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Abstract— In this paper, a dynamic recurrent wavelet 

neural network observer and tracking control strategy is 

presented for a class of uncertain, nonaffine systems. In 

proposed scheme a dynamic recurrent wavelet network 

is used to design a nonlinear observer .Adaptation laws 

are developed for the online tuning of wavelet 

parameters. Based on the estimated states, a state 

feedback control law is derived to achieve the desired 

tracking performance. The stability of clos ed loop 

system and ultimate upper boundedness all closed loop 

signals is proven in Lyapunov sense. Effectiveness of 

proposed scheme is demonstrated through numerical 

simulation.  

 

Index Terms— Nonaffine Systems, Dynamic Recurrent 

Wavelet Networks, Nonlinear Observer, Lyapunov 

Stability Analysis  

 

I. Introduction 

System identification is an essential step while 

deriving state feedback controllers for uncertain 

nonlinear systems. Neural Networks (NNs) due to their 

universal approximat ion properties have proven to be an 

effective tool to deal with control problems of uncertain 

control systems [1]. Employment of neural network 

(NN) as an approximation tool in adaptive control 

strategies has greatly relaxed the constraint of linear 

parameterized nonlinearities and thereby broadened the 

class of the uncertain nonlinear systems which can be 

effectively dealt by adaptive controllers. In last few 

years, some researchers have developed the wavelet 

networks [2, 3]. Wavelet neural networks are feed-

forward neural networks us ing wavelets as activation 

function. A wavelet network consists of single layer of 

translated and dilated versions of mother wavelet 

function. Due to their space and frequency localization 

properties, the learning capability of WNN is superior 

to conventional neural networks. Training algorithms 

for WNN converge in smaller number of iterations than 

for conventional neural networks. These WNN 

combines the capability of art ificial neural network for 

learning ability and capability of wavelet decomposition 

for identification ability. Thus WNN based control 

systems can achieve better control performance than 

NN based control systems [4-6].The feed forward 

structure of the conventional WNN limits the 

applicability of these networks only to static 

environmental conditions. These networks are not very 

effective under the frequently changing operating 

conditions and dynamic properties as they can not adapt 

rapidly under such circumstances. To overcome this 

problem, a feedback mechanism is inserted in 

conventional feed forward WNN giving rise to either 

recurrent WNN. These recurrent networks combine the 

properties of recurrence with the convergence 

properties of WNN to solve the complex control 

problems [7, 8]. 

System identification and subsequent controller 

design relies on the assumption of complete 

accessibility of system states, which is not valid in case 

of several real time systems. In case of such systems, 

where d irect  online measurement  of system states is not 

feasible, observers are used for reliab le estimation of 

systems states. Several nonlinear observer design 

schemes like h igh gain observers and sliding mode 

observers are cited in literature. However these schemes 

require the system uncertainties to satisfy certain 

admissibility criteria’s , such as norm boundedness 

condition leading to some conservative observer design 

[9-11]. Application of neural networks for nonlinear 

observer design is an effective strategy for state 

estimation. Neural network based observer designs 

relaxes the norm boundedness constraint of system 

uncertainties so estimate the states accurately and are 

applicable to a wide class of uncertain nonlinear 

systems [11-13]. 

In this work a dynamic recurrent wavelet network is 

used for designing a nonlinear observer for effective 

estimation of system states of an uncertain nonaffine 

system. To enhance the approximation property of the 
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wavelet network, self recurrent architecture of wavelet 

network is used. Nonaffine system is first converted to 

an affine like form by applying a suitable 

transformation and then observer and controller 

schemes are designed for the later form by implicit 

function theorem [14, 15]. Finally the stability of the 

closed loop system and ult imate upper boundedness of 

closed loop signals is assured by constructing a 

Lyapunov function.  

The paper is organized as follows. Section 2 provides 

the preliminary remarks. Section 3 formulates the 

problem. Section 4 addresses the designing and stability 

issues of    wavelet observer design. State feedback 

controller design and main results are presented in 

Section 5.Effenciency of the proposed controller is 

illustrated in section 6 through a simulation 

study .Finally section 7 concludes the paper.  

 

II. Preliminary Remarks 

2.1 Fundamentals of Wavelet Network 

Wavelet network is a type of building b lock for 

function approximation. The build ing block is obtained 

by translating and dilating the mother wavelet function. 

Output of an n dimensional self recurrent wavelet 

network with m nodes is  

 , , ,Tf x w c    
                                      (1) 

where  nx  is the  external input vector, 

 pf 
is the output vector, 

m
is wavelet  

vector; 
mnw , 

mnc R  are dilation and translation 

vectors where as 
mn

 represents the feedback 

input, this vector serves as the memory  element and 

stores the previous information of the network. While 
mxpR  is the output weight matrix and 
mnR   is feedback weight vector. 

Let 
*f
 be the optimal function approximation using 

an ideal wavelet approximator then   

* * *Tf f     
                                   (2) 

where
 * * * *, , ,x w c   

and 
* * *, ,w c  

are 

the optimal values  of 
, ,w c 

 respectively and 

  T

p    
 denotes the approximat ion error 

vector and is assumed to be bounded by 

*

i i  
,in 

which 

*

i  is a positive constant.  

Optimal parameter vectors needed for best 

approximation of the function are difficult to determine 

so defining an estimate function as  

                                                              (3) 

Where and  are the 

estimates of 
* * *, , ,w c 

respectively. Defin ing the 

estimation error as 

                                    (4) 

with  

 

By properly selecting the number of nodes, the 

estimation error 
f

 can be made arbitrarily s mall on 

the compact set so that the bound 
mf f

 holds for 

all x .  

 

Assumption A1 

It is assumed that wavelet function and optimal 

values of wavelet parameters are bounded, so 

that m  
,

* *

m 
, 

* *

mw w
,

* *

mc c
,

m   
.  

Wavelet vector 
 , , ,x w c  

is differentiable 

with respect to wavelet parameters 
, ,w c

 and .  

 

2.2 Dynamic Recurrent Wavelet Networks 

A dynamic recurrent wavelet network is governed by 

the following equation 

 , , ,Tz Az Bu z w c     
            (5) 

where 
nz  is state vector with 

, ,nxn nA B u  
. 

This dynamic recurrent wavelet network architecture 

can be viewed as a closed loop system composed of a 

linear state space model and a nonlinear mapping 

realized by using a wavelet network. Th is architecture is 

particularly useful for des igning of observers for 

uncertain nonlinear systems. Due to function 

approximation property of wavelet networks this 

observer design scheme accurately  estimates the system 

states thereby reducing the estimat ion error to an 

arbitrarily small value over a compact set. 
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III. Problem Formulation  

Considering a nonlinear non affine system of the 

form; 

( ) ( , )x t f x u

y Cx

 


                                                    (6) 

where
( ) nx t 

 are system states ,
( )u t 

 is 

bounded control input which will be designed to obtain 

desired tracking performance, 
1( , ) : n nf x u  

is 

a vector of smooth unknown nonlinear 

functions ,
( )y t 

 is measurable system output and 
c  is the known output matrix.  

Objective is to design an observer for accurate 

estimation of system states and to formulate a control 

law so that the tracking error 

    dy t y t
converges to a small neighborhood of 

the origin. Here
 dy t

 is    the desired trajectory. 

Desired trajectory is assumed to be smooth, 

continuous
 nC

 and available for measurement. 

Transforming the system into normal form 

( ) ( , )ix t Ax Bu g x u

y Cx

   


                                (7) 

where 
( , ) ( , )g x u f x u Ax Bu  

 with 
nxnA and 

nB are selected such that the pair 

 ,A B
 is controllable and 

 ,A C
is observable. 

 

IV. Dynamic Recurrent Wavelet Network based 

Observer 

4.1 Observer Design and Error Dynamics  

For nonlinear system (6) with affine transformat ion 

(7), a  dynamic recurrent wavelet network (5) based 

observer scheme can be formulated as   : 

      (8) 

where x̂  and 
ŷ

 are estimates of system states and 

output respectively. m is the observer gain matrix 

selected such that 
 A mc

 is a Hurwitz matrix.  

Defining the observer error dynamics as  

       (9) 

where ˆx x x  and 
ˆy y y 

are state and output 

estimation error respectively. 

According to the approximation property of wavelet 

network, optimal wavelet approximation of 
( , )g x u

 

can be expressed similar to (2) 

 
 * * *, , , ,Tg x u w c     

   

so the observer error dynamics becomes  

   (10) 

By addit ion and subtraction of 

 * * *ˆ, , , ,T x u w c   
 the above equation takes 

the form  

       (11) 

where 

 

 

* * *

* * *

, , , ,

ˆ, , , ,

T

T

x u w c

x u w c










    
 
     
   

and is assumed to be bounded by m 
,in which  

m  is a positive constant.  

 

4.2 Tuning Laws 

Parameter adjustment mechanism for online tuning of 

wavelet parameters are derived using steepest descent 

method [16], for which the cost function is selected as 

1

2

TJ y y
 

 

1 4
ˆˆ

ˆ

T

TJ
w y A A

w
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2 4
ˆˆ

ˆ

T

T TJ
c y A A

c
 

 
     

                     (12) 

3 4
ˆ ˆ

ˆ

T

T TJ
y A A


 

 
     

   

where 

 

 

1

4 ( )A C A mC  
 

After incorporating the modification term, the 

modified laws are 

 

 
                         (13) 

where 
0  

i

T

i   
 is a constant design matrix 

representing the learning rates while i  is a small 

scalar design parameter with 
1,2,3,4i 

. 

As these equations are composed of bounded 

variables and parameters, they can be viewed as linear 

systems with bounded inputs and this reflects the 

boundedness of wavelet  parameters and their estimation 

errors.   

 

4.3 Observer Stability Analysis  

Consider the Lyapunov function of the form 

1 1 1 1
( ) ( ) ( )

2 2 2 2

1
   ( )     

2

T T T T

T

V x Px tr tr w w tr c c

tr  

  

  





        

 
  (14)  

where P is symmetric positive definite matrix 

satisfying the following condition 

( ) ( )TA mC P P A mC Q    
 

for some symmetric positive definite matrix 
Q

.  

Taking the derivative of  V  along the trajectories of 

the system   

 

1
( )

2

      ( ) ( ) ( ) ( )     

T T

T T T T

V x Qx x P f

tr tr w w tr c c tr



    

   

     

        
 

Substituting adaptation laws in above equation 

  

 

 

Using the inequality 

2
( ( ))Ttr z z z z z z  

 

Above equation can be written as  
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Considering assumption A1 and boundedness of 

wavelet parameters, let their exist constants 

1 2 3 4, , ,M M M M
 such that  

 

 

2

min max

1

1 2 3 4

2 2 2 21 2 3 4

max max max max

1
( )

2

( )

    
4 4 4 4

m m mV Q x P f x

y M M M M C A mC

y y y y
w c



   




   

      

    

   

 

So the proposed observer design is stable as long as  

 

max

2 1

1 2 3 4

2 2 2
1 2 3

max max max

2
4

max

min

( )

( )

4 4 4

4     
1

2

m m mP f

C M M M M A mC

C C C
w c

C

x

Q



  






  



    
 
     
 
 

    
 
 
 
 

 
                  (15) 

Thus we have the following result 

Theorem: For the system of the form (6),under the 

condition of bounded input, a dynamic recurrent 

wavelet network based observer (8), constructed using 

wavelet functions satisfying assumption A1,with 

adaptation laws (13) has following properties  

a) The state estimat ion error converges to the small 

neighborhood of origin.  

b) Wavelet parameters are bounded.  

Proof: Using the facts based on Lyapunov stability 

theory, inequality (15) implies that all the state 

estimation error with the proposed observer scheme for 

the system under consideration (6) converges to small 

neighborhood of origin. Tuning laws for the wavelet 

parameters indicate the boundedness of wavelet 

parameters.  

 

V. Controller Design 

In this section a state feedback controller is 

constructed using estimated states and stability of 

observer system with respective control law is first 

examined and then stability issue of system under 

consideration is discussed [17].  

 

5.1 Tracking Error Dynamics and Feedback 

Linearization 

Defining a state tracking error vector for observer 

ˆ( ) ne t 
as: 

          (16) 

where 

1

, ,...,

T
n

d d d dy y y y
      and 

" , ,...,

T
n

d d d dy y y y
 

     

so the error dynamics of the system becomes  

                 (17) 

Defining a filtered tracking error r̂ as 

                                                              (18) 
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where 1 2 1[ , ... ,1]T

nK k k k 
is an properly selected 

gain vector so that 0 e  exponentially as 

ˆ 0 r  [25]. 

Taking time derivative of filtered tracking error 

    (19) 

Defining the control law as  

             (20) 

 

5.2 Stability Analysis 

Consider the Lyapunov function of the form 

21
ˆ        

2
V r

                                                          (21) 

Taking the derivative of  V  along the trajectories of 

the system   

                                                                  (22) 

 

Substituting the control law in above equation 

2
ˆ    rk r

                                                            (23) 

Thus with the proposed controller observer system is 

asymptotically stable. 

To prove the boundedness of close loop signals for 

the system, consider the state tracking error vector 

( ) ne t 
  

 1 2

1
, , ........,1 2

, , ,

     

T

n d

T
n

d d n d

e e e e x y

x y x y x y 

   

      

defined as 

ˆe e x                                                              (24) 

Asymptotic convergence of ê to origin  and 

boundedness of state estimation error to the small 

neighborhood of origin implies the uniform 

boundedness of all closed loop signals for the system 

under consideration with the proposed controller 

scheme. 

Thus we have the following result 

Theorem: All the closed loop signals for the system 

of the form (6), with proposed observer scheme (8) and 

control law (20), have following properties  

a) The tracking error converges to the small 

neighborhood of origin.  

b) All the signals in the closed loop system are 

uniformly bounded. 

Proof: Using the facts based on Lyapunov stability 

theory, inequality (23) and (24) implies that all the 

closed loop signals of the system under consideration 

are uniformly bounded and the tracking erro r converges 

to small neighborhood of origin. 

 

VI. Simulation Results 

In this section, a simulat ion study is carried out to 

illustrate the efficiency of the proposed controller.  

Consider the following nonlinear nonaffine system  

3
2 2

1 1 3 2

3
2 3

2 2 3 3

3
2

3 1 2 3 1

1 2 3

.1sin( ) sin( )
3

.1cos( ) sin( )
3

.5sin( )cos( ) .1 sin( ) sin( )
3

3.35 2 2.1

x
x x x x

x
x x x x

u
x x x x x u u

y x x x

  

  

   

  

                                                      (25) 

System belongs to the class of nonlinear systems 

defined by (6) with 3n  . Simulations were conducted 

with the dynamic recurrent wavelet  network based 

observer design (8) and parameter tuning laws (13). 

Wavelet network with Mexican  hat as the mother 

wavelet is used for approximat ing the nonlinear system 

dynamics while other observer matrices are selected as  

0 1 0 0 2

0 0 1 ; 0 ; 3

0 0 0 1 4

A B m

     
     

  
     
            

Controller is designed for the system using estimated 

states to achieve the desired tracking performance (20). 

Desired trajectory is taken as 
.5sin .5cosdy t t 

 

using initial 

conditions
   0 0.75,0,0,0

T
x 

.Controller 
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parameter settings are
 25,4,5,15

T
K 

. 

Simulation results shown in figure.1, 2 and 3, reflects 

the effectiveness of proposed observer – controller 

strategy, it can be seen that the actual and estimated 

system states effectively  tracks the desired t rajectory 

with a small steady state error. 

 

Fig. 1: Actual and estimated system states 

 

 

Fig. 2: Actual system states and desired trajectories 
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Fig. 3: Estimated states and desired trajectories 

 

 

Fig. 4: Control Effort  

 

VII. Conclusion 

In this work, a dynamic recurrent wavelet network 

observer scheme along with a t racking control strategy 

is presented for a class of uncertain, nonaffine systems. 

In this scheme a dynamic recurrent wavelet network is 

used to design a nonlinear observer .Adaptation laws 

are developed for the online tuning of wavelet 

parameters using using steepest descent method. Based 

on the estimated states, a state feedback control law is  

derived to achieve the desired tracking performance. 

The stability of closed loop system and ultimate upper 

boundedness all closed loop signals is proven using 

Lyapunov function. Finally a numerical simulation is 

carried out to show the effectiveness of proposed 

scheme. 
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