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Abstract—Aurtificial Immune System (AIS) is a hotspot
in the area of Computational Intelligence. While the
Multi-Objective Optimization (MOP) problem is one of
the most widely applied NP-Comp lete problems. During
the past decade more than ten kinds of Multi-Objective
optimization algorithms based on AIS were proposed
and showed outstanding abilities in solving this kind of
problem. The paper presents a general framework of
Multi-Objective Immune Algorithms, which summarizes
a uniform outline of this kind of algorithms and gives a
description of its principles, mainly used operators and
processing methods. Then we implement the proposed
framework and build four typical immune algorithms on
it: CLONALG, MISA, NNIA and CMOIA. The
experiment results showed the framework is very
suitable to develop the wvarious multi-objective
optimization immune algorithms.

Index Terms—Multi-Ob jective Optimization, Artificial
Immune Systems, Algorithms Framework.

l. Introduction

Many problems in the engineering field or scientific
research have more than one objective to be optimized
simultaneously. This is Multi-Objective Optimization
Problems (MOP). Different from optimization problems
which only have a single objective, there is usually no
unique solution that meets all objectives of the problem.
Instead, it aims at finding all the solutions which could
build a balance of distance among every objective. This
character of MOP Problems greatly increases the
searching difficulty at the time we try to find solutions.
Early in 1987, Serafini [1] proposed that the
computational complexity of these kinds of problems
was NP-Complete. Therefore, new high-efficiency
heuristic algorithms are needed to solve it.

Several methods have been proposed to solve this
kind of problem, such as genetic algorithms, Particle
Swarm Optimization, Multi-Agent System algorithm
and soon.

Genetic Algorithms (GA) are based on the principle
of evolution and natural genetics. They simulate a
natural process of creatures™ evolution and natural
selection, applied into data searching field. To solve
MOP Problems, GA treats the solution-set of MOP as a
creature population, the objectives as a natural condition,
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and dominated solutions as elite ones in the population.
So solving process of MOP can be linked with the
natural selection of creature populations. The main
algorithms based on GA are NSGA [2] (NSGAII is its
update version), MOEAD [3], PAES [4] and others.

Particle Swarm Optimization (PSO) is one of the
classical swarm intelligence algorithms that simulate
social behaviors to guide swarms of particles towards
the most promising regions of the search space [5]. PSO
has a flexible and well-balanced method to increase and
adapt global exploration and local search abilities.

Multi-Agent System (MAS) is a system made up of
mu ltip le interacting intelligent agents. MAS can be used
to solve problems that are difficult or impossible for a
single agent or massive system to solve. When applied
to MOP, MAS forms a set of individual agents with their
own goals that can interact with each other. During the
algorithm process, agents changed towards their goals
and exchange information with other agents, and finally
solve the problems, as with FGAS algorithms in paper

[5].

The heuristic algorithms mentioned above are all
inspired by some natural phenomena. Furthermore in
1986, J. Doyne Farmer and other four researchers [6]
published their work on a new biologically-inspired
computing model: Artificial Immune System (AIS).
Rooted in animal's immune system, AIS makes an
abstraction of several principles: Negative Selection,
Clonal Selection, Immune Networks etc. AIS can be
used in computer security, machine learning, pattern
recognition and many otherareas [7].

Today in the area of MOP, two principles of AIS are
widely used: Clonal Selection and Immune Networks.

MOP algorithm based on immune network was first
proposed by Jerne [8], which is based on a bio-immune
phenomenon where in B-cells are stimulated and
suppressed by both antigens and other interacted B-cells.
Based on Jeme’s study, two sub-classes of immune
network theories were proposed: De Castro’s discrete
immune network model [2] and Hajela’s model [9].

Recently, many algorithms based in area have been
proposed. The amount of work needed for developing,
implementing, testing or doing comparison on Multi-
Objective immune algorithms increases greatly. So a
common algorithm framework which could cover most
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2 A General Framework for Multi-Objective Optimization Immune Algorithms

of these kinds of algorithms is needed, just like JMetal
[10] for GA, which is an object-oriented Java-based
framework aimed at the study of meta-heuristics for
solving MOP problems. Researchers could conveniently
do the development, experimentation and comparison in
area of GA-MOP algorithms. But this kind of
framework is still lacking in MO-AIS area.

Based on the wide research on typical kinds of MO-
AIS algorithms and the high-level abstraction of them,
this paper proposes a general framework of Multi-
Objective Immune Algorithms (mainly based on the
clonal selection principle), which gives a description of
its mathematical foundation, principles, algorithmic
outline and the common implementation of some
commonly used operators and methods. Based on this,
we implement four classical MO-AIS algorithms,
CLONALG [11], NNIA [12], MISA [13] and CMOIA
[14], to showthe validity of this framework.

Il.  Background Knowedge And Definition

2.1 Multi-Objective Optimization Problem

Multi-objective ~ Optimization aims at doing
optimization for a serial of functions like:
FOO=(f, (%), T, (),-....F ()" @

,xm) € Q, Where x is called the
decision variable, and Q is the feasible region in
decision space (or the definition domain of functions).

And x=(x1, x, ....

Without the loss of generality, we take a maximization
problem as an example. It aims to achieving
maximization for every objective. By definition a
decision variable xa €Q dominates another variable xs
€Q (written as xa = xs) if and only if:

Vi=12,...k: (%)= (%) A3 =12,k
fi (%) > fi(%5) @

That is, one solution is Pareto dominant over another
one, only when all the sub-objective values of the first
solution are no less than the corresponding sub-objective
values of the other solution, and there must exist at least
one sub-objective on which the first solution exceeds the
second one.

Then we define a decision variable X* €Q that is a
Pareto optimal solution or nondominated solution if:

vxe, X =X
Then the Pareto-optimal set is defined as:
P 2{X eQ|-IxeQ x> X} 3)

The Pareto-optimal set is the set of all Pareto-optimal
solutions. And the corresponding image of the Pareto-
optimal set under the objective function space is called
the Pareto-optimal front:
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PE 2{F)=(f, ), 0., f (X)) | X P} @

Namely, the solution within the set is considered as
optimal only when there are no solutions existing in the
set and superior to it, and this set is also named, Pareto
front.

Solving a Multi-Objective optimization problem is to
find out a suitable pareto- optimal front for it.

2.2 Artificial Immune System

Artificial Immune Systems are developed from
biological immune systems. They are heuristic
computing systems aimed at solving many kinds of
difficult real problems based on the principles, functions,
and basic characteristics of bio-immune systems. The
main purpose of this research is to go deeply into
information processing methods inspired by the
biological immune system, and then to work out some
new algorithms and engineering models to solve the
difficult problems we face reality.

As mentioned above, there are three main principles
abstracted from the bio-immune system:

The principle of Negative-Selection is inspired by the
phenomena of the thymus that produces a set of mature
T-cells which only have the ability to identify non-self-
antigens. Negative-Selection principle was first applied
by Forrest et al. to detect counterfeit data caused by
viruses in computer systems [15]. The main point is to
produce a set of self-strings S, which represents the
features of'the system’ normal state. Then generate a set
of detectors D, that only recognize the complementary to
S. When new data is coming in, these detectors can
classify them as being self or non-self. Later, this
principle is widely applied in the area of intrusion
detection, pattern recognition and etc.

The clonal selection principle got a big breakthrough
in the area of computational optimization and pattern
recognition by AIS. In particular, abstracted from the
bio-immune system, the maturation process of B-cells is
decided by its affinity to an antigen, with its associated
hyper-mutation process. And it also maintains the idea of
using memory cells to retain good solutions to the
problem being solved. There are two important features
of this process in B-cells that can be exploited for
computational algorithms. The first one is that the self-
breeding of B-cells is linear to their affinity to the bind
antigen, so the higher the affinity, the more clones will
be produced. Secondly, when the antibody of a B-cell
undergoes the mutation progress, the rate of mutation is
in inverse proportion to the affinity of it. Based on these
two features, de Castro and Von Zuben proposed one of
the most popular clonal selection algorithm, called
CLONALG]11], which has been used widely in pattern
matching and single object optimization problems.

Jerne [8] proposed the immune network principle
based on some of the observed phenomena of the bio-
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immune system, for example, learning and memory. The
precondition of this theory is that any lymphocyte
receptor of an organism can be recognized by a sub-set
of'the total receptor repertoire. The receptors of this sub-
set have their own recognizing set and so on, so an
interactive immune network is formed. Immune
networks are often considered as self-inspired networks.
For lack of foreign antigens, Jerne supposed that the
immune system must make a behavior or activity
inspired from interactions with it-self or from these
interactions behavior such as tolerance and memory
emerge.

Before 2002, researchers developed two Dbasic
immune optimization algorithms: the CLONALG
algorithm based on clonal selection principle and the
aiNet algorithm based on immune network principle.
Subsequently, based on the foundation of CLONALG,
Garrett [16] developed Adaptive Clonal Selection (A CS)
by improving a number of processes and parameters in it.
Research based on aiNet extended aiNet to opt-aiNet.
Then Freschi and Repetto developed a multi-objective
version of the opt-aiNet called Vector Artificial Immune
System (VAIS) [18].

After Luh et al. [19] proposed a Multi-objective
Immune Algorithm (MOIA), MO-AIS research grew
into maturity. Following that tens of algorithms were
proposed. The typical ones are Wong et al. 's HAIS [20],
and Gong et al."s NNIA [12].

I11. The Algorithm Framework

Abstracting from the information above, the logical
mapping between immune system (AIS) and multi-
objective optimization problems (MOP) is listed
inTablel:

Table 1: Mapping Between Biological Immune System and Multi-
Objective Optimization Problem

AIS MOP
Antigen multi-objective problem
antibody, B-Cell, T-Cell Solution
memory cell Archive
immune clone clonal selection algorithm
Affinity quality of solution
antibody generation Iteration

Antibodies always try to best recognize antigens in
biological immune procedures. This is very similar to
the evaluation of MOPs. Consequently antigens can be
seen as multi-objective problems, Antibodies are treated
as solutions to that problem and antigen-antibody pair
affinity can be seen as the quality of the solution to the
problem. After relation mappings like this, the biological
immune mechanism is brought into the field of multi-
objective optimization.

Several main parts were included in a typical M O-AIS
algorithm. When we try to solve a problem using an AIS
algorithm, the steps in Fig.1 are that we should follow:
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Solutions

Figure 1. The Stepsto Implements an MO-AIS

Then we could define an individual process in MO-
AIS algorithms as an operator, which means a sub-
process with a set of comparatively independent
algorithms to accomplish a part of the function in a
whole MO-AIS algorithm. The operators could be
classified to some kinds according to their functions and
have many different implementations.

Finally, fromthe definition of AIS and M OP problems,
we could draw an abstract graph for the algorithms®
general framework. That is to say, the common outline
which most Multi-Objective immune algorithms (mainly
based on the clonal selection principle) obey.

In a word, this kind of algorithm commonly can be
divided into 3 parts: the initial of population, the
iteration of the immune progress and the final process or
output of the solution-set. The first part generates the
initial solutions and puts them into the population
achieve, and then initializes all the parameters and
containers of the algorithm.

The second part (the immune progress’s iteration) is
commonly divided into 4 steps: selection of elite
solutions, copying selected solutions, mutation or
crossover the solutions, the recombining and processing
of the memory or solution-set. And before them it will
commonly do an evaluation of objective values and
constraints. In this part, the biological immune progress
is applied to the solutions, so the solutions in the
population could have a trend of better affinity as a
whole.

After the stop condition of the second part occurs, the
third part happens. This part will perform a final process
on the solution-set and output it.

Based on the information mentioned above, the
common outline of Multi-Objective immune algorithms
is listed below:

Table 2: The Common Outline of MO-AIS

I. Detmne the Algorithm parameters. And Initialize the population
P with generated antibodies.

2. While (Stop Condition of Tteration not reached)

a) Calculate the objective values and oconstraits of all
solutions (called “ Evaluation™).

b) Perform selection on population P, the solutions selected
forms S(t).

¢) Clone S (t)to formacopyC(t).

d) Mutate or do crossover onC (t) to get A (t).

¢) Recombinant on P, A (t) and so on or put elite solutions
into memory achieve.

3. Get Pareto-front from M (f).
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3.1 Initial of Population

In this part, two task are accomplished: 1) defining the
algorithm parameters, such as the stop condition of part
2, the size of the population (usually the same as the
output solutions’ number), and others. And 2) filling the
initial population with generated antibodies.

Mostly, we initialize the population by randomly
generating some antibodies, but in some cases we
generate the antibodies according to grids of objective
space or a problem-specific method.

Initializing the population using the second method
usually brings faster convergence or improvement of
search capabilities. For example, some algorithms may
initialize the population by dividing decision variable
space into a certain number of parts relative to the
desired population size. So they generate an initial
population of a uniform distribution of solutions, making
the searching result more diverse.

3.2 Immune Progress lteration

This part is to describe the immune search process
formally. Tt is usually treated as an iteration which could
be divided into four steps, which is summarized by 3
operators.

The first two steps are the selection of elite antibodies
and the immune clone process of them. As they are
always one after another, we usually combine them into
one operator: clonal selection. The population going
through this operator will have the antibodies with lower
affinity enhanced and the antibodies with higher affinity
inspired. This operator is one of the most important
operators that makes the population to convergence side
in this kind of algorithm.

After that it performs the step of variation of
antibodies’ information. This step aims at disturbing the
solutions, whether elite ones or not, to make them drift
off the original position, and then to explore the new
solutions unreached before. Many operators can be
applied to this step, even the operators genetic
algorithms used, such as crossover operator. And based
on the genetic algorithms® operator mutation, M O-A1S
could use its unique operator to process this step: hyper-
mutation.

At the end of iteration, the processing of the
population happens. Some algorithms may apply an
operator called recombination, which  means
recombining the solution-sets previously steps produced.
Recombination operator may increase the diversity of
the population, and after that nearly all algorithms will
form a new population with the ones this iteration
produced, as the initial population of the next one.

3.3 The Final Process of the Antibodies

Different algorithms have different way to store and
output antibodies. Some of them store antibodies into
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memory, and before the elite antibodies added, they will
do a check ofthe antibody's fitness or other attributes, to
insure that antibodies in memory will be more
dominated as a whole.

Memory mechanism is one of the unique mechanisms
AIS has, it plays an important role in maintaining the
quality of final output solution-set. In some algorithms it
is even able to affect the immune operator’s performance.
But some immune optimization algorithms do not use
memory to store antibodies, they usually form an
individual population rarely directly undergoing the
immune iterations. This population absorbs its members
by some condition usually when iteration ends. In the
end its contents may be regarded as the final Pareto-
Front.

IV. The Immune Iterator Operators

4.1 The Clonal selection Operators

As mentioned above, the selection and clone of elite
antibodies is a core process of MO-AIS. As we know,
this operator generally can be divided into two parts:
first is selection, which is to select dominant antibodies
fromthe initial population, This part is processed mainly
by sorting the solutions in the current generation with
the standard algorithms defined. And then take the
cloning procedure: copying the selected antibodies by a
certain time which is defined by algorithms. Usually the
copied antibodies will fill the population outputted. Here
is the common outline of this operator:

Table 3: The Common Outline of Clonal Selection Operator

Input: mput population P, selecting rate Rs , selecting sort
standard Ds , clone rate Re , clone times definition
Dc
Select: 1) Sorting P by Ds , forms P’

2) Ifthe size of P’ > Rs, Taking the first Rs ofthe
P’ , put them into a newpopulation Pc,
otherwise, let Pe=P’

Clone: 3) For each antibody Aiin Pc :

a) Copy Aiby timesof Dc*Re

b) Put the copied antibodies into Pc
Output: Pc

Different algorithms usually have different Ds and De,
and Rs Re usually could be defined by user before
algorithms executed. Now we give out some different
clonal selection operators” definition:

1) Affinity Rank Selection
This method is a widely used selection method; firstly
we must define the measure of affinity, a simple way is
to define it by the sum of Euclidean-distance between
current antibody and best antibody in this iteration and
previous iteration (Wang X. L. [21] et al.):
Affi_|xi—xc|+|xi—xg| )
Xc, Xg are the best antibodies in this and the previous
generation. So Ds is: the greater Affi is, the lower the
antibodies ranked, as the increasing order of Affi .
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2) Non-dominated Neighbor-based Selection

This selection method was first brought by Gong's
NNIA in 2010, it measures the selection scale by a value
called crowding-distance [2]:

K
(d,D
;(d,D)éZ—’/'(d’ ) (©)
A = flmax _ fimln
£™ and £ are the maximum value and the
minimum value of the i-th objective and § (d,D)=

{::], if f,(d)=min{f, (d)|d'eD} or f;(d)=max{f,(d")d'sD} (7)
in{ f;(d)—f;(d"|d",d"eD:f;(d")<f; (d)<f;(d") },otherwise

So Ds is: if {(d,D) of an antibody is greater, it ranks
higher, as the descending order by {(d,D).

3) Proportional Cloning
This clone method is also based on the crowding-
distance definition the copy times of an antibody a; as:

a,A 8

4 <] nr A ®)
<@ A)

Where nc is Re in this paper. So D¢ is: for each
antibody, copy it q; times.

4) Clustering-Based Clone

This clone definition is newly proposed in algorithm
CMOIA [22], it uses a k-means clustering method to
cluster the population before cloning it. When cloning
starts, D¢ is: if the antibody to be copied belongs to the
cluster which has the most antibodies among all clusters,
don’t copy it; if the antibody belongs to the cluster
whose number of antibodies is greater than the average
of all, copy it 1/2*Re times, otherwise copy it 2*Re
times. This method is proved that could greatly increase
the diversity ofthe population.

4.2 Hyper-Mutation and Crossower Operators

To explore the formerly unsearched area of the
objective space, a procedure perturbing antibodies’
information is needed. In MO-AIS algorithms, many
types of methods could be used, such as GA's mutation,
GA's crossover and the AIS's unique operator, hyper-
mutation.

The immune cells’ frequently mutation plays an
important role in the human's immune systems, and also
it does in AIS: first it ensures the diversity of the
populations; secondly, combined with the clonal
selection operators, it will greatly increase the affinity of
the population as a whole.

Based on the bio-immune mutation procedure and
inspired by the GA's mutation, the hyper-mutation
operator was proposed. This kind of operator’s effect on
the antibodies’ content information, makes perturbation
on the solutions. So the MO-AIS procedure will have the
ability of exploring previously unreached solutions.

Different from GA's mutation, hyper-mutation uses
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the strategy that the mutation rate for each antibody is
different, usually as the increasing order of the affinity
of it. So the optimal solutions won’t probablely get lost
and the undominanted solutions will change rapidly
during the procedure.

The common outline of this kind of operator:

Table 4: The Common Outline of Hyper-Mutation Operator

Input: mput population P, base mutation rate Rb, mutation
probablity Rm t&[0,1], affinity measure Ma

For each antibody Aiin P
1) Calculate the affinity affi ofAi by Ma
2) Generate arandom float f&[0,1]
3)If(fe[0,Rm])
Then For each decision variable Xiin Ai
a) Generate arandom float u € [-Rb,Rb]
b) Calculate s=u *affi
c)LetXi+=s
Else do nothing
4)Put Aito Pm

Output: Pm

Different from the clonal selection type, the hyper-
mutation operators’ MO-AIS algorithms used mostly
obey the same strategy; the only change between them
usually is the measure method of affinity Ma. So we
consider all thesekinds of operators as one.

Besides hyper-mutation operators, many kinds of
operators could be applied to this procedure. The
classical GA's mutation performs perturbation better
than hyper-mutation and is widely used in MO-AIS
algorithms. We also often apply GA's crossover
operators on this, though it does not match AIS's
biological essence. The results prove that those kind of
operators sometimes bring a good diversity or
congresses to MO-AIS.

4.3 Recombination and Memory Operators

After the previous two steps, some operators, such as
clonal selection, GA crossover, hyper-mutation, etc., are
applied on populations. Each operator will output a set
of antibodies with different characteristics, so have a
combination of them maybe good for the result’s quality.
In bio-immune systems, genetic recombination is a
process by which a molecule of DNA is broken and then
joined to a different one. Inspired by this, some
algorithms™ researchers work out a kind of operator
called Recombination and apply it to the antibodies sets
derived from previous steps.

To simplify, the recombination operator could be
represented by a set of other operators. If we suppose the
two set to be recombined is C =(c1, ¢2,¢3, ..., ¢ci)and A
= (a1, a2, as, ..., aj), thenthe recombination T is:

TR(C, A)=Recombine(cii,aj1)+ Recombine(ci2,aj2)+
Recombine(ci3,aj3)*....+ Recombine(Cim,ajn)

The function Recombine is the recombination method
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oftwo antibodies. Usually it is a crossover operator. The
two parameters of Recombine are the two anti-bodies
selected from A and C. The selection principles maybe
ordered by choosing from one set and equal-probably
random choosing from anotherand so on.

Some algorithms will run this operator after all other
steps of immune iteration are done, but some may apply
it before hyper-mutation an etc. Then the methods of
final processing of populations gotten from previous
steps in one iteration are different. In this step, the
important strategy of memory is widely used.

In the bio-immune system, the memory cells bring
support the secondary immunity process. They
remember the anti-bodies with high affinity to specific
antigens, and when those antigens come again, immune
systemwill quickly generate pertinent anti-bodies by the
information stored in memory cells. Inspired by this,
MO-ATS algorithms use memory operator to store elite
solutions. Unlike normal operators, the memory operator
is mainly a place to store solutions. The main operating
process is when a new solution inserted. Below is the
outline for a solution inserting into memory:

Table 5: The Common Outline of Memory Inserting

Input: input solution S
Inside:  memory Population P (with limifed capacity), antibody
checking standard Cs
T) TF(Pisnotfull)
Insert S into P
else
a) Checking S with Csin P
b) If( S dominatesin P)
i) Delete the least dominated
antibody in P
i) Insert S into P
Output: None

The checking standard Cs decides whether S could
be inserted into memory, depending on the situation
of both P and S. Different memory operators are
mainly distinguished by Cs. Here are two examples of
memory operator implementation.

1) Affinity Memory

This is a common version of a memory operator. It
only measures the anti-bodies by their affinity of. If the
antibody to be inserted, S has higher affinity than the
worst one in the memory, S should replace it.

2) Adaptive Grid Memory

This is a kind of memory that has an antibody storage
with an adaptive grid character [23]. When the coming
anti-bodies belong to a crowded grid of objective space,
it will not be inserted. This strategy is able to maintain a
full diversity of anti-bodies inside memory.

At the last of the iteration, some algorithms will add
elite solutions into memory while others will recombine
several parts of the solution-set into a new population.
Even some of them will re-generate some new solutions
into the population.

Copyright © 2012 MECS

V. Algorithm’s Implement

To fully prove the feasibility and usefulness of the
framework mentioned above, we implement four typical
MO-AIS algorithms based on the framework:
CLONALG NNIA, MISA and CMOIA.

5.1 CLONALG: A SOP Algorithm but the MOP
Algorithms™ Basement

Early in this paper, we have introduced de Castro's
CLONALG [11], which is the first algorithms that
applied the clonal selection principle to pattern matching
and optimization areas. Though this algorithm's
procedure is too simple to solve complex Multi-
Objective optimization problems, it is usually used in to
solve single object ones. It is still the foundation of
many Multi-Objective immune algorithms.

Under this framework, CLONALG mainly use the
clonal selection operator (in the model of doing clone
shortly after the selection ended) and hyper-mutation
operator, then the main steps in the immune iteration
process is listed below:

(6) <::/;e-selec\;\:>

(5) <\:\\ f/:::> i

—Clonal ™
*
<\S\electio/r;/>
(@) /A\ (3)
~_Mutation —
\\//

Figure 2. Computational Procedure for CLONALG

(1)

In this diagram, (1)Ab is the initial population after
one iteration, and in (2)(5) we calculate the objective
values and constraint values of anti-bodies, and update
their fitness value.

Then in (3), we apply the clonal selection operator,
and set Ds defined by the Hamming-Distance [24]
measure of the function defining space. And De is:

N
D, =Y _round(+N) ®

i-1
In this case , g is the affinity measure the same as Ds.
Other parameters could be defined by users. It also uses

the standard hyper-mutation operator mentioned above
and set Ma=Ds.

No memory operator is applied to CLONALG and in
steps (6) (7), it re-selects C*, usually with a higher Rs
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A General Framework for Multi-Objective Optimization Immune Algorithms 7

than the first selection to form Ab(m). Then it re-
generates some new random anti-bodies Ab(d) to make
a complement ofre-selection’s washing out.

5.2 MISA: An Adaptive Grid improwed Algorithm

The outstanding performance on the diversity of
solutions is a big advantage for which MO-AIS is
superior to other algorithms. Different methods are used
to maintain a good balance between convergence and
diversity in solving progress. MISA is a success of this.
This algorithm applies an adaptive grid to the memory
store of solutions, break the objective space into several
partitions, and measure the solution number in each
partition. The anti-bodies which belong to the much
crowding partitions will be suppressed to some extent.
And MISA is an algorithm with much more complex
than CLONALG so it could be applied on MOP
problems.

Ab(n) | ab | ()

()

__—"Clonal —_

5) <\\S\t:zIec':ig/n// )
(4) </\/ Mutation/\ IF(M is full)
~— -

~—

N
- ~
_~ ~

_ ~

~ Crossover > (6)
~ —

~ e
~—

Figure 3. Computational Procedure for MISA

Under this framework, M is a memory store called
secondary memory; it has an adaptive grid inside to
store solutions. In the clonal selection operator, Ds is the
common method to measure affinity while D¢ is decided
by the grid in M to which a solution belongs. If the
solution to be copied belongs to the most crowded grid
in M, it will be copied as zero. If while it belongs to the
grid with an number that is above the average of
solutions, it will be copied Re times. Otherwise it will be
copied 2* Re times.

If M is full, a common crossover operator will be
applied to it between steps (5) and (7). That is to force
the elite anti-bodies in memory to exchange their
information.

In (4), MISA will perform both a uniform and non-
uniform mutation on populations, and in the non-

uniform mutation, the Rb will decrease over time from
0.9 to 0.3.

MISA neatly solves all kinds of MOP problems with
good convergence. It is a typical example of AIS for
MOP problems.

Copyright © 2012 MECS

5.3 NNIA: Algorithmic Solutions Weighted by
Crowding-Distance

Many approaches could be taken to improve the
solution quality of MO-AIS algorithms. The algorithm
proposed by M. G Gong-NNIA brought the measure of
Crowding-Distance into MO-AIS research. This
measure acts is important in NNIA from affinity-
weighed to clone-rate calculation.

Crowding-Distance is a measure of how close a
solution is to its neighbors in the same Pareto-front.
Large average Crowding-Distance represents more
diverse population. The immune iteration outline is like
this:

_—Clonal ™_

< N > (2
“~Selection — @

(4) <:\/B/\/(\ei¢:ombinat5§5\1:; (3)

Figure 4. Computational Procedure for NNIA

In step (2), NNIA uses crowding-distance selection
and proportional clone operators to form the clonal
selection. The two parts of the operator are both
mentioned above and both measured by Crowding-
Distance.

In step (4), it performs a recombination between
selection result and clone result in (2) using the
crossover method. As our recombination operator is
defined, it picks up an antibody in order from the clone
result and randomly takes an antibody from the selection
result, then does crossover on each pair to form a new
population. Then a normal hyper-mutation is applied to
the population.

Finally in (7), the previous iteration's result will be
combined with this iteration's result, then a crowding-
distance selection is applied to them to select the next
generation's initial population.

NNIA is highly efficient at solving MOP problems.
Experiments show it could produce diverse solution-sets
within many fewer generations than MISA. But some
versions of its implementation may take a long time to
finish the calculation of one generation.

5.4 CMOIA: The Clustering-Based Clone Algorithm

As we mentioned above, MISA uses adaptive grid
memory to force the solution-set to maintain diversity

1.J. Intelligent Systems and Applications, 2012, 6, 1-13
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while NNIA tries to use a new affinity measurement to
improve the quality of the results. Not long ago a new
method of keeping balance between the diversity and
convergence of MO-AIS was proposed. CMOIA uses
the K-means clustering on the clone operator to maintain
the balance of local searching and widely exploring the
objective space to achieve a good result for some M OP
problems.

Using the clustering clone operator mentioned above,
CMOIA divided the objective space into several clusters
by the K-Means Clustering algorithm. When cloning
happened, solutions that belong to crowded clusters will
be copied less and vice versa. So the space which is not
fully developed will have its search power appended.
Using this strategy on normal MO-AIS algorithms,
CMOIA's outline is like this:

l
(7) | Ab(r) | | Ab(n) ‘—> (1)

///aongl\\\
< . > (3

\\S\glectlgll// (3)

) A Crossover

GA Mutatio
// \\
<
@ “~Mutation ¢

~—

Figure 5. Computational Procedure for CMOIA

In step (3), CMOIA applies the normal affinity
selection and its clustering clone operator on the clonal
selection process. Step (4) is the normal hyper-mutation
operator while after that GA's mutation and crossover
operator are applied on the population to accelerate the
local search around less crowded clusters. At last the
result from step (3),(5) and some randomly generated
solutions are put together to form the next generation’s
initial population.

Experiments show that in many MOP problems
CMOIA has unique advantages in convergence, diversity
and distribution uniformity than most other MOP
algorithms.

VI. The Experiment and Conclusion

We implement the four algorithms under our proposed
algorithmic framework. To prove the feasibility and
effectiveness of our framework, several tests are done on
those algorithms.

Copyright © 2012 MECS

6.1 Test Problems and Quality Indicators

1) Test Problems

Two SOP problems were tested on CLONALG while
four MOP problems were tested on the other three
algorithms.

1. G01 and GO3
The two problems with only one object were tested on
CLONALG the maximization objective is listed below:

Jos (X) =8in°(57%)
Jgs (X, ¥) = Xesin(4zx) — yesin(4zy + ) +1

The area defined by GO1 is [0,1] and in GO3 both x, y
are in area [-1,2].

2. SCH
This is a simple MOP problem defined by Schaffer in
1984, the two objectives are:

—X, if x<1
-2+X%, ifl<x<3
4-x, if 3<x<4
-4+x, if x>4

f.(x) = . f,(0=(x-5)*

While we usually defined x in [-5, 10].
3. DEB
DEB is a much more complex two-object problem
with 2 decision variables:

f.00=x

2
X1 X1 .
f.(X)=(1+10 1- - 8
(0= XZ){ [1+10xzj 1+10xzsm( ”Xi)}

Each variable is in [0, 1].

4. ZDT1
ZDT is a serial of two objective problems with many
decision variables, we take 30 variables in [0, 1] of this
problem in our tests:

L00=x%, £,00=900[1-x 7900 ]
9(x) =1+9(2,x)/ (n-1)
5. DTLZ3
The DTLZ problems serial can be scaled to any

number of decision variables and objectives. We took 3
objectives and 7 variables in our test.
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.00 =2 0% 10+ G05)

0 =2 %% (L% )0+ (%)

() =2 %A= X)L+ (%)
00 :é(l—xo(u 0(%))

where g(x,) =100 {| X |+ ((xi - 0.5)2 —cos(207(x; — 0.5)))}

X €Xy

All the variables are in [0,1].

2) Quality Indicators

Quality indicators are used to weight the result of the
MOP problems’ quality, just as diversity, coverage and
others. Two quality indicators are used in our test.

1. Generation Distance (GD)
GD is a measure of the distance between the true and
generated Pareto front. It is defined as:

¥ (10)

i=1

GD él/ Nknown

Nknown is the solution number of the generated front,
and di is the shortest Euclidean distance between each
solution in generated front and the true front. The
smaller GD is , the better the quality of the generated
front.

2. Hyper-Volume Rate (HVR)

This indicator is usually used to measure the diversity
of generated pareto-fronts. It is the hypervolume ratio of
generated pareto-front and true front.The hypervolume
is defined as:

VOL[ U [RX,X]X[RV,Y]J (@
(x,y)eP

With VOL() being the usual Lebesgue measure, and
[Rx,x] [Ry,y] are the points of each front. The closer
HVR is to 1.0 , the more diversity the generated front
has.

6.2 Algorithm Parameters Setting

1. CLONALG
Using GLONALG we only tested two simple single
objective problems, GO1 and GO03, so the parameter set
is not complex: we set the whole population size to 10 in

Copyright © 2012 MECS

one iteration and the maximum iteration limit is 1000.

For clonal selection operators, Rs is 4 and Re is 5. For
the hyper-mutation, Rm is 1.0 in GO1 and 0.5 in GO3,
Rb is 0.7 in both problems. In final re-select process, we
select out first 4/5 anti-bodies and second newly
generated 1/5 antibodies.

2. MISA

In our version of MISA, we set the population size as
200 and the maximum iteration limit to 10000. For
clonal selection operators, Rs is 20 and Re is 5. For the
hyper-mutation, Rm equals the inverse of problem’s
dimension , Rb is as big as the defination area of the
problems. For GA Crossover operator, in our version we
use SBXCrossover and set the probability to 0.8.

For the original implementation, we take the one
coded in C++ by the MISA's author. The population size
and iteration limit are the same, while other parameters
obey the settings in paper [13].

3. NNIA
On our version of NNIA, we set the population size to
100 and the maximum iteration limit to 500. For clonal
selection operators, Rs is 40 and Rc is 5. For the hyper-
mutation, Rm equals the inverse of problem’s dimension.
Rb is as big as the definition area of'the problems. Other
parameters obey the settings in paper [12].

For the original implementation, we take the one
coded using Matlab by the NNIA's author All
parameters obey the settings in paper [12].

4. CMOIA

For CMOIA's original implementation based on our
framework, we only execute the single test on that
version as a complement of paper [4]. The population
size is set at 200 and the maximum iteration limit is
5000. For the clonal selection operator Rs is 100 and Re
is 5. For the hyper-mutation, Rm is 0.25 and Rb is as
big as the definition area of the problems. For crossover
we set it the same as MISA.

6.3 Test Results and Analyses

1. CLONALG
We listed the test result of CLONA LG independently
for it is tested using two SOP problems. Also we do not
apply any quality indictors to it.
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CLONALG-GO1

CLOMALG-GOD3

A St
/'.\‘ \\\‘\\l!{f}'{a! l
-:ﬁ‘\

“J’I !’

Figure 6. CLONALG on Problem G01, GO3

From Fig. 6 we can see our CLONALG
implementation could easily solve the G01 problem as
well as the original version, but in the complex GO03
problem, our implementation performs a bit weaker.

2. MISA
On MISA and the other two MO-AIS algorithms,
we applied a more comprehensive test then
CLONALG. We firstly test four MOP problems each
30 times, then apply two quality indicators to them to
get an average result.

MISA-SCH-10000
T

164 + 5=
il S -~
12 \ :

(] SIS - \
o )

-

i ! H i H

-1 08 06 04 02 o
ff

02 04 06 08 1
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MISA-DEB-10000
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Figure 7. MISA on Problem SCH, DEB, ZDT1, DTLZ3

Then two quality indicators are applied to our version
and the original implementation, 30 times average data

is listed in Table 6.

Table 6: Quality Compare on MISA

GD (*10%) HVR
Ours | Origin Ours Origin
SCH 1.951 1.875 0.9939 0.9956
DEB 1775 436 0.9121 0.9369
ZDT1 33999 | 28490 — p—
DTLZ3 174 158 0.7910 0.8128

From the table we know that on SCH\DEB\DTLZ3,
MISA could work out an acceptable result, but in ZDT1,
both of them could not work well. And in all problems
our version trailed past the original version, but the gap
is not big.

3. NNIA

Using NNIA we execute the same test methods as
with MISA. The result shows as follow:
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4. CMOIA

11

For the reason mentioned above, we tested CMOIA
using only one version. The results shows as follow:
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Figure 8. NNIA on Problem SCH, DEB, ZDT1, DTLZ3
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Table 7: Quality Compare on NNIA

1.5 18

Figure 9. CMOIA on Problem SCH, DEB, ZzDT1, DTLZ3

Table 8: Quality Indicators on CMOIA

GD (*10°) VR

Ours | Origin Ours Origin

SCH 2.747 2.559 0.9939 0.9956

DEB 613 589 0. 9121 0.9369

7ZDT1 T.611 6.909 0.9722 0.9810
DTLZ3 163 76.48 0.7910 0.8128

From the data we know that all versions of NNIA
perform well on the four test problems. The quality gap
between our version and original version of NNIA is
much smaller than with MISA.

Copyright © 2012 MECS

GD (*107) HVR
SCH T.932 0.9959
DEB 322 0.8955
ZDTI 3279 0.9803
DTLZ3 245 0.7456

The original version of CMOIA is implemented by
our team using this framework. We listed the previous
test result here only to show that our framework could
servewell for new MO-AIS algorithm research.
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VII. Conclusion And Future Work

In this paper, we suggest that all MO-AIS algorithms
(mainly based on the clonal selection principle) could be
summed up by a series of common principles, strategies
and processes to form a specific framework. Then
though the analysis of the MO-AIS algorithms®
characteristic’s we describe the framework's conception,
architecture and implementation methods. We explained
the algorithm implementation method wusing our
framework by implementing four typical MO-AIS
algorithms. Finally several tests are applied on our
implementation to show that our framework is fully
useful and feasible.

In the future we will try to develop a highly-organized
framework for this area including the imple mentation of
algorithms based on immune network principles, and
publish the framework's code in a highly readable
account.

The main difference between MO-AIS algorithms
nowadays is the improvement of operators’
implementations and the weighting methods. Our
framework could serve very well for researching,
comparing and proposing MO-AIS algorithms.
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