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Abstract— Meditation is commonly perceived as an 

alternative medicine method of psychological diseases 

management tool that assist in alleviating depression and 
anxiety disorders. The purpose of this study is to evaluate the 

accuracy of different classifiers on the heart rate s ignals in a 

specific psychological state. Two types of heart rate time 

series (before, and during meditation) of 25 healthy women are 

collected in the meditation clinic in Mashhad. Nonlinear 
features such as Lyapunov Exponents and Entropy were 

extracted. To evaluate performance of the classifiers, the 

classification accuracies and mean square error (MSE) of the 

classifiers were examined. Different classifiers were tested and 

the studies confirmed that for the heart rate signals, Quadratic 
classifier trained on Lyapunov Exponents and Entropy results 

in higher classification accuracy. The classification accuracy 

of the Quadratic classifier is 92.31%. However, the accuracies 

of Fisher and k-Nearest Neighbor (k-NN) classifiers are 

encouraging. The classification results demonstrate that the 
dynamical measures are useful parameters which contain 

comprehensive information about signals and the Quadratic 

classifier using nonlinear features can be useful in analyzing 

the heart rate signals in a specific psychological state.  

 
 

Index Terms— Classification, Entropy, Heart Rate 

Variability, Lyapunov Exponents, Meditation 

 

I. INTRODUCTION  

Meditation, a technique that frees the mind  from 

distractions and allows for communicat ion with the 

Master Within, can lead to numerous physical, mental 

and spiritual benefits. 

A large number of studies aimed at studying observed 

effects of meditation and were only able to assess 

certain general changes of the heart rate signals [1-3]. 

However, there is no significant effort on classifying 

biological signals during rest and meditation. 

Heart rate classification algorithms can be divided 

into three steps: pre-processing, feature extraction/ 

selection, and classification. The techniques developed 

for heart rate change detection transform the mostly 

qualitative diagnostic criteria into a more objective 

quantitative signal feature class ification problem [4-6]. 

For pattern processing problems to be tractable requires 

the conversion of patterns to features, which are 

condensed representations of patterns, ideally containing 

only salient informat ion. Since the dynamics of the 

cardiac system are chaotic, nonlinear methods have been 

applied to the analysis of heart rate signals. Two 

features were used in discrimination of the heart rate 

signals, i.e., Lyapunov exponents  and Entropy. 

Therefore, the classifiers employing these features were 

implemented for detection of heart rate signal changes 

in rest and meditation periods. 

In recent years, there has been an increasing interest 

in applying  techniques from the domains of nonlinear 

analysis and chaos theory in studying the behavior of a 

dynamical system from an experimental time series such 

as biological signals [6-8]. The purpose of these studies 

is to determine whether dynamical measures especially 

Lyapunov exponents can serve as clinically useful 

parameters. Estimat ion of the Lyapunov exponents  is 

more readily interpreted with respect to the presence of 

chaos. The positive Lyapunov exponents are the 

hallmark of chaos [8]. 

A number of different classification algorithms have 

been proposed in the literature, Maaoui and Pruski [9] 

for example used Fisher discriminant and SVM to 

classify emotional states. In this study, four different 

classification methods are proposed: Fisher classifier, 

Quadratic classifier, k-Nearest Neighbor (k-NN) and 

Parzen classifiers. 

The outline of this study is as follows. In the next 

section, we briefly describe the set of heart rate signals  

(HR) used in our study. Then, the computation of the 

nonlinear features (Lyapunov exponent and Entropy) of 

HR signals is explained in order to define the behavior 

of the signal under study. Next, the description of 

different classifier models that are considered in this 

study is presented. Finally, the results of present study 

are shown and the study is concluded. 
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II. BACKGROUND  

A.  Data collection 

Twenty five subjects took part in the s tudy. Fifteen 

subjects: eleven meditators (mean age 40.18±7.19, mean 

meditation experience 5 to 7 years) and four non-

meditators (mean age 25.5±1.91) were asked to do 

meditation by listening to the guidance of the master. 

The other ten subjects were asked to do meditation by 

themselves. They were considered to be at an advanced 

level o f meditation train ing (mean meditation 

experience 7 years, mean age 37.8±6.39).  

The subjects were in good general health and did not 

follow any specific heart diseases. The subjects were 

asked not to eat salty or fat foods before meditation 

practices or data record ing. Informed written consent 

was obtained from each subject after the experimental 

procedures had been explained [10]. 

The experimental procedure was div ided into two 

different stages: Subjects were first instructed to sit 

quietly for 5 minutes and kept their eyes closed. After 

that, they performed meditation. Meditation prescribes a 

certain bodily posture. They sit on a cushion 5 to 10 

centimeters thick that is placed on blanket. They cross 

their legs so that one foot rests on the opposite thigh 

with the sole of their foot turned up and with their knees 

touching the blanket (lotus or half-lotus position). The 

torso should be kept straight, but it should not be 

strained. The head should be kept h igh with eyes closed. 

During this session, the meditators sat quietly, listening 

to the guidance of the physician and focusing on the 

breath [10,11]. 

 The electrocardiogram signals (ECG) - lead I- of all 

subjects were recorded in meditation clinic using 16-

channel PowerLab (manufactured by ADInstruments). 

Heart rate signals were extracted online using Chart5 for 

Windows software (based on heart rate = 60/RR interval 

in seconds). The monitoring system hardware filters 

band passed data in range 0.1-200 Hz for ECG time 

series. A digital notch filter was applied  to the data at 50 

Hz to remove any artifacts caused by alternating current 

line noise. The sampling rate was 400 Hz. 

 

B. Feature extraction 

The power o f features plays an important ro le in the 

classification accuracy of a particular classifier applied 

to the pattern classification problem. For this purpose, 

nonlinear features, Lyapunov exponents and Entropy, 

are applied as inputs of the classifiers. 

 

1) Lyapunov exponents 

 

Consider two (usually the nearest) neighboring points 

in phase space at time 0 and at a time t, distances of the 

points in the ith direction being  0x i and  tx i , 

respectively. The Lyapunov exponent is then defined by 

the average growth rate λ i of the initial distance 
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An exponential divergence of initially nearby 

trajectories in phase space coupled with fold ing of 

trajectories, ensures that the solutions will remain fin ite, 

and is the general mechanis m for generating 

deterministic randomness and unpredictability. 

Therefore, the existence of a positive λ  for almost all 

initial conditions in a bounded dynamical system is 

widely used.  

To discriminate between chaotic dynamics and 

periodic signals Lyapunov exponent (λ) is often used. It 

is a measure of the rate at which the trajectories separate 

one from other. The trajectories of chaotic signals in 

phase space follow typical patterns. Closely spaced 

trajectories converge and diverge exponentially, relative 

to each other. For dynamical systems, sensitivity to 

initial conditions is quantified by the Lyapunov 

exponent (λ). They characterize the average rate of 

divergence of these neighboring trajectories. A negative 

exponent implies that the orbits approach a common 

fixed point. A zero exponent means the orbits maintain 

their relative positions; they are on a stable attractor. 

Finally, a positive exponent implies the orbits are on a 

chaotic attractor [12,13]. 

 

 2)  Entropy 

There are a number of concepts and analytical 

techniques directed to quantifying the irregularity of 

stochastic signals. One such concept is Entropy. Entropy, 

when considered as a physical concept, is proportional 

to the logarithm of the number of microstates available 

to a thermodynamic system, and is thus related to the 

amount of disorder in the system.  

For informat ion theory, Entropy was first defined by 

Shannon and Weaver in 1949 [14]. In this context, 

Entropy describes the irregularity, unpredictability, or 

complexity characteristics of a signal. 

In a simple example, a signal in which sequential 

values are alternately of one fixed magnitude and then 

of another fixed magnitude has an entropy value of zero, 

i.e. the signal is completely regular and totally 

predictable. A signal in which sequential values are 

generated by a random number generator has greater 

complexity and higher entropy. 

Entropy is an intuitive parameter in the sense that one 

can visually distinguish a regular signal from an 

irregular one. Entropy also has the property that it is 

independent of absolute scales such as the amplitude or 

the frequency of the signal: a simple sine wave is 

perfectly regular whether it is fast or slow. 

There are various ways to compute the entropy of a 

signal. One of them is offered by Shannon [15]. 

Shannon developed a measure to quantity the degree of 

uncertainty of a probability distribution [15]. Denoting 
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ShEn as Shannon's Entropy measure, its formal 

expression in the case of discrete probability 

distributions is 
(2) 

i

i

i ppShEn  log  

where p
T
 = [p1 , ... , pN] is a probability distribution 

(superscript T represents vector/matrix transposition). 

 

C.  Classification 

In this paper, the Lyapunov exponents and Entropy 

are used as inputs of four different classifiers. The task 

at hand is to classify the HR epochs of twenty five 

healthy women as either related to before or to during 

meditation. The four different classification methods are 

Fisher classifier, Quadratic classifier, k-NN and Parzen 

classifiers. 

Statistical classifiers fall into two categories; 

parametric and non-parametric [16]. The linear and 

Quadratic classifiers are of the parametric type. In this 

type, the classification ru les are based on models of the 

probability density function of the data. Both Linear and 

Quadratic classifiers are based on the assumption that 

classes have multivariate Gaussian distributions.  

The k-NN is a nonparametric classification procedure 

and hence no assumption of the form of the underlying 

densities is required. Th is method, however, assumes 

that there are enough points from each class such that in 

any small region within  the decision space, the number 

of points occurring in these regions indicates the true 

nature of each density function. 

The description of each classifier models  that are 

considered in this study are presented in the following 

sections. 

 

 1)  Fisher's discriminant 

The terms Fisher's linear discriminant and linear 

discriminant analysis (LDA) are often used 

interchangeably, although Fisher's  original art icle [17] 

actually describes a slightly different discriminant, 

which does not make some of the assumptions of LDA 

such as normally d istributed classes or equal class 

covariances. 

Suppose two classes of observations have means 

,1,0  yy 
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and covariances Σy = 0, Σy = 1. Then the 

linear combination of features x
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for i = 0,1.  

Fisher defined the separation between these two 

distributions to be the ratio of the variance between the 

classes to the variance within the classes: 
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This measure is, in some sense, a measure of the 

signal-to-noise ratio for the class labeling. It can be 

shown that the maximum separation occurs when 
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(4) 

When the assumptions of LDA are satisfied, the above 

equation is equivalent to LDA.  

Be sure to note that the vector


is the normal to the 

discriminant hyperplane. As an example, in a two 

dimensional problem, the line that best divides the two 

groups is perpendicular to


. 

Generally, the data points to be discriminated are 

projected onto


; then the threshold that best separates 

the data is chosen from analysis of the one-dimensional 

distribution.  

There is no general rule for the threshold. However, if 

projections of points from both classes exhibit 

approximately the same distributions, a good choice 

would be the hyperplane between projections of the two 

means, 0. y


 and 1. y


. In this case the parameter c 

in threshold condition cx 


. can be found explicitly: 

  2. 10   yyc 


 (5) 

 

2)  Quadratic classifier 

A Quadratic classifier is used in machine learning and 

statistical classification to separate measurements of two 

or more classes of objects or events by a Quadratic 

surface. It is a  more general version of the linear 

classifier. 

Statistical classification considers a set of vectors of 

observations x of an  object or event, each of which has a 

known type y. This set is referred to as the training set. 

The problem is then to determine for a given new 

observation vector, what the best class should be.  

For a quadratic classifier, the correct solution is 

assumed to be quadratic in the measurements, so y will 

be decided based on: 

cxbAxx TT   

In the special case where each observation consists 

of two measurements, this means that the surfaces 

separating the classes will be conic sections (i.e. a  line, a 

circle or ellipse, a parabola or a hyperbola). 

Quadratic discriminant analysis (QDA) is closely 

related to LDA, where it is assumed that the 

measurements from each class are normally distributed. 

Unlike LDA however, in QDA there is no assumption 

that the covariance of each of the classes is identical. 

When the normality assumption is true, the best possible 

test for the hypothesis that a given measurement is from 

a given class is the likelihood ratio test.  

Suppose there are only two groups, (so y{0,1}), and 

the means of each class are defined to be μy = 0, μy = 1 

and the covariances are defined as Σy = 0, Σy = 1. Then 

the likelihood ratio will be given by 
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for some threshold t. After some rearrangement, it can 

be shown that the resulting separating surface between 

the classes is a Quadratic. The sample estimates of the 

mean vector and variance-covariance matrices will 

substitute the population quantities in this formula. 

 

3)  K-Nearest Neighbor classifier 

In pattern recognition, the k-Nearest Neighbor 

algorithm (k-NN) is a method for classifying objects 

based on closest training examples in  the feature space. 

K-NN is a type of instance-based learning, or lazy 

learning where the function is only approximated locally 

and all computation is deferred until classification.  

The k-Nearest Neighbor algorithm is amongst the 

simplest of all machine learning algorithms: an object is 

classified by a majority vote of its neighbors, with the 

object being assigned to the class most common amongst 

its k-Nearest Neighbors (k is a positive integer, typically 

small). If k = 1, then the object is simply assigned to the 

class of its nearest neighbor. 

The same method can be used for regression, by 

simply  assigning the property value for the object to be 

the average of the values of its k-Nearest Neighbors. It 

can be useful to weight the contributions of the neighbors, 

so that the nearer neighbors contribute more to the 

average than the more distant ones (A common 

weighting scheme is to give each neighbor a weight of 

1/d, where d is the distance to the neighbor. This scheme 

is a generalization of linear interpolation). 

The neighbors are taken from a set of objects for 

which the correct classification (or, in the case of 

regression, the value of the property) is  known. This can 

be thought of as the training set for the algorithm, though 

no exp licit training step is required. The k-Nearest 

Neighbor algorithm is sensitive to the local structure of 

the data.  

Nearest Neighbor rules in effect compute the decision 

boundary in an implicit manner. It is also possible to 

compute the decision boundary itself explicitly, and to do 

so in an efficient manner so that the computational 

complexity is a function of the boundary complexity [18]. 

The naive version of the algorithm is easy to 

implement by computing the distances from the test 

sample to all stored vectors, but it is computationally 

intensive, especially when the size of the training set 

grows. Many nearest neighbor search algorithms have 

been proposed over the years; these generally seek to 

reduce the number of distance evaluations actually 

performed. Using an appropriate nearest neighbor search 

algorithm makes k-NN computationally tractable even 

for large data sets. 

The nearest neighbor algorithm has some strong 

consistency results. As the amount of data approaches 

infin ity, the algorithm is guaranteed to yield an error rate 

no worse than twice the Bayes  error rate (the minimum 

achievable error rate given the distribution of the data) 

[19].  

K-Nearest Neighbor is guaranteed to approach the 

Bayes error rate, for some value of k (where k increases 

as a function of the number of data points). Various 

improvements to k-Nearest Neighbor methods are 

possible by using proximity graphs [20]. 

 

4) Parzen classifier 

The Parzen classifier provides an estimate of the class-

conditional probability density function (PDF) by, e.g., 

applying a kernel density estimator to the labeled feature 

vectors in the training set, while a Gaussian Mixture 

Model (GMM) classifier estimates class-conditional 

PDFs using mixtures of multivariate normal PDFs [21].  

The Parzen classifier estimates the class densities by 

the Parzen density estimation and has a built-in 

optimization for the smoothing parameter.  

Parzen-window approach to estimate densities 

assume that the region Rn is a d-dimensional hypercube. 

If hn is the length of an edge of that hypercube, then its 

volume is given by (7). 

 d
nn hV   (7) 

An analytic expression for kn can be obtained, the 

number of the samples falling in  the hypercube, by 

defining the following window function: 
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Thus, (u) defines a unit hypercube centered at the 

origin. It follows that ((x-xi)/hn) is equal to unity if xi 

falls within the hypercube of volume Vn centered at x 

and equal to zero otherwise. The number of samples in 

this hypercube is  therefore given by (9): 
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One will have to accept a certain amount of 

variance in the ratio k/n and a certain amount of 

averaging of the density p(x).  

Let Vn  be the volume of Rn and pn(x) be the nth 

estimate for p(x). 
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By substituting kn in equation (10), we obtain the 

following estimate: 
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This equation suggests a more general approach to 

estimating density functions [22].  
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Pn(x) estimates p(x) as an average of functions of x 

and the samples (xi) (i = 1,… ,n). These functions  can 

be general. 

 

III. RESULTS 

Features play an important role in  classifying systems. 

Features are selected based on either best representation 

of a given class of signals or best distinction between 

classes. High-dimension of feature vectors increased 

computational complexity and the classifier trained on 

these feature vectors produced lower accuracy. 

In this study, Entropy and maximum Lyapunov 

Exponents of heart rate signals were calculated. Then the 

results of analysis of heart rate signals during meditation 

were compared to before meditation. 

Maximum values of the Lyapunov Exponents are 

given in Fig.1(a). According to the results, all the 

Lyapunov Exponents are positive, which confirm the 

chaotic nature of the heart rate signals recorded before 

and during meditation. In addition, the average value of 

the Lyapunov Exponents is about 0.95 before meditation 

and it is about 0.93 during meditation. The maximum 

Lyapunov Exponents are decreased during meditation 

(p<0.05). It shows that heart rate signals before 

meditation are more chaotic than that during meditation. 

Fig.1(b) depicts the box plot of Entropy of heart rate 

signals before and during meditation for all subjects. 

According to Fig.1(b), the average value of Entropy is 

decreased during meditation (p<0.05).  

Fisher's discriminant, k-NN classifier, Quadratic 

classifier and Parzen classifier proposed for 

classification of heart rate signals were implemented by 

using MATLAB software package (MATLAB with 

PRTOOLS toolbox). 

 

 

(a) 

 

(b) 

Figure 1.  Box plot of features of heart rate signals: before meditation 
and during meditation. 

(a) Lyapunov exponents (b) Entropy 

 

The epochs in the data set were rando mly d ivided into 

two sets: a training set and a testing set. 70% of the 

epochs are used to train the classifiers while 30% were 

used to test the performance of each classifier. 

The values of classification accuracy, classification 

error and the central processing unit (CPU) times of 

training of the four classifiers  are presented in Table I. 

 

TABLE I. CLASSIFICATION RESULTS. 

Elapsed time(s) Error Accuracy (%) Classifier 
3.02 0.0769 88.46 Fisher 

5.04 0.0385 92.31 Quadratic 

2.63 0.1154 84.62 k-NN 

3.09 0.2308 65.38 Parzen 

 

The classification results presented in Table I denote 

that the Quadratic classifier trained on proposed features 

obtains higher accuracy than that of the others. The total 

classification accuracy of the Quadratic classifier was 

92.31% with 0.0385 classification error. As it can be 

observed, Fisher and k-Nearest Neighbor classifiers give 

good results (88.46% and 84.62% respectively). 

 

IV. DISCUSSION 

Meditation, a technique that frees the mind  from 

distractions and allows for communicat ion with the 

Master Within, can lead to numerous physical, mental 

and spiritual benefits. 

This paper presented a new application of classifiers 

employing nonlinear features, Lyapunov exponents and 

Entropy, for classification of the heart rate signals  

during rest and meditation. 

Dynamical measures such as Lyapunov exponents 

and Entropy can serve as clinically useful parameters 

and contain a significant amount of information about 

the signal. Therefore, these features are considered in 
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this study.  

For all subjects, the Lyapunov Exponents are 

decreased during meditation, which indicates that 

signals are less chaotic than that before meditation. This 

can be due to decreased nonlinear interaction of 

variables in meditation states and may be related to 

increased parasympathetic activity and increase of 

relaxation state.  

The lower values of Entropy and positive values of 

Lyapunov Exponents suggest that all heart rate signals 

have low d imensional chaos, and the complexity of 

signals is decreased during meditation.  These results 

were similar to our previous meditation studies [10,11]. 

Four different classifiers were used to classify two 

classes of heart rate signals (before and during 

meditation) when the Lyapunov exponents and Entropy 

of signals were used as inputs. 

The results of the previous section demonstrate that, 

within  the simulation framework and selected training 

data sets; a large significant d ifference exists between 

the performances of classifiers. On the bases of the 

given simulation results we can say that the Quadratic 

classifier is more accurate for classifying the patterns of 

heart rate signals in comparison with the other 

classifiers (with total classification accuracy of 92.31%.). 

However, the results from the fisher and k-Nearest 

Neighbor classifiers are quite encouraging (Table I). 

Other studies on heart rate signals have shown similar 

encouraging results  by using the same classifiers . In the 

study of Maaoui and Pruski [9], Fisher discriminant and 

SVM method are used and compared fo r emotional state 

classification. Their experimental results indicate that 

the proposed method provides very stable and successful 

emotional classificat ion performance as 92% over six 

emotional states. 

Malarvili et al [23] applied different classifiers to 

evaluate their feature selection method. It was found that 

the k-NN outperformed the other classifiers resulting in 

a significant reduction in feature dimensionality while 

achieving high classification performance.  

   

V. CONCLUSION 

The results of this research illustrates that in the heart 

rate signals during meditation, there are features that 

have explicit difference with rest period features. 

Although these differences may not be detected by 

means of simple features, but nonlinear features have far 

more ability to detect these differences.  

The obtained results demonstrate that the Quadratic 

classifier can be used in classifying the heart rate signals 

during meditation. 

Some future work should also be carried  out. For 

instance, other nonlinear features such as correlation and 

fractal dimensions can be examined as a classifier inputs . 

Furthermore, other classification techniques can be used 

to obtain efficient and accurate results in the future.  
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