the spatial domain by physically separated 

regions in the image is called segmentation. In images, 

the boundaries between objects are blurred and distorted 

due to the imaging acquisition process. Furthermore, 

object definitions are not always crisp and knowledge 

about the objects in a scene may be vague. Fuzzy set 

theory and Fuzzy logic are ideally suited to deal with 

such uncertainties. Fuzzy sets were introduced in 1265 

by LoftiZadeh[1] with a view to reconcile mathematical 

modeling and human knowledge in the engineering 

sciences. Medical images generally have limited spatial 

resolution, poor contrast, noise, and non-uniform 

intensity variation. The Fuzzy C- means (FCM) [5], 

algorithm, proposed by Bezdek, is the most widely used 

algorithm in image segmentation because it has robust 

characteristics for ambiguity and it can retain much 

more information than hard segmentation methods. 

FCM has been successfully applied to feature analysis, 

clustering, and classifier designs in fields such as 

astronomy, geology, medical imaging, target 

recognition, and image segmentation. An image can be 

represented in various feature spaces and the FCM 

algorithm classifies the image by grouping similar data 

points in the feature space into clusters. In case the 

image is noisy or distorted then FCM technique 

wrongly classify noisy pixels because of its abnormal 

feature data which is the major limitation of FCM. 

Various approaches are proposed by researchers to 

compensate this drawback of FCM. 

Tolias and Panas developed a rule based system that 

post-processed the membership function of any 

clustering result by imposing spatial continuity 

constraints and by using the inherent correlation of an 

eight-connected neighborhood to smooth the noise 

effect[6]. Acton and Mukherjee[7] incorporated 

multiscale information to enforce spatial constraints. 

Dave[1] proposed the idea of a noise cluster to deal 

with noisy data using the technique, known as Noise 

Clustering. He separated the noise into one cluster but 

this technique is not suitable for image segmentation, as 

we cannot separate pixels from the image. Another 

similar technique, PCM, proposed by Krishnapuran and 

Keller[2] interpreted clustering as a possibilistic 

partition. However, it caused clustering being stuck in 

one or two clusters.  Ahmed et al.[10] modified the 
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objective function of FCM by introducing a term that 

allowed the labeling of a pixel to be influenced by the 

labels in its immediate neighborhood. Zhang Yang, Fu-

lai Chuang et al. (2002)[11] developed a robust 

clustering technique by deriving a novel objective 

function for FCM. Jiayin Kang et al.[12] proposed 

another technique which modified FCM objective 

function by incorporating the spatial neighborhood 

information into the standard FCM algorithm. Y. Yang 

et al.[13] proposed a novel penelized FCM (PFCM) for 

image segmentation where penalty term acts as a 

regulizer in the algorithm which is inspired by 

neighborhood maximization (NEM) algorithm[14] and 

is modified in order to satisfy the criterion of FCM 

algorithm. S. Shen, W. Sandham et al. [15] presented an 

algorithm called Improved FCM which changed the 

distance function used in FCM, i.e. the distance 

between pixel intensity and cluster intensities, and 

applied neural network optimization technique to adjust 

parameters in the modified distance function. Keh-Shih 

Chuang, Hong-Long Tzeng et al. [16] presented a FCM 

algorithm that incorporated spatial information into the 

membership function of clustering. The membership 

weighting of each cluster is altered after the cluster 

distribution in the neighborhood is considered. Rhee 

and Hwang [17] proposed Type 2 fuzzy clustering. 

Type 2 fuzzy set is the fuzziness in a fuzzy set. In this 

algorithm, the membership value of each pattern in the 

image is extended as type 2 fuzzy memberships by 

assigning membership grades (triangular membership 

function) to Type 1 fuzzy membership. The 

membership values for the Type 2 membership matrix 

are obtained as: 

        
     

 
                                              (1) 

Where aik and uik are the Type 2 and Type 1 fuzzy 

membership respectively. The cluster centers are 

updated according to the conventional FCM by taking 

into account the new Type 2 fuzzy membership. 

While discussing the uncertainty, another uncertainty 

arised, which is the hesitation in defining the 

membership function of the pixels of an image. Since 

the membership degrees are imprecise and it varies on 

person‘s choice, hence there is some kind of hesitation 

present which arised from the lack of precise 

knowledge in defining the membership function. This 

idea lead to another higher order fuzzy set called 

intuitionistic fuzzy set which was introduced by 

Atanassov‘s[4] in 1213. It took into account the 

membership degree as well as non-membership degree. 

Few works on clustering is reported in the literature on 

intuitionistic fuzzy sets. Zhang and Chen (2002) 

suggested a clustering approach where an intuitionistic 

fuzzy similarity matrix is transformed to interval valued 

fuzzy matrix. From the similarity degrees between two 

intuitionistic fuzzy sets, intuitionistic fuzzy similarity 

matrix is created which is transformed to intuitionistic 

fuzzy equivalence matrix. Then, a clustering technique 

that uses intuitionistic fuzzy equivalence matrix is 

suggested based on the -cutting matrix of the 

intuitionistic fuzzy equivalence matrix. Recently, T. 

Chaira [2] proposed a novel intuitionistic fuzzy c-means 

algorithm using intuitionistic fuzzy set theory. This 

algorithm incorporated another uncertainty factor which 

is the hesitation degree that arised while defining the 

membership function. 

This paper provides a comparative study of the 

original Fuzzy c- means clustering algorithm and its 

three kernalized variations like kernel based fuzzy c-

means (KFCM),kernel based intuitionistic fuzzy c-

means (KIFCM),kernel based  Type-2 FCM (KT2FCM) 

which are the kernalized extension of their non 

kernalized counterparts FCM,IFCM and T2FCM 

respectively. The algorithms are kernalized by adopting 

a kernel induced metric in the data space to replace the 

original Euclidean norm metric. By replacing the inner 

product with an appropriate ‗kernel‘ function, one can 

implicitly perform a non-linear mapping to a high 

dimensional feature space in which the data is more 

clearly separable. 

The organization of the paper is as follows: Section II 

reviews Fuzzy C-Means (FCM), Kernelized Fuzzy C-

Means (KFCM), Kernelized Type-2 FCM (KT2FCM) 

and KernelizedIntuitionistic Fuzzy C-means (KIFCM) 

in detail. Section III evaluates the performance of the 

algorithms presenting a comparison between them both 

qualitatively and quantitatively followed by conclusion 

in section IV. 

 

II. Background Information 

This section discusses the Fuzzy C-Means (FCM), 

Kernelized Fuzzy C-Means (KFCM), Kernelized Type-

2 Fuzzy C-means(KT2FCM), and Kernelized 

Intuitionistic Fuzzy C means (KIFCM) algorithms in 

detail. In this paper, the data-set is denoted by ‗X‘, 

where X={x1, x2, x3 …xn} specifying an image with ‗n‘ 

pixels in M-dimensional space to be partitioned into ‗c‘ 

clusters. Centroids of clusters are denoted by vi and dik 

is the distance between xk and vi.  

A. Kernel based approach 

The present work proposes a way of increasing the 

accuracy of the intuitionistic fuzzy c-means by 

exploiting a kernel function in calculating the distance 

of data point from the cluster centers i.e. mapping the 

data points from the input space to a high dimensional 

space in which the distance is measured using a Radial 

basis kernel function. 

The kernel function can be applied to any algorithm 

that solely depends on the dot product between two 

vectors. Wherever a dot product is used, it is replaced 

by a kernel function. When done, linear algorithms are 

transformed into non-linear algorithms. Those non-

linear algorithms are equivalent to their linear originals 

operating in the range space of a feature space φ. 

However, because kernels are used, the φ function does 

not need to be ever explicitly computed. This is highly 

http://en.wikipedia.org/wiki/Dot_product
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desirable, as sometimes our higher-dimensional feature 

space could even be infinite-dimensional and thus 

infeasible to compute. 

A kernel function is a generalization of the distance 

metric that measures the distance between two data 

points as the data points are mapped into a high 

dimensional space in which they are more clearly 

separable. By employing a mapping function     , 

which defines a non-linear transformation:       , 

the non-linearly separable data structure existing in the 

original data space can possibly be mapped into a 

linearly separable case in the higher dimensional feature 

space. 

Given an unlabeled data set X={x1, x2, …., xn} in the 

p-dimensional space RP, let Φ be a non-linear mapping 

function from this input space to a high dimensional 

feature space H: 

                    

The key notion in kernel based learning is that 

mapping function Φ need not be explicitly specified. 

The dot product in the high dimensional feature space 

can be calculated through the kernel function          

in the input space RP. 

 (     )         (  ) 

Consider the following example. For p=2 and the 

mapping function Φ, 

                       
     

  √         

Then the dot product in the feature space H is 

calculated as 

       (  )

  (   
     

  √       ) (   
     

  √       ) 

       
     

   (   
     

 )   

         
  

                  

where K-function is the square of the dot product in the 

input space. We saw from this example that use of the 

kernel function makes it possible to calculate the value 

of dot product in the feature space H without explicitly 

calculating the mapping function Φ. Some examples of 

kernel function are: 

Example 1: Polynomial Kernel:  

                        , where c       

Example 2: Gaussian Kernel: 

                 ( 
‖     ‖

 

   ), where     

Example 3: Radial basis Kernel: 

                 ( 
∑|  

    
 |

 

  ), where         

RBF function with a=1, b=2 reduces to Gaussian 

function. 

Example 4: Hyper Tangent Kernel:  

                 ( 
‖     ‖

 

  ), where     

 

B. The Fuzzy C Means Algorithm (FCM) 

Fuzzy c-means (FCM)[1] is a method of clustering 

which allows one piece of data to belong to two or more 

clusters. This method (developed by Dunn in 1273 and 

improved by Bezdek in 1211) is frequently used in 

pattern recognition. FCM is the most popular fuzzy 

clustering algorithm. It assumes that number of clusters 

‗c‘ is known in priori and minimizes the objective 

function (JFCM) as: 

     ∑∑   
 

 

   

 

   

‖     ‖
                

 ∑∑   
    

 

 

   

 

   

 

                      (2) 

       for all i , k ;                                 (2a) 

 
∑       

    for all k;                                   (2b) 

 
∑    

 
                                                     (2c) 

 

Where    ‖     ‖, and uik is the membership of 

pixel ‗xk‘ in cluster ‗i‘, which satisfies the following 

relationship: 

∑    
 
                                     (3) 

Here ‗m‘ is a constant, known as the fuzzifier (or 

fuzziness index), which controls the fuzziness of the 

resulting partitionand can be  any real number greater 

than 1 but generally we take it as 2 . Any norm 
‖ ‖expressing the similarity between any measured data 

and the centre can be used for calculating dik. 

Minimization of JFCM is performed by a fixed point 

iteration scheme known as the alternating optimization 

technique. This algorithm works by assigning 

membership to each data point corresponding to each 

cluster centre on the basis of distance between the 

cluster centre and the data point. More the data is near 

to the cluster centre more is its membership towards the 

particular cluster centre. Clearly, summation of 

membership of each data point should be equal to 

one.The conditions for local extreme for (1) and (2) are 

derived using Lagrangian multipliers: 

 

    
 

∑ (
‖     ‖

‖     ‖
)

 
   

 
   

                                     (4) 

 

http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/cmeans.html#dunn
http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/cmeans.html#bezdek
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where              

and 

   
∑ (   
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∑ (   
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                                                 (6) 

The FCM algorithm iteratively optimizes JFCM(U,V) 

with the continuous update of U and V, until |U(l+1) – 

U(l)| <= ε, where ‗l‘ is the number of iterations. FCM 

works fine for the images which are not corrupted with 

noise but if the image is noisy or distorted then it 

wrongly classifies noisy pixels because of its abnormal 

feature data which is pixel intensity in the case of 

images, and results in an incorrect membership and 

improper segmentation. 

 

Algorithmic steps for Fuzzy c-means clustering 

Let  X = {x1, x2, x3 ..., xn} be the set of data points and 

V = {v1, v2, v3 ..., vc} be the set of centers. 

1) Randomly select ‗c‘ cluster centers. 

2) Calculate the fuzzy membership 'µij' using:eq(4) 

3) Compute the fuzzy centers 'vj' using:eq(6) 

4) Repeat step 2) and 3) until the minimum 'J' value is 

achieved or ||U(k+1) - U(k)|| < ε.  

 

    where‗k‘ is the iteration step.  

   ‗ε.‘ is the termination criterion between [0, 1]. 

C. Kernelized Fuzzy c-means (KFCM) 

Fuzzy C-means (FCM) [3] clustering algorithm is the 

soft extension of the traditional hard C-means. It 

considers each cluster as a fuzzy set, while a 

membership function measures the possibility that each 

training vector belongs to a cluster. As a result, each 

training vector may be assigned to multiple clusters. 

Thus it can overcome in some degree the drawback of 

dependence on initial partitioning cluster values in hard 

C-means. However, just like the C-means algorithm, 

FCM is effective only in clustering those crisp, 

spherical, and non-overlapping data. When dealing with 

non-spherical shape and much overlapped data, such as 

the Ring dataset FCM cannot always work 

well .Therefore  we use the kernel method [3][5] to 

construct the nonlinear version of FCM, and construct a 

kernel-based fuzzy C-means clustering algorithm 

(KFCM).  

The basic ideas of KFCM is to first map the input 

data into a feature space with higher dimension via a 

nonlinear transform and then perform FCM in that 

feature space. Thus the original complex and 

nonlinearly separable data structure in input space may 

become simple and linearly separable in the feature 

space after the nonlinear transform (see Fig.1). So we 

desire to be able to get better performance. Another 

merit of KFCM is, Unlike the FCM which needs the 

desired number of clusters in advance, it can adaptively 

determine the number of clusters in the data under some 

criteria. The experimental results show that KFCM has 

best performance in the test for the Ring dataset. 

 

Fig.1 The idea of kernel method 

In the FCM algorithm we use the following objective 

function in eq(2) for minimization. From the equation 

(2), we can see that classical FCM algorithm is based on 

the input space sum-of-squares clustering criterion. If 

the separation boundaries between clusters are 

nonlinear then FCM will unsatisfactorily work. To 

solve this problem we adopt the strategy of nonlinearly 

mapping the input space into a higher dimensional 

feature space and then performing linear FCM within 

the feature space. Assume we define the nonlinear map 

as  ,             where      .  X denotes the input 

space, and F denotes the feature space with higher 

dimension. Note that the cluster centre in the feature 

space can now be denoted by the following form 

   ∑    
 
        for all i; 

where β ik is the coefficients which will be calculated 

later. So similar to Equation (1)  we select the following 

objective equation to be optimized  

   ∑ ∑    
  

   
 
   ‖      ∑    

 
        ‖

         (7) 

We rewrite the norm in equation  (7) as the   following: 

‖      ∑   

 

   

     ‖

 

 

=        
        ∑    

 
        

       
∑ ∑         

    
 
   

 
                                                (8)  

It‘s interesting to see that equation (2) takes as the 

form of a series of dot products in feature space. And 

these dot products can easily be computed through 

Mercer kernel representations in the input space 
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        .           

Thus the equation  (8)  can be formulated as follows 

‖      ∑    
 
        ‖

 =       
      

 K   

                                                                              (9a) 

where                    
                     

               
  

and                  for k =1,2,..., n 

We can calculate K ij  in the following way  

   =          for all i,j = 1,2,…,n.                                

 

where K is also named the kernel function. While any 

function satisfying the Mercer condition can be used as 

the kernel function, the best known is polynomial 

kernels, radial basis functions and Neural Network type 

kernels. Substituting for the norm in equation  (8)  with 

equation  (9a), we get 

   ∑ ∑    
         

      
     

 
   

 
                (9b) 

Minimizing Jm  with m > 1 under the constraint of 

equation (1b), we have the expressions of u ik and  β I  

as follows 

     
            

      
     

       

∑         
      

     
        

   
  for all i,k;        (10a) 

   
∑    

      
 
   

∑    
  

   

                                                 (10b) 

 

D. Kernelized Type2 fuzzy c-means clustering 

algorithm 

Rhee and Hwang [17] extended the type-1 

membership values (i.e. membership values of FCM) to 

type-2 by assigning a membership function to each 

membership value of type-1. Their idea is based on the 

fact that higher membership values should contribute 

more than smaller memberships values, when updating 

the cluster centers. Type-2 memberships can be 

obtained as per following equation: 

                
     

 
                                                 (11) 

Where aik and uik are the Type-2 and Type-1 fuzzy 

membership respectively. From (11), the type-2 

membership function area can be considered as the 

uncertainty of the type-1 membership contribution 

when the center is updated. Substituting (11) for the 

memberships in the center update equation of the 

conventional FCM method gives the following equation 

for updating centers. 

   
∑      

   
 
   

∑      
  

   

                                          (12) 

During the cluster center updates, the contribution of 

a pattern that has low memberships to a given cluster is 

relatively smaller when using type-2 memberships and 

the memberships may represent better typicality. 

Cluster centers that are estimated by type-2 

memberships tend to have more desirable locations than 

cluster centers obtained by type-1 FCM method in the 

presence of noise. T2FCM algorithm is identical to the 

type-1 FCM algorithm except equation (12). At each 

iteration, the cluster center and membership matrix are 

updated and the algorithm stops when the updated 

membership and the previous membership i.e. 

     |   
       

    
|     is a user defined value. 

Although T2FCM has proven effective for spherical 

data, it fails when the data structure of input patterns is 

non-spherical and complex.  

 

Kernel based extension (KT2FCM) 

(KT2FCM) adopts a kernel induced metric which is 

different from the Euclidean norm in the original Type-

2 fuzzy c-means. KT2FCM minimizes the objective 

function: 

 

         ∑ ∑    
  

   
 
   ‖           ‖

     (13a) 

 

Here aik is the Type-2 membership. Where 
‖           ‖

   is the square of distance between 

     and      . 

The distance in the feature space is calculated 

through the kernel in the input space as follows: 

 

‖           ‖
 

                             
                                     

 

                                                     (13b) 

 

We can use any kernel given in the section A 

examples. As Hyper Tangent kernel has been used in 

this technique so: 

K(x,y)=      ( 
‖   ‖ 

  ), 

Where is      defined as kernel width and it is a positive 

number, then  

         

 

Thus (13a) can be written as 

 

             = 2∑ ∑    
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                 (14) 
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Given a set of points X, we minimize             in 

order to determine   & .  . We adopt an alternating 

optimization approach to minimize           and need 

the following theorem: 

Theorem 1: The necessary conditions for minimizing  

          under the constraint of U, we get: 
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)

 
 
 

 
   

∑
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                            (15) 

   
∑    

         (      ( 
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  ))  
 
   

∑    
         (      ( 

‖     ‖
 

  )) 
   

                (16) 

 

The optimal values of the kernel width can be obtained 

through (14),  

 

E. Kernelized Intuitionistic fuzzy c-means clustering 

algorithm 

Intuitionistic fuzzy c-means clustering algorithm is 

based upon intuitionistic fuzzy set theory. Fuzzy set 

generates only membership function          , 

whereas Intutitionistic fuzzy set (IFS) given by 

Atanassov considers both membership      and non-

membership     . An intuitionistic fuzzy set A in X, is 

written as: 

  {                 } 

Where       [   ]       [   ]  are the 

membership and non-membership degrees of an 

element in the set A with the condition: 

                                      . 

When               for every x in the set A, 

then the set A becomes a fuzzy set. For all intuitionistic 

fuzzy sets, Atanassov also indicated a hesitation degree, 

       which arises due to lack of knowledge in 

defining the membership degree of each element x in 

the set A and is given by: 

                                        

Due to hesitation degree, the membership values lie 

in the interval 

[                 ] 

Intuitionistic fuzzy c-means (T. Chaira, 2011)[2] 

objective function contains two terms: (i) modified 

objective function of conventional FCM using 

Intuitionistic fuzzy set and (ii) intuitionistic fuzzy 

entropy (IFE). IFCM minimizes the objective function 

as: 

      ∑ ∑    
     

  ∑   
      

  
   

 
   

 
             (17) 

   
         , where    

  denotes the intuitionistic 

fuzzy membership and     denotes the conventional 

fuzzy membership of the kth data in ithclass. 

   is hesitation degree, which is defined as: 

                
  

 
 ⁄     ,   

and is calculated from Yager‘s intuitionistic fuzzy 

complement as under: 

 N(x) =       
 

 ⁄ ,    , thus with the 

help of Yager‘s intuitionistic fuzzy compliment , 

Intuitionistic Fuzzy Set becomes: 

  
    {                

         }         (18) 

And  hesitation degree is given by: 

                          
  

 

 
∑     

 
   k [   ] 

Second term in the objective function is called 

intuitionistic fuzzy entropy (IFE). Initially the idea of 

fuzzy entropy was given by Zadeh in 1262. It is the 

measure of fuzziness in a fuzzy set. Similarly in the 

case of IFS, intuitionistic fuzzy entropy gives the 

amount of vagueness or ambiguity in a set. For 

intuitionistic fuzzy cases, if                      are 

the membership, non-membership, and hesitation 

degrees of the elements of the set X={           }  
then intuitionistic fuzzy entropy, IFE that denotes the 

degree of intuitionism in fuzzy set, may be given as: 

       ∑        
[        ] 

                              (19) 

Where                       . 

IFE is introduced in the objective function to 

maximize the good points in the class. The goal is to 

minimize the entropy of the histogram of an image.  

Modified cluster centers are: 

  
  

∑    
  

     

∑    
  

   
                                               (20) 

At each iteration, the cluster center and membership 

matrix are updated and the algorithm stops when the 

updated membership and the previous membership i.e.  

     |   
        

     
|     is a user defined value. 

 

Kernel based extension 

The model RBF kernel based Intuitionistic fuzzy c-

means (KIFCM) adopts a kernel induced metric which 

is different from the Euclidean norm in the original 

intuitionistic fuzzy c-means. KIFCM minimizes the 

objective function: 

        ∑∑   
  ‖           ‖
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(21) 
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where ‖           ‖
  is the square of distance 

between       and        and can be calculated as in  

eq (13b). We can use any kernel given in the  section A 

examples As Radial basis kernel has has been used in 

this  technique so: 

          ( 
∑|  

    
 |

 

  
) 

Where a and b is greater than 0, and   is defined as 

kernel width and it is a positive number, then 

          

Hence,  

‖           ‖
                

Thus (21) can be written as: 
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(22) 

Given a set of points X, we minimize        in order 

to determine    
 &   . We adopt an alternating 

optimization approach to minimize        and need the 

following theorem: 

Theorem 1: The necessary conditions for minimizing 

       under the constraint of U, we get: 

   
  

(
 

(   (     ))
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∑ (
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                                            (24) 

 

III. Simulations & Results 

In this section, we describe the experimental results 

on four synthetic images bacteria and hand. There are 

total of four algorithms used i.e. FCM, KFCM, KIFCM 

and KT2FCM. Note that the kernel width σ in 

kernelized methods has a very important effect on 

performances of the algorithms. However how to 

choose an appropriate value for the kernel width in 

kernelized methods is still an open problem. In this 

project we adopt the ―trial and error‖ for each image for 

each algorithm and set the parameter σ variably. In 

addition we set the parameter N (total number of 

iterations)=200, m=2, ξ=3e-2 in the rest experiments. 

Experiments are implemented and simulated using 

MATLAB Version R2001a and Intel(R) Core(TM) i5 

CPU 2.27 GHZ 3GB RAM, 64BIT Operating System. 

We test the algorithms‘ performance when corrupted 

by ―Gaussian‖ and ―salt and pepper‖ noises both 

qualitatively and quantitatively. Qualitative analysis of 

the algorithms‘ is discussed in section III.A and 

quantitative analysis is discussed in section III.B. 

 

A. Qualitative Analysis 

Bacteria Image 

Test Image Bacteria (123x123) is generated as shown 

in fig 1(a). Salt and pepper noise and Gaussian noise of 

intensity 0.02 is added to generate image 1(b) and (c) 

respectively. By analyzing the 2nd row fig 1(d), 1(e), 1(f) 

which is the output when FCM algorithm is applied we 

observe segmentation is good in all the three cases but 

by looking at the bacteria we observe that FCM is 

unable to remove Gaussian or salt and pepper noise. 

KFCM (fig 1(g), 1(h), 1(i)) shows good segmentation, 

but we observe that it results in increased size in outputs. 

Looking at the bacteria we see KFCM removes both the 

type of noises. KIFCM fig 1(j),1(k), 1(l), as with KFCM 

it results in increased size in outputs .Results are almost 

same as KFCM but more noise is removed in case of 

KFCM . With KT2FCM fig 1(m),1(n),1(o), in case of 

noiseless segmentation is not very clear on boundaries 

though its clearer when noise is present.KT2FCM even 

remove some noise. So in case our image is noiseless 

FCM and KFCM both show equivalent result so any 

can be used. While when salt and pepper is present 

KT2FCM should be used and in case Gaussian is 

present any of the kernel methods can be used. 

 

Hand Image  

Test Image Hand (303x243) is generated as shown in 

fig 2(a). Salt and pepper noise and Gaussian noise of 

intensity 0.02 is added to generate image 2(b) and 2(c) 

respectively. By analyzing the 2nd row fig 2(d), 2(e), 2(f) 

which is the output when FCM algorithm is applied we 

observe good performance in all the three cases, though 

best as expected with noiseless. FCM shows better 

performance with salt n pepper as compared to with 

Gaussian. FCM is unable to remove Gaussian noise. 

Moving to result of KFCM (fig 2(g), 2(h), 2(i)) we 

observe that KFCM shows its best performance with 

salt n pepper. It almost removes salt n pepper. 

Performance with noiseless is also good. In case of 

Gaussian noise it succeeds in marginally reducing the 

noise but segmentation of some portion of ring not clear.  

Analysing output of KIFCM   fig 2(j), 2(k), 2(l), 

segmentation is not proper with noiseless and salt n 

pepper as ring area not properly detected. Segmentation 

is better with Gaussian but unable to remove Gaussian 

noise or even salt n pepper. With KT2FCM fig 2(m), 

2(n), 2(o) best segmentation as compared with other 

algorithms is observed. KT2FCM even removes salt 

and pepper and Gaussian to some extent. So we can say 

that if noiseless case then, undoubtedly FCM is best and 
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very near to it is KT2FCM. With KIFCM and KFCM 

segmentation not good with the ring part. In case its salt 

and pepper then KFCM is the winner. KT2FCM 

removes some noise but fails in ring segmentation. For 

Gaussian there is a close fight among all the algorithms. 

While KFCM removes some noise, segmentation is not 

that good in the ring part. While segmentation is best 

with KIFCM, noise not at all removed. 

 

B. Quantitative Analysis 

Based on Execution Time 

 

Bacteria Image 

Fig 3 shows the bar chart of the execution time of 

FCM,KFCM,KIFCM and KT2FCM for Bacteria Image 

in three different case of noiseless, salt and pepper and 

Gaussian. FCM performs best with noiseless and worst 

with Gaussian. While it is seen that KFCM performs 

best with Gaussian and worst with salt and pepper. 

KIFCM has max execution time with Gaussian and 

least with noiseless. KT2FCM  least execution time as 

compared to other algorithm. It shows almost same time 

in all the three cases. Hence KFCM  andKT2FCM show 

best execution time while KIFCM  the worst 

performance. 

 

Hand Image 

Fig 4 shows the bar chart of the execution time of 

FCM,KFCM,KIFCM and KT2FCM for Hand Image in 

three different case of noiseless, salt and pepper and 

Gaussian. In FCM we observe least execution time with 

noiseless and maximum with salt and pepper. With 

KFCM best performance with salt and pepper and worst 

with Gaussian. In case its KIFCM we see large 

execution time as compared to other algorithms. 

KIFCM shows best in Gaussian  and worst as expected 

with noiseless.KT2FCM shows least execution time as 

compared to other algorithms. Best with Gaussian  and 

worst in salt and pepper. Based on execution time we 

can say , KIFCM  has worst performance while 

KT2FCM shows best. 
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Fig.1: Ouputs on bacteria image Column 1 shows output of algorithms in noiseless case, column 2 shows output in salt and pepper noise and cloumn 

3 shows output with gaussian noise. 

Fig 1(a),1(b),1(c) are the original images in the 3 cases of noiseless,salt and pepper, and gaussian respectively.  

Fig 1(d), 1(e), 1(f) represents output of FCM in the 3 cases.  

Fig 1(g),1(h),1(i) represents output of KFCM in the 3 cases. 

Fig 1(j),1(k),1(l) represents output of KIFCM in the 3 cases. 

Fig 1(m),1(n),(o) represents output of K2FCM in the 3 cases. 
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Fig. 2: Ouputs on hand image Column 1 shows output of algorithms in noiseless case, column 2 shows output in salt and pepper noise and cloumn 3 

shows output with gaussian noise. 

Fig 2(a),2(b),2(c) are the original images in the 3 cases of noiseless,salt and pepper, and gaussian respectively.  

Fig 2(d), 2(e), 2(f) represents output of FCM in the 3 cases.  

Fig 2(g),2(h),2(i) represents output of KFCM in the 3 cases. 

Fig 2(j),2(k),2(l) represents output of KIFCM in the 3 cases. 

Fig 2(m),2(n),2(o) represents output of K2FCM in the 3 cases. 

 

 
Fig. 3: Bar Chart of Bacteria Image 

 

 
Fig. 4: Bar Chart of Hand Image 
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IV. Conclusion 

In this paper we have discussed the performance of 

the four algorithms FCM, KFCM, KIFCM, KT2FCM 

for the  synthetic digital images in noiseless case and 

when corrupted with salt and pepper and Gaussian noise. 

We compare these algorithms both qualitatively i.e. 

segmentation evaluation  and quantitatively i.e. based 

on execution time and validity function. Based on 

segmentation evaluation we can say that FCM 

dominates when it comes to noiseless case closely 

followed by KFCM. In case noise is present kernel 

methods show better performance if compared with 

FCM. Among the kernel methods KFCM seems to be 

the best followed by close fight between KT2FCM and 

KIFCM depending on the input image. Analyzing based 

on execution time and comparing the results of all the 

four images, we can say FCM executes in smallest time. 

Comparing the kernel methods we can conclude that 

KIFCM takes the maximum time while KFCM  and 

KT2FCM  the least. Also as expected time to execute is 

lesser with two clusters than with three clusters.The 

results reported in the project show that kernel method 

is an effective approach to constructing a robust image 

clustering algorithm. This method can also be used to 

improve the performance of other FCM like algorithms 

based on adding some penalty terms to the original 

FCM objective function. 
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