
I.J. Intelligent Systems and Applications, 2012, 6, 1-13 

Published Online June 2012 in MECS (http://www.mecs-press.org/) 

DOI: 10.5815/ijisa.2012.06.01 

Copyright © 2012 MECS                                                               I.J. Intelligent Systems and Applications, 2012, 6, 1-13 

A General Framework for Multi-Objective 

Optimization Immune Algorithms 
 
 

Chen Yunfang 

College of Computer, Nanjing University of Posts and Telecommunications, Nanjing, China 

Email:chenyunfang999@gmail.com 

 

 
Abstract—Artificial Immune System (AIS) is a hotspot 

in the area of Computational Intelligence. While the 

Multi-Objective Optimizat ion (MOP) problem is one of 

the most widely applied NP-Complete problems. During  

the past decade more than ten kinds of Mult i-Objective 

optimization algorithms based on AIS were proposed 

and showed outstanding abilities in  solving this kind of 

problem. The paper presents a general framework of 

Multi-Objective Immune Algorithms, which summarizes 

a uniform outline of this kind of algorithms and gives a 

description of its principles, main ly used operators and 

processing methods. Then we implement the proposed 

framework and build four typical immune algorithms on 

it: CLONALG, MISA, NNIA and CMOIA. The 

experiment results showed the framework is very 

suitable to develop the various multi-objective 

optimization immune algorithms. 

 
Index Terms—Multi-Objective Opt imization, Artificial 

Immune Systems, Algorithms Framework. 
 

I. Introduction 

Many problems in the engineering field or scientific 

research have more than one objective to be optimized  

simultaneously. This is Multi-Objective Optimization  

Problems (MOP). Different from optimizat ion problems 

which only have a single objective, there is usually no 

unique solution that meets all objectives of the problem. 

Instead, it aims  at finding all the solutions which could  

build a balance of d istance among every objective. This 

character of MOP Problems greatly increases the 

searching difficulty at the time we try to find solutions. 

Early in 1987, Serafini [1] proposed that the 

computational complexity  of these kinds of problems  

was NP-Complete. Therefore, new h igh-efficiency 

heuristic algorithms are needed to solve it.  

Several methods have been proposed to solve this 

kind of problem, such as genetic algorithms, Particle 

Swarm Optimizat ion, Multi-Agent System algorithm 

and so on.  

Genetic Algorithms (GA) are based on the principle 

of evolution and natural genetics. They simulate a 

natural process of creatures` evolution and natural 

selection, applied into data searching field. To solve 

MOP Problems, GA treats the solution-set of MOP as a 

creature population, the objectives as a natural condition, 

and dominated solutions as elite ones in the population. 

So solving process of MOP can be linked with the 

natural selection of creature populations. The main  

algorithms based on GA are NSGA [2] (NSGAII is its 

update version), MOEAD [3], PAES [4] and others. 

Particle Swarm Optimization (PSO) is one of the 

classical swarm intelligence algorithms that simulate  

social behaviors to guide swarms of particles towards 

the most promising regions of the search space [5]. PSO 

has a flexible and well-balanced method to increase and 

adapt global exploration and local search abilities . 

Multi-Agent System (MAS) is a system made up of 

multip le interacting intelligent agents. MAS can be used 

to solve problems that are difficult or impossible for a 

single agent or massive system to solve. When applied 

to MOP, MAS forms a set of individual agents with their 

own goals that can interact with each  other. During  the 

algorithm process, agents changed towards their goals 

and exchange informat ion with other agents, and finally  

solve the problems, as with FGAS algorithms in paper 

[5].  

The heuristic algorithms mentioned above are all 

inspired by some natural phenomena. Furthermore in  

1986, J. Doyne Farmer and other four researchers [6] 

published their work on a new biologically-inspired 

computing model: Artificial Immune System (AIS). 

Rooted in animal̀ s immune system, AIS makes an 

abstraction of several principles: Negative Selection, 

Clonal Selection, Immune Networks etc. AIS can be 

used in computer security, machine learn ing, pattern 

recognition and many other areas [7]. 

Today in the area of MOP, two principles of AIS are 

widely used: Clonal Selection and Immune Networks. 

MOP algorithm based on immune network was first 

proposed by Jerne [8], which is based on a bio-immune 

phenomenon where in B-cells are stimulated and 

suppressed by both antigens and other interacted B-cells. 

Based on Jerne’s study, two sub-classes of immune 

network theories were proposed: De Castro’s discrete 

immune network model [2] and Hajela’s model [9]. 

Recently, many algorithms based in area have been  

proposed. The amount of work needed for developing, 

implementing, testing or doing  comparison on Multi-

Objective immune algorithms increases greatly. So a 

common algorithm framework which could cover most 
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of these kinds of algorithms is needed, just like JMetal 

[10] for GA, which is an object-oriented Java-based 

framework aimed at the study of meta-heuristics for 

solving MOP problems. Researchers could conveniently 

do the development, experimentation and comparison in 

area of GA-MOP algorithms. But this kind of 

framework is still lacking in MO-AIS area. 

Based on the wide research on typical kinds of MO-

AIS algorithms and the high-level abstraction of them, 

this paper proposes a general framework of Multi-

Objective  Immune Algorithms (mainly based on the 

clonal selection princip le), which g ives a description of 

its mathematical foundation, principles, algorithmic 

outline and the common implementation of some 

commonly used operators and methods. Based on this, 

we implement four classical MO-AIS algorithms, 

CLONALG [11], NNIA [12], MISA [13] and CMOIA 

[14], to show the validity of this framework. 

 

II. Background Knowledge And Definition 

2.1 Multi-Objective Optimization Problem 

T

1 2F(x)=( ( ), (x),...., (x))kf x f f                                (1) 

∈

∈

∈

1,2,...,i k  ( ) ( ) 1,2,...,i A i Bf x f x j k  
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∈

*,x x x   

* * *P { | , }x x x x  
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    (4)  

2.2 Artificial Immune System 
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After Luh et al. [19] proposed a Multi-objective 

Immune Algorithm (MOIA), MO-AIS research grew 

into maturity. Following that tens of algorithms were 

proposed. The typical ones are Wong et al. `s HAIS [20], 

and Gong et al.`s NNIA [12]. 

 

III. The Algorithm Framework 

Table 1: Mapping Between Biological Immune System and Multi-
Objective Optimization Problem 

AIS MO P 

Antigen multi-objective problem 

antibody, B-Cell, T -Cell Solution 

memory cell Archive 

immune clone clonal selection algorithm 

Affinity quality of solution 

antibody generation Iteration 

Application Domain

Immune Entities

Representation

Affinity Measures

Immune Algorithms

Solutions

Figure 1.  The Steps to Implements an MO-AIS 

Table 2: The Common Outline of MO-AIS 
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3.1 Initial of Population 

3.2 Immune Progress Iteration 

3.3 The Final Process of the Antibodies 

IV. The Immune Iterator Operators 

4.1 The Clonal selection Operators  

Table 3: The Common Outline of Clonal Selection Operator 

 

i i c i gAff x x x x   
                                      (5)
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4.2 Hyper-Mutation and Crossover Operators 

Table 4: The Common Outline of Hyper-Mutation Operator 

∈

∈
∈

∈

4.3 Recombination and Memory Operators 
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Table 5: The Common Outline of Memory Inserting 

 

 
 

 

 

 

2) Adaptive Grid Memory 

V. Algorithm’s Implement 

5.1   CLONALG: A SOP Algorithm but the MOP 

Algorithms` Basement 

Ab

f

Clonal
Selection

C
Hyper-

Mutation

C*

f

Re-select

Ab(n)Ab(d) (1)

(2)

(3)(4)

(5)

(6)

(7)

Figure 2.  Computational Procedure for CLONALG 
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5.2   MISA: An Adaptive Grid improved Algorithm 

Ab

f

Clonal
Selection

CMutation

C*

f

Ab(n) (1)

(2)

(3)

(4)

(5)

(7)

(7)

M

Crossover

IF(M is full)

(6)

Figure 3.  Computational Procedure for MISA 

5.3   NNIA: Algorithmic Solutions Weighted by 

Crowding-Distance 

Ab

f

Clonal
Selection

CRecombination

f

Ab(n)

(1)

(2)

(3)(4)

(5)

(6)

(7)

Hyper-
Mutation

Re-select

Figure 4.  Computational Procedure for NNIA 

5.4 CMOIA: The Clustering-Based Clone Algorithm 
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Ab

f

Clonal
Selection

C
Hyper-

Mutation

C*

f

Ab(n)Ab(r) (1)

(2)

(3)

(4)

(5)

(6)

(7)

GA Crossover
GA Mutation

Figure 5.  Computational Procedure for CMOIA 

VI. The Experiment and Conclusion 

6.1 Test Problems and Quality Indicators  

1) Test Problems 

1. G01 and G03 

6
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3. DEB 
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Each variable is in [0, 1]. 

 

4. ZDT1 
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5. DTLZ3 
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All the variables are in [0,1]. 

 

2) Quality Indicators 

1. Generation Distance (GD) 

2

1

1/
knownN

known i

i

GD N d



                                      (10) 

2. Hyper-Volume Rate (HVR) 

( , )

VOL [ , ] [ , ]x y

x y P

R x R y


 
 
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                                        (11) 

6.2 Algorithm Parameters Setting 

1. CLONALG 

2. MISA 

3. NNIA 

4. CMOIA 

6.3 Test Results and Analyses 
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Figure 6.  CLONALG on Problem G01, G03 

2. MISA 

Figure 7.   MISA on Problem SCH, DEB, ZDT1, DTLZ3 

Table 6: Quality Compare on MISA 
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Figure 8.  NNIA on Problem SCH, DEB, ZDT1, DTLZ3 

Table 7: Quality Compare on NNIA 

 

 

 

 

Figure 9.  CMOIA on Problem SCH, DEB, ZDT1, DTLZ3 

Table 8: Quality Indicators on CMOIA 
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VII. Conclusion And Future Work 
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