
I.J. Intelligent Systems and Applications, 2012, 10, 103-112 
Published Online September 2012 in MECS (http://www.mecs-press.org/) 

DOI: 10.5815/ijisa.2012.10.11 

Copyright © 2012 MECS                                                       I.J. Intelligent Systems and Applications, 2012, 10, 103-112 

Petri Net: A Tool for Modeling and Analyze 

Multi-agent Oriented Systems 
 

Shiladitya Pujari 

Department of Information Technology, UIT, Burdwan University, Burdwan, West Bengal, India 

shiladitya.pujari@gmail.com, shiladityapujari@uit.buruniv.ac.in 

Sripati Mukhopadhyay
 

Department of Computer Science, Burdwan University, Burdwan, West Bengal, India 

dr.sripatim@gmail.com 

 

Abstract—Analysis and proper assessment of multi-

agent system properties are very much important. In this 

paper, we discussed about methodologies for modeling, 

analysis and design of multi-agent oriented system with 

the help of Petri net. A Multi-agent system can be 

considered as a discrete-event dynamic system and Petri 

nets are used as a modeling tool to assess the structural 

properties of the multi-agent system. Petri net provides 

an assessment of the interaction properties of the multi-

agent.  

 

Index Terms—Multi-Agent System, Petri-Net, 

Transition 

 

I. Introduction 

Multi-agent systems can be regarded as the most 

emerging technology in the recent era. For the past 

several decades, multi-agent systems have been studied 

extensively. Several frameworks relevant to multi-agent 

systems have been defined to apply the multi-agent 

system concept to different applications in control as 

well as optimization of complex systems [1– 4]. An 

agent is a computer program or a computer system that 

consists of several complex characteristics and one of 

the most important characteristic of an agent is 

autonomy. An intelligent agent inhabits an environment 

and is capable of conducting autonomous actions in 

order to satisfy its design objective [3], [5 - 7]. 

An intelligent or autonomous agent presents some 

degree of autonomy by being reactive, pro-active and 

perhaps sociable [3]. The autonomy of an agent is 

considered as a building block in a multi-agent system. 

In a multi-agent system, several agents communicate 

and interact among them in order to solve a complex 

problem. In general, a multi-agent system is a system 

which is expected to work properly in a dynamic large-

scale complex environment or open environment by 

having autonomy, robustness, adaptability and 

flexibility. 

A Multi-agent system can be viewed as Discrete-

Event Dynamic Systems (DEDS) [8] because a multi-

agent system is a concurrent, asynchronous, stochastic 

and distributed computer system, and Petri nets are used 

as a modeling tool for assessment of properties of the 

system. The complexity and capabilities of a multi-

agent system are greater than any distributed software 

system. The study of system properties is becoming 

more important because both cases deal with large 

complex dynamic systems.  

Petri nets have a well defined mathematical structure 

that can do formal analysis on discrete-event systems. 

Undoubtedly, Petri Nets have been successfully used in 

several areas for the modeling and analysis of 

distributed systems [10], concurrent and parallel 

programs. From the discrete event dynamic system 

(DEDS) point of view, multi-agent systems lack 

analysis and design methodologies. Petri net methods 

can be used to develop analytical methodologies for 

such systems [8]. If a multi-agent system is considered 

as a discrete-event system and Petri nets are used to 

model this system, then properties are important in the 

discrete event systems and Petri net domains can be 

used to study multi-agent systems.  

Again, if considering that a multi-agent system is a 

discrete-event system and Petri nets can be used as a 

modeling tool, then this requires some methodologies 

for mapping multi-agent systems into Petri net models. 

These methodologies require the right level of 

detail/abstraction in order to map all the important 

behaviors of the communication and interaction 

framework into the resulting Petri net models. Petri net 

models of multi-agent systems allow using the existing 

analysis methodologies for Petri nets. Some important 

properties of discrete event systems such as the 

reachability graph and the analysis of the network 

invariants can be obtained with Petri net analysis 

methods. 

1.1 Previous Works 

Previous works show that Petri nets have been used 

to model, assessment and analyze multi-agent systems. 

mailto:shiladityapujari@uit.buruniv.ac.in


104 Petri Net: A Tool for Modeling and Analyze Multi-agent Oriented Systems 

Copyright © 2012 MECS                                                       I.J. Intelligent Systems and Applications, 2012, 10, 103-112 

Murata et al. [14] presented in their research work an 

algorithm to construct predicate/transition models of 

robotic operations. Basically, robot actions were 

considered as firing transitions and the model was used 

for the planning of concurrent activities of multiple 

robots (agents). Xu et al. [18] proposed a methodology 

based on predicate/transition nets for multiple agents 

under static planning of activities. In addition, they 

proposed a validation algorithm for plans with parallel 

activities. The verification is done based on reachability 

graphs due to the fact that agents actions are modeled as 

transitions. Petri nets also have been used to model 

specific multi-agent system frameworks but the 

resulting models have not been used to provide a study 

of the properties of the multi-agent system. Ahn et al 

[19] proposed multi-agent system architecture for 

distributed and collaborative supply-chain management. 

A Petri net model is presented but no structural analysis 

of the model and no verification of the coordination 

activities were performed. The work of Leitao et al. [20], 

proposed a Petri net model approach to formal 

specification of holonic control systems for 

manufacturing. They developed a Petri net sub-model 

for each of the four types of holons (agents) suggested 

in the Adaptive Holonic Control Architecture for 

Distributed Manufacturing Systems architecture. There 

was no attempt to study the structural properties of the 

Petri net model in order to assess some sort of 

dependability in the proposed architecture. 

The paper has been arranged in some sections. 

Section I mentioned a brief introduction and a 

discussion on the previous works in the relevant field. 

Section II defined about the characteristics of intelligent 

and autonomous agents. The next section described 

what a multi-agent oriented system is. Section Iv 

described about Petri nets and its characteristics. Next 

section of the paper is on the behavioral properties of 

Petri nets and the following section is on the structural 

analysis of the net. Section VII portrayed how to model 

a multi-agent system using Petri-net and section VIII 

described the generic Petri-net model for an individual 

agent within a multi-agent system. The last section 

concluded on the research paper.   

 

II. Characteristics of Intelligent Agent 

In large and complex system, an agent is regarded as 

software component situated within some complex 

environments, which acts autonomously, cooperates, 

communicates and negotiate with similar entities to 

achieve a whole of predefined goals. An agent may also 

associate with its mental state. That states can be 

composed of components like belief, desire, intension, 

knowledge, capabilities, choices and commitments [22]. 

The characteristics of an autonomous agent are as 

follows: 

 Autonomy: An agent is said to be autonomous if it 

is able to take any decisions based on some pre 

determined states the agent is composed of, 

without any direct intervention of actors of the 

environment. 

 Proactive and Reactive: Agents are not only acts in 

response to the events of the environment where it 

is situated but they may also act autonomously. 

Besides this proactive nature, agent may act 

dynamically to understand the environment, 

apprehend any changes in this environment and 

respond timely to the changes that may occur. 

 Capabilities: Agents are capable of performing 

certain activities to achieve their predefined goal. 

These activities are often characterized by set of 

well defined services which may be provided by 

the agent.  

 Goal oriented: Agents are always goal-oriented, 

that means, agents always act to achieve their 

predefined target or goal. If a system is composed 

of multiple agents then they can achieve the goal 

through their cooperative activities.  

 Knowledge Driven: An agent can have the ability 

to acquire new knowledge about the environment 

in which it is situated and can update dynamically. 

 Condition/Constraint: The environmental 

constraints may affect the activities of agent. 

Moreover such constraint may be imposed by 

actors of the environment and which can be 

adopted dynamically by the agent.  

Besides these characteristics of agent, the agent 

oriented system or multi-agent system has some 

important characteristics that can be summarized 

as follows, 

 Agents are Social: An agent-oriented system or 

multi-agent system is comprised of multiple agents 

which are supposed to operate together in an open 

operational environment. Hence they can interact 

with each other, share their resources and 

knowledge, and also can collaborate with each 

others to achieve the preset goals. 

 Agents are Resource Driven: Agent acts on 

environmental resources. Any agent of multi-agent 

system can hold, use and release resources of the 

environment where it is situated. The activities can 

change the state of the resources to fulfill 

predetermined goal or objective. 

 Agents are Event Driven: Agents of multi-agent 

system response on events occurred in the 

environment. Events may occur due to some state 

changes or achieving certain condition or 

achieving certain goal or certain interaction of 

actors. Even more events may occur due to certain 

changes in environment. An multi-agent system 

achieves any goals using a series of events 

occurrences and the ongoing events may determine 

the system behavior. 



 Petri Net: A Tool for Modeling and Analyze Multi-agent Oriented Systems 105 

Copyright © 2012 MECS                                                       I.J. Intelligent Systems and Applications, 2012, 10, 103-112 

 Agents are Dynamic: Due to event driven nature of 

multi-agent system and with the feature like 

autonomous and reactive nature of agent, such 

systems are truly dynamic. Moreover, the 

knowledge of any agent can be dynamic in nature. 

Further, the series of events and its corresponding 

responses may occur dynamically from such 

system. Designer simply set the initial state, 

knowledge and goals, on next, multi-agent system 

manages the things dynamically to achieve the 

goal. 

 Agents are Heterogeneous: Several agents of a 

multi-agent system may be heterogeneous in 

nature in terms of their features. They may initially 

belong to different environment. Any agent may be 

reused to cooperate with other set of agents to 

achieve some goals in new environment. These 

facts require migrating of some specific agent from 

one environment to another in pre determined 

fashion. This also characterizes the mobility of 

agent. 

 

While modeling a multi-agent system, designer must 

also ensure about the followings:  

a. The system may achieve the goal with finite 

number of events or interactions,  

b. The system may able to handle the situation 

if goal will not be achieved after certain set 

of events, 

c. The system may operate in deadlock free 

fashion, as the system may handle the 

resources from the environment, 

d. The system and environment should be 

transformed in some acceptable states with 

the occurrences of events and  

e. The knowledge and the state of the 

resources are dynamically manageable.  

 

In view of these critical features of multi-agent 

system, Petri Net [14] is obvious tool choice for 

modeling the dynamic behavior of this kind of complex 

system. Petri Net based tools will be useful to 

complement the dynamic part of such system and 

analyze the states and behavior of agents in the 

environment. 

 

III. Multi-Agent System (MAS) 

Two main aspects in a multi-agent system framework 

are the architecture of the agents within a multi-agent 

system and the interaction among them. The 

architecture of an agent defines that the agent can be 

reactive, deliberative or it may be a hybrid of both. The 

interactions between agents can be either a direct agent-

to-agent interaction or an indirect interaction. Indirect 

interactions depend on the environment. In the indirect 

interaction, an agent may modify the environment of 

another agent by initiating a reaction. Usually, when 

two or more agents share a subset of the environment, 

the indirect interaction occurs. Every agent working 

within a multi-agent system has its own environment 

that is somehow related to the Meta level environment 

of the multi-agent system. This environment is called an 

open environment. An open environment provided by a 

complex problem is dynamic, it has components that are 

unknown in advance; its structure changes over time 

and might be heterogeneous in nature [8][9]. 

3.1 Abstruct Architecture for Inteligent Agent 

The abstract architecture represents the behavior of 

an agent with respect to changes in its environment. 

Here, an agent has its own environment and this 

environment is defined by the nature of the agent. The 

environment is defined by the goals, objectives and the 

general purpose of the agent. The environment of an 

agent only considers things that are concerned to that 

specific agent. Consider two agents controlling different 

elements of a manufacturing cell. For example, one 

agent is controlling a conveyor belt and the other agent 

controlling an assembly operation. The environment of 

each of the agents will be different. This does not mean 

that these environments are independent from each 

other. In fact, actions taken by one agent could result 

eventually in a change in the environment of the other 

agent. 

An agent with perception and internal state 

capabilities has more computational power than an 

agent without them and its computational power is now 

comparable with that of the Belief-Desired-Intention 

architecture as described by Wooldridge in [7]. 

 

IV. Introduction to Petri-nets 

Petri nets were first introduced by Carl Adam Petri in 

1962 in Germany. Petri nets are a graphical and 

mathematical modeling tool used to describe and 

analyze different kinds of real systems and suitable tool 

for the study of systems that are concurrent, 

asynchronous, distributed, parallel and/or stochastic. A 

multi-agent system is a kind of discrete system, 

particularly the competitive, parallel and non-

determinist ones that is concurrent, asynchronous, 

stochastic and distributed. Petri net methods are suitable 

to model and analyze multi-agent systems. 

4.1 Petri nets definition: 

The following is the formal definition of a Petri net.  

A Petri net is a five-tuple PN = (P; T; F; W; M0) 

where: 

P: { p1, p2, ..., pn} is a finite set of places, 

T :{ t1, t2, ..., ts} is a finite set of transitions, 



106 Petri Net: A Tool for Modeling and Analyze Multi-agent Oriented Systems  

Copyright © 2012 MECS                                                       I.J. Intelligent Systems and Applications, 2012, 10, 103-112 

F   (P   T)   (T   P) is a set of arcs or flow relation, 

W: F → {1, 2, 3,...} is a weight function, 

M0: P → Z+ is the initial marking,  

P   T =   and P   T ≠   

 

A Petri Net structure without any specific initial 

marking is denoted by N = (P, T, F, W) and a Petri Net 

with the given initial marking is denoted as (N, M0) [11]. 

More specifically, a Petri net is a directed graph, 

along with an initial state called as initial marking M0. 

The underlying graph N = (P, T, F, W) as stated above, 

of a Petri net is a directed, weighted and bipartite graph 

which consists of two types of nodes. These nodes are 

called places and transitions, where arcs go either from 

a place to a transition or vice versa. Places and 

transitions are graphically represented by a circle and a 

bar or box respectively. Every arc is labeled with their 

weights which is a positive integer number. A k-

weighted arc can be viewed as a set of k number of 

parallel arcs. A marking represents the state. A marking 

assigns a non-negative integer to each place. If a 

marking assigns a non-negative integer k to a place p, 

then it is said that p is marked with k tokens. A token is 

represented by a black dot within a place. A marking is 

denoted by M, an m-vector, where m is the total number 

of places. The p-th component of M, denoted by M (p) 

is the number of tokens in place p. 

The meanings of places and transitions in Petri nets 

depend directly on the modeling approach. When 

modeling, several interpretations can be assigned to 

places and transitions. For a discrete event distributed 

system, a transition is regarded as an event and the 

places are interpreted as a condition for an event to 

occur. The places contain tokens that travel through the 

net depending on the firing of a transition. When an arc 

is directed from p to t, the place p is said to be an input 

place to a transition t. Similarly an output place of t is 

any place in the net with an incoming arc from 

transition t to place p. A transition or an event has a 

certain number of input and output places, which 

represents as the pre-conditions and post-conditions of 

the event respectively. The presence of a token in a 

place means holding the truth of the condition 

associated with the place. In another way, k tokens can 

be put in a place to indicate that there are k data items 

or resources available. 

4.2 Transition Firing: 

The behavior of a system can be described by the 

state of the system and their changes. To model the 

dynamic behavior of a system, a state or marking in a 

Petri nets is changed as per the transition rules stated 

below: 

 A transition t is considered enabled if each input 

place p of t is marked with at least w (p, t) tokens, 

where w (p, t) is the weight of the arc from p to t. 

 A transition which is enabled may or may not fire 

(depending on the event taking place). 

 A firing of an enabled transition t removes w (p, t) 

tokens from each input place p of t, and adds w (p, t) 

tokens to each output place p of t, where w (p, t) is 

the weight of the arc from p to t. 

 

Some terminologies need to be mentioned and 

defined here to get a clearer picture of Petri nets and 

transitions. A transition without any input place is 

called as source transition, whereas transition without 

any output place is called a sink transition. Eventually a 

source transition is being enabled unconditionally. On 

the other hand, the firing of a sink transition only 

consumes tokens, but produces none [11].  

A pair of a place p and a transition t is called as self-

loop, if p is both input and output place of t. A Petri net 

is called pure Petri net if it has no self-loops. A Petri net 

is called as ordinary if weight of all arcs are 1.  

A transition can fire only if it is enabled. For a 

transition t to be enabled, all the input places of t must 

contain at least one token. When a transition is fired, a 

token is removed from each input place, and one token 

is added to each output place. In this way the tokens 

travel through the net depending on the transitions fired. 

4.3 Basic Construct of Petri-nets: 

Basic constructs of Petri nets can be classified 

depending of the transitions occur and in which fashion 

the firing rules are applicable. Basic constructs of Petri 

nets are sequential actions, dependency, conflict 

(decision, choice), concurrency, cycles and 

synchronization (mutually exclusive actions, resource 

sharing, communication, and queues). Following 

figures showing the basic constructs of Petri nets. 

 

Fig.1: Sequential action and dependency 

 



 Petri Net: A Tool for Modeling and Analyze Multi-agent Oriented Systems 107 

Copyright © 2012 MECS                                                       I.J. Intelligent Systems and Applications, 2012, 10, 103-112 

 

Fig.2: Conflict and concurrency 

 

 

Fig.3: Cycles and synchronization 



108 Petri Net: A Tool for Modeling and Analyze Multi-agent Oriented Systems  

Copyright © 2012 MECS                                                       I.J. Intelligent Systems and Applications, 2012, 10, 103-112 

4.4 Marking of Petri-nets: 

The marking mi of a place pi   P is a non-negative 

quantity which represents the number of tokens in that 

place at a given state of the Petri net. The marking of 

the Petri net is also defined as the function M: P → Z+ 

that means the function maps the set of places to the set 

of non-negative integers. It is also defined as a vector 

Mj = (m1, m2, … mP) where mi = M(pi), which 

represents the jth state of the net. Mj contains the 

marking of all the places and the initial marking is 

denoted by M0. 

The marking represents the state of the net. As 

described above, the transitions change the state of the 

Petri net in the same way an event changes the state of a 

Discrete Events Dynamic System (DEDS). 

4.5 Reachability Graph: 

The reachability graph expresses the reachable places 

of a Petri-net. Reachability graph is a directed graph. 

Every node of the graph is identified as marking of the 

net R (N, M0), where M0 is called the initial marking 

and arcs are represented by the transition of the net N. 

Reachability graph is used to define a Petri-net N and 

marking M, where M   R (N). Every M0 has an 

associated reachability set which consists of all marking 

reachable from M0 through the firing of transitions.  

 

V. Behavioral Properties of Petri-net 

Two types of properties can be studied with a Petri 

net model. Properties which are dependent on the initial 

marking of the net are called marking-dependent or 

behavioral properties.  The properties which are 

independent of the initial marking are called structural 

properties. This section covers some of the most 

important behavioral properties of Petri nets such as 

Reachability, Liveness, Boundedness and Reversibility. 

Among those, some properties can be applied to multi-

agent systems models. Examples of these properties are 

Boundedness and Liveness since they are related to 

deadlock avoidance in DEDS. Other properties are 

going to be relevant to multi-agent systems particularly 

to the communication, interaction, and single agent 

architectures.  

5.1 Reachability: 

A marking Mj is said to be reachable from marking 

Mi if there exist a sequence of transitions that changes 

the state of the Petri net from Mi to Mj. The set of all 

possible markings that are reachable from M0 is called 

the reachability set and is defined by R (M0). 

The concept of reachability is essential for the study 

of the dynamic properties of a Petri net [13], [14]. 

5.2 Liveliness: 

A Petri net is said to be live for a marking M0 if for 

any marking in R (M0) it is possible to fire a transition. 

The liveness property guaranties the absence of 

deadlock in a Petri net. This property can also be 

observed from the reachability graph. If the reachability 

graph contains an absorbent state, then the Petri net is 

not live at that state and it is said to have a deadlock 

[13][14]. 

5.3 Boundedness: 

A Petri net is said to be bounded or k-bounded if the 

number of tokens in each place does not exceed a finite 

number k for any marking in R (M0). Furthermore, a 

Petri net is structurally bounded if it is bounded for any 

finite initial marking M0. A Petri net is said to be safe if 

it is 1-bounded, means that each place have a maximum 

number of token count 1 or 0 [13]. 

5.4 Reversibility: 

A Petri net is reversible, if for any marking in R (M0), 

M0 is reachable. This means that the Petri net can 

always return to the initial marking M0 [13][14]. 

 

VI. Structural Analysis of Petri-net 

The Liveness and Boundedness of the net will be 

assessed by using P-invariants and T-invariants. These 

invariants are obtained from the incidence matrix of the 

net and they are used to assess the overall Liveness and 

Boundedness of the net. 

6.1 Incident matrix: 

Let a+
ij = w (i, j) be the weight of the arc that goes 

from transition ti to place pj and a-
ij = w (j, i) be the 

weight of the arc from place pj to transition ti. The 

incidence matrix A of a Petri net has |T| number of rows 

and |P| number of columns. It is defined as A = [aij ] 

where aij = a+
ij – a-

ij . 

6.2 Net-invarients: 

Let A be the incidence matrix. A P-invariant is a 

vector that satisfies the equation Ax = 0 and a T-

invariant is a vector that satisfies the equation  AT
 y = 0. 

 Boundedness assessment: A Petri net model is 

covered by P-invariants if and only if, for each 

place s in the net, there exists a positive P-invariant 

x such that x(s) > 0. Furthermore, a Petri net is 

structurally bounded if it is covered by P-invariants 

and the initial marking M0 is finite. 

 Liveness assessment: A Petri net model is covered 

by T-invariants if and only if, for each transition t 

in the net, there exists a positive T-invariant y such 

that y(t) > 0. Furthermore, a Petri net that is finite is 

live and bounded if it is covered by T-invariants. 

This is a necessary condition but not sufficient. 



 Petri Net: A Tool for Modeling and Analyze Multi-agent Oriented Systems 109 

Copyright © 2012 MECS                                                       I.J. Intelligent Systems and Applications, 2012, 10, 103-112 

VII. Modeling Multi-agent System with Petri-net 

Modeling approach based on interaction among 

agents. The interactions between agents can be either a 

direct agent-to-agent interaction or an indirect 

interaction. It shows how the agents interact among 

each other and how they operate over a meta-level 

(multi-agent level) environment. Arrows define direct 

agent interactions from agent to agent; the indirect 

interactions are based on the environment. In the 

indirect interaction, an agent modifies another agent’s 

environment triggering a reaction. The indirect 

interaction occurs in the cases when two or more agents 

share a subset of the environment. It should be noted 

that the overall multi-agent system acts over a macro 

level environment. An agent that is part of the multi-

agent system has its own environment that is somehow 

related to the macro level environment of the multi-

agent system. This macro level environment of the 

multi-agent system is referred to in the literature as 

being an open environment [8][9]. A complex problem 

will provide an open environment, which is dynamic, 

has components that are unknown in advance, its 

structure changes over time and might be heterogeneous 

in its implementation [9]. By focusing on the 

interactions among agents as described above, it is 

natural to regard a multi-agent system as a discrete-

event system. 

7.1 Petri net models from the abstract architecture 

The artificial intelligence research considers three 

different paradigms for intelligent agents: a) reactive 

and b) deliberative; and c) hybrids between them. The 

abstract architecture models how an agent behaves with 

respect to changes in its environment. Here, an agent 

has its own environment and this environment is 

defined by the nature of the agent. The goals, objectives 

and the general purpose of the agent define its 

environment. This abstract architecture is based on the 

reactive paradigm of perception and action. A purely 

reactive agent has a perception of the environment and 

it is used in the decision mechanism that provides an 

action in the agent.  

A reactive agent can also have an internal state as a 

decision mechanism for the actions to be undertaken. 

An agent with perception and internal state capabilities 

has more computational power than an agent without 

them and its computational power is now comparable 

with that of the Belief-Desired-Intention architecture as 

described in [7]. 

7.2 Abstract model for purely reactive agents: 

In case of a purely reactive agent, the perception part 

records the changes in the state of the environment. The 

action part computes the actions to be taken in order to 

react to changes in the environment. The environment 

of an agent changes based on the actions applied by the 

agent, as well as actions by other agents, and it may be 

dynamic in nature, i.e. it may change by itself. The 

environment consists of a set of states S = {s1, s2, …}, 

the agent can undertake a set of actions A = {a1, a2, …} 

and perceive a set of percepts P = {p1, p2, …}. For a 

purely reactive agent, the behavior of the agent can be 

represented as the function action: P →A and 

perception: S → P. The deterministic behavior of an 

environment can be represented by the function 

environment: S A → S.  

7.3 Petri net modeling of multi-agent systems:  

     A Petri net is defined as a five-tuple (P; T; A;W; 

M0) where P is a finite set of places and T is a finite set 

of transitions, A  (P T)   (T P) is a set of arcs, W : 

A  {1; 2; 3; ….} is a weight function, and M0 : P  

Z+
|P|  is the initial marking. 

7.4 Obtaining Petri net models from the abstract 

architecture: 

Places represent the environmental states of the agent. 

Having a token in a place means that the agent is 

currently in that state. Transitions represent the actions 

of an agent. The environmental state is changed by 

actions and for the Petri net model having tokens move 

from one place to another by firing transitions, this 

agrees with the execution process of the abstract 

architecture. 

7.5 Algorithm to develop Petrinet sub model for 

agent i 

The algorithm to develop Petri net sub-model for an 

agent is described here. Let Si be the set of 

environmental states of agent i, and sij  Si be the jth 

environmental state of agent i. Similarly, let Ai be the 

set of actions of agent i, and aik  Ai be the kth action of 

agent i. 

(a). Add a place for each element of the environment 

Si and label each place using notation Pij for sij . 

(b). Add a transition for each action in Ai and label 

each transition using notation Tik for aik. 

(c). For each instance of the function environment : Si 

 Ai  Si say sij  aik  sil: a) add an arc leaving 

from place Pij and ending in transition Tik;b) add 

an arc leaving  from transition Tik and endingin 

place Pil; c) add a weight of 1 to each arc. If an arc 

from transition Tik to place Pil already exists, add 

a new transition and label it T’ik; perform this step 

using T0 ik instead of Tik. 

(d). Add a token in the place representing the initial 

state of  the environment. 

7.6 Petri net model of the multi-agent system 

The Petri net sub-models of each of the individual 

agents in the system should be joined based on their 

indirect interactions. In general, this indirect interaction 



110 Petri Net: A Tool for Modeling and Analyze Multi-agent Oriented Systems  

Copyright © 2012 MECS                                                       I.J. Intelligent Systems and Applications, 2012, 10, 103-112 

will be in such manner that an action of agent i will 

change an environment state of agent j. This 

communication act can be regarded as a regular action 

in the construction of the complete model. There will be 

arcs added from the places representing the 

environmental states of agent j to the transition 

modeling the communication in agent i.  

7.7 Analysis of the Petri net model:  

Inspection of the reachability graph of the Petri net 

model can indicate if the model is live and bounded. On 

the other hand, liveness and boundedness properties can 

also be assessed using invariant analysis [15]. 

 

VIII. Generic Petri-net Model for Agent 

A generic Petri-net model has been proposed by 

Varakantham, Gangwani and Karlapelam in their 

research work. The proposed generic petri-net model 

defines the states and transitions of individual agents 

within a multi-agent system. To accomplish the goal-

oriented tasks, agents must proceed through a set of 

predefined states [21]. The following figure describes 

the generic Petri-net model clearly.  

 According to the generic Petri-net model, initial state 

of every individual agent is called Waiting State 

denoted as P0. In this state, agent is waiting for some 

message either form environment, or other agents. 

When the agent receives a message, it changes its state 

or place and goes to state P1 through transition T10. An 

assumption is made here as the communications 

between the agents are accomplished by transferring 

messages between them. Every message consists of 

some fields such as Sending agent (SA), Receiving 

agent (RA), Message ID (MID), Response ID (RID), 

Action of the message (ACT) and Content of the 

Message (CNT). After going to the state P1, it checks 

for the response ID (RID). A non-zero value of 

response ID indicates that the message is a response 

message and the agent goes to the action place or state 

P5 directly through transition T2. A zero-valued 

response ID states that it is a new or request message 

for the agent to perform any task. In that case, the agent 

goes to the state P1 through transition T1. In this state, 

agent checks for its capability of performing the task or 

action received in the message. Checking of capability 

involves if the beliefs of the agent allow it to take up 

and performing the task or not. If capability checking 

fails, the agent sends a negative response message to the 

sending agent and transit to the end state P7 through 

transition T11. Contrary, the agent moves to state P3 

through transition T3. P3 state is the commitment 

making state. In this state, the agent sends the 

acceptance of commitment to the agent that sent 

message to it and the agent changes the state by moving 

to P4 through the transition T4. As it is necessary to 

perform the task as it is committed, the agent goes to 

the state P5 through transition T5 which is the action 

place for the agent. In this generic model, action place 

for the agent is considered as a single place to avoid 

complexities. A variable named ActionNum is 

associated with the action place P5 which indicates the 

number of actions each of which is about to be executed 

in the sub-task if more than one actions can be 

performed in the action place. Initial value of this 

variable is set to 0, and the value is incremented each 

time the agent enters into the action place P5. After 

accomplishing the task, the agent goes to state P6 

through transition T6 from where it transmits the 

message to the receiving agent. After completion of the 

task, it moves to the end place P7 through the transition 

T9. Figure 4 is the graphical representation of this 

generic Petri-net model described above. This generic 

Petri-net model shows that an agent within a multi-

agent system can be modeled and analyze with the help 

of Petri-net.  

 
Fig. 4: Generic Petri-net Model 

 

 

Places description of this generic Petri-net is given 

below. The table below showing the places or states of 

an agent. 

 

 



 Petri Net: A Tool for Modeling and Analyze Multi-agent Oriented Systems 111 

Copyright © 2012 MECS                                                       I.J. Intelligent Systems and Applications, 2012, 10, 103-112 

TABLE I.  places of generic Petri-net 

Places Description of Places /states  

P0 Waiting state of an agent 

P1 Message Received 

P2 Received message is a request for a task 

P3 Agent has capability of doing the task 

P4 Commitment accepted 

P5 Action place or task sub-Petri-net 

P6 Message handling 

P7 End place 

TABLE II.  Transitions of generic Petri-net 

Transitions Description of Places /states 

T1 If the message is a request for doing task 

T2 Checking of message whether it is a response 

T3 Checking of the capability of agent for doing task 

T4 Agent sends commitment accepted message 

T5 Starting the task 

T6 Agent want to send message 

T7, T8 Execution of actions 

T9 Sending of message 

T10 Receiving the message 

T11 Agent does not have capability of doing task 

 

From the above two tables (Table I and Table II) we 

can see the places or states of an agent and the 

transitions for the generic Petri-net model.   

 
Fig. 5: Marking and reachability graph of generic PN model 

Marking and reachability graph has been depicted in 

the above figure. From the above figure, we can see that 

the each of the initial marking M0 has an associated 

reachability set which is consists of all the markings 

that can be reached form M0 through the firing of one or 

more transitions. In case of the generic Petri net model 

described above, the reachability graph begins with the 

initial marking M0 = [10000000] and reached the state 

with marking M7 = [00000001] finally, which is the end 

place of a agent. The place of a reachability graph is 

said safe, if the number of tokens is either 0 or 1 at that 

place. In case of this generic Petri net model, any of the 

places between P0 to P7 represent a combination of 0 

and 1, where 0 means no token and 1 means token is 

there, which implies that after the occurrence of firing, 

there will be a token at the position bit, else not. This 

property shows that each place have a maximum 

number of token count 1 or 0. That says that the Petri 

net is safe. The generic Petri net is bonded, because 

there is no overflow at any place as well as no deadlock 

situation is there at any stage between P0 and P7. As a 

marking Mp is reachable form some marking M0 after 

firing an existing sequence of transitions that transform 

M0 to Mp. hence the reachability graph is reachable. 

Again as stated earlier, there is no deadlock situation 

within the net, which clearly showing the liveliness of 

the net. That means the generic Petri net shows all the 

properties such as safeness, Boundedness, reachability 

and liveness. 

 



112 Petri Net: A Tool for Modeling and Analyze Multi-agent Oriented Systems  

Copyright © 2012 MECS                                                       I.J. Intelligent Systems and Applications, 2012, 10, 103-112 

IX. Conclusions 

In this paper, we discussed about multi-agent system 

and how this kind of system can be analyzed and 

designed by using Petri net. After finding out aspects of 

Petri net and discussing about the properties, it can be 

concluded that Petri net is the best tool for modeling 

and analyzing multi-agent system which may be defined 

as a discrete events dynamic system. 

 

References 

[1] M. Greaves, V. Stavridou-Coleman, and R. 

Laddaga, ―Guest editors’ introduction: Dependable 

agent systems,‖ IEEE Intelligent Systems, vol. 19, 

no. 5, pp. 20–23, 2004.J. Clerk Maxwell, A 

Treatise on Electricity and Magnetism, 3rd ed., vol. 

2. Oxford: Clarendon, 1892, pp.68–73. 

[2] R. Khosla and T. Dillon, Engineering intelligent 

hybrid multi-agent systems. Kluwer Academic 

Publishers, 1998.K. Elissa, ―Title of paper if 

known,‖ unpublished. 

[3] G. Weiss, Ed., Multiagent systems: a modern 

approach to distributed artificial intelligence. 

Cambridge, MA, USA: MIT Press, 1999. 

[4] S. S. Heragu, R. J. Graves, B.-I. Kim, and A. St 

Onge, ―Intelligent agent based framework for 

manufacturing systems control,‖ IEEE.  

[5] N. J. Nilsson, Artificial intelligence: a new 

synthesis. Morgan Kaufmann Publishers Inc., 1998. 

[6] S. J. Russell and P. Norvig, Artificial Intelligence: 

A Modern Approach. Pearson Education, 2003. 

[7] M. J. Wooldridge, Introduction to Multiagent 

Systems. John Wiley & Sons, Inc., 2001. 

[8] J. R. Celaya, A. A. Desrochers and R. J. Graves, 

Modeling and Analysis of Multi-agent Systems 

using Petri Nets, Journal of Computers, October 

2009. 

[9] K. P. Sycara, ―Multiagent systems,‖ AI Magazine, 

pp. 79–92, 1998. 

[10] W. Reisig, Elements of distributed algorithms: 

modeling and analysis with Petri nets. New York, 

NY, USA: Springer-Verlag New York, 1998. 

[11] A. Desrochers and R. Y. Al-Jaar, Applications of 

Petri Nets in Manufacturing Systems: Modeling, 

Control, and Performance Analysis. IEEE, 1995 

[12] T. Murata, ―Petri nets: Properties, analysis and 

applications,‖ Proceedings of the IEEE, vol. 77, no. 

4, pp. 541–580, April 1989. 

[13] M. Zhou, F. DiCesare, and A. A. Desrochers, ―A 

hybrid methodology for synthesis of petri net 

models for manufacturing systems,‖ IEEE 

Transactions on Robotics and Automation, vol. 8, 

no. 3, pp. 350–361, 1992. 

[14] T. Murata, ―Petri nets: Properties, analysis and 

applications,‖ Proceedings of the IEEE, vol. 77, no. 

4, pp. 541–580, April 1989. 

[15] A. A. Desrochers, ―Performance analysis using 

petri nets,‖ Journal of Intelligent and Robotic 

Systems, vol. 6, no. 1, pp. 65–79, August 1992. 

[16] W. Reisig, Petri nets, An Introduction, ser. EATCS: 

Monographs on Theoretical Computer Science. 

Springer-Verlag, 1985, vol. 4. 

[17] J. L. Peterson, Petri net theory an the modeling of 

systems. Prentice Hall, 1981. 

[18] D. Xu, R. Volz, T. Ioerger, and J. Yen, ―Modeling 

and verifying multi-agent behaviors using 

predicate/transition nets,‖ in SEKE ’02: 

Proceedings of the 14th international conference 

on Software engineering and knowledge 

engineering. New York, NY, USA: ACM Press, 

2002, pp. 193–200. 

[19] H. J. Ahn and S. J. Park, ―Modeling of a multi-

agent system for coordination of supply chains 

with complexity and uncertainty,‖in Intelligent 

Agents and Multi-Agent Systems, ser. Lecture 

Notes in Computer Science, J. Lee and M. Barley, 

Eds., vol. 2891, 6th Pacific Rim International 

Workshop on Multi-Agents, PRIMA 2003 Seoul, 

Korea. Springer-Verlag Berlin Heidelberg, 

November 2003, pp. 13–24. 

[20] P. Leit˜ao, A. W. Colombo, and F. Restivo, ―An 

approach to the formal specification of holonic 

control systems,‖ in Holonic and Multi-Agent 

Systems for Manufacturing, ser. Lecture Notes in 

Computer Science, V. Mar´ık, D. McFarlane, and 

P. Valckenaers, Eds., vol. 2744, First International 

Conference on Industrial Applications of Holonic 

and Multi-Agent Systems, HoloMAS 2003 Prague, 

Czech Republic, September 1-3, 2003. Springer 

Berlin / Heidelberg, 2004, pp. 59–70. 

[21] P. R. Varakantham, S. K. Gangwani and K. 

Karlapelam, On Handling Component and 

Transaction Failure in Multi-agent System, ACM. 

[22] P. K. Biswas, Towards an agent-oriented approach 

to conceptualization, Journal of Applied Soft 

Computing, Vol 8, No 1, pp 127-139, January 

2008. 

 

 

Pujari Shiladitya, ME, PhD (Cont.) is an assistant 

professor in the department of Information Technology 

of University Institute of Technology, Burdwan 

University, India. He is working in the field of Multi-

agent System, Artificial Intelligence as well as 

Cryptography and Steganography.  

 

Mukhopadhyay Sripati, PhD, is working as a senior 

professor and head, department of Computer Science, 

Burdwan University, India. He is also acting as the 

registrar of the university for time being. He is working 

in the field of artificial intelligence for more than 15 

years. 

 


