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Abstract—Soft subspace clustering is an important part and 
research hotspot in clustering research. Clustering in high 
dimensional space is especially difficult due to the sparse 
distribution of the data and the curse of dimensionality. By 
analyzing limitations of the existing algorithms, the concept 
of subspace difference and an improved initialization method 
are proposed. Based on these, a new objective function is 
given by taking into account the compactness of the subspace 
clusters and subspace difference of the clusters. And a 
subspace clustering algorithm based on k-means is presented. 
Theoretical analysis and experimental results demonstrate 
that the proposed algorithm significantly improves the 
accuracy. 

Index Terms- k-means type clustering; subspace clustering; 
subspace difference; initialization method; 

I.  INTRODUCTION  
Data mining is the analysis of data and the use of 

software techniques for finding patterns and regularities in 
sets of data. In most clustering approaches, the data points 
in a given dataset are partitioned into clusters such that the 
points within a cluster are more similar among themselves 
than data points in other clusters [1]. However, 
conventional clustering techniques fall short when 
clustering is performed in high dimensional spaces [2]. A 
key challenge to most conventional clustering algorithms is 
that, in many real world problems, data points in different 
clusters are often correlated with different subsets of 
features, clusters may exist in different subspaces that are 
comprised of different subsets of features [3]. 

As a branch of data mining, some progresses have 
made to solve this problem [4-13]. Subspace clustering has 
been proposed to overcome this challenge, and has been 
studied extensively in recent years. The goal of subspace 
clustering is to locate clusters in different subspaces of the 
same dataset. In general, a subspace cluster represents not 
only the cluster itself, but also the subspace where the 
cluster is situated [14]. The two main categories of 
subspace clustering algorithms are hard subspace clustering 
and soft subspace clustering. Hard subspace clustering 
methods identifies the exact subspaces for different clusters. 
While the exact subspaces are identified in hard subspace 
clustering, a weight is assigned to each dimension in the 
clustering process of soft subspace cluster to measure the 

contribution of each dimension to the formation of a 
particular cluster. Soft subspace clustering can be 
considered as an extension of the conventional feature 
weighting clustering [15], which employs a common 
weight vector for the whole dataset in the clustering 
procedure. However, it is also distinct in that different 
weight vectors are assigned to different clusters. Most of 
soft subspace clustering techniques are k-means type 
algorithm due to the efficiency and scalability in clustering 
large datasets, e.g. FWKM [16] and EWKM [17]. 

Although many soft subspace clustering algorithms 
have been developed and applied to different areas, their 
performance can be further enhanced; a major weakness of  
k-means type algorithms is that almost all of them are 
developed based on within-class information only, the 
commonly used within-cluster compactness [18]. And 
these kind algorithms which converge to locally optimal 
solution are commonly sensitive to initial cluster 
centers [19], it is assumed that clusters distribute with 
certain high density in the dataset in most soft subspace 
clustering. Accordingly, taking initial cluster centers form 
each high density area in the dataset would benefit 
clustering efficie

These algorithms are expected to be improved if more 
discrimination information and an efficient initialization 
method are utilized for clustering. Motivated by this idea, 
we proposed a new algorithm DBNDI (Distance-Based 
Neighborhood Density Initialization) which improved 
initialization efficiency in high dimensional space with a 
new density measure by considering the distribution of 
each point’s neighborhoods. It means the density of a point 
is composed of the similarity and the structure between 
neighbors. And then, we develop a novel soft subspace 
clustering algorithm SDSC (Soft Subspace Clustering 
based on Subspace Difference) in this study. Experiments 
of some high dimensional datasets demonstrated that the 
novel algorithm with new initial centers performs much 
better than other k-means type techniques. 

The rest of this paper is organized as follows. Section II 
presents an overview of the existing k-means  clustering 
algorithms and our contributions. The novel initialization 
method and the proposed SDSC algorithm are presented in 
Section III and Section IV. Experimental results and 
analysis are presented in Section V. In Section VI, we 
summarize this work and point out the future work. 
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(EWKM) [27], the objective function of which can be 
formulated as: 

w
       (2) 

 clustering (LAC) [17] algorithm for 
subspace clustering; the objective function of LAC can 
be expressed as: 

II. SUBSPACE CLUSTERING ALGORITHMS 
In this paper, the dataset is denoted by X , 

where { }1 2 3, , ,..., , { }n i n nX x x x x X x y i= = = , specify ‘n’ points 
in D-dimensional spaces and the size of clusters is K, let 

{ }1C ,..., kC C=  be K clusters. Where  denotes a 
partition of dataset.  .  | | 
represents the data point’s number of .  

kC

k lC≤ ∩,1 ,k l k∀ ≠ ≤ ,l K C =

kC
∅ kC

A. The existing k-means algorithms 
k-means clustering is one of the most widely used 

clustering methods in data mining. Considering efficiency 
and scalability in clustering large datasets, various k-means 
type clustering have been proposed for clustering high 
dimensional data. k-means clustering have similar steps 
like k-means to calculate centroids and find members for 
them. In order to discover subspaces in which the clusters 
exist, an additional step for calculating the corresponding 
weight vectors for every cluster is added in the iterative 
clustering process. The process of k-means clustering is 
showed in Fig.1. 

Algorithm: A k-means-type projective clustering 
algorithm 
Input: the dataset, and the number of clusters K; 
Output: the partition C and the associated weights W; 
1. Find the initial cluster centers V and set W with equal 

values; 
2. Repeat 
3. Re-group the dataset into C according to V and W; 
4. Re-compute V according to C; 
5. Re-compute W according to C; 
6. Until convergence is reached. 
7. Return C and W. 

Figure 1. Process of k-means type algorithm 

A soft subspace clustering algorithm known as the 
fuzzy weighting k-means algorithm (FWKM) [16] has 
been derived by using Eq.(1). A similar algorithm known 
as fuzzy subspace clustering (FSC) was also developed 
in [25]; detailed analysis of the properties of FSC can be 
found in [25].  
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where  and i =< > are 
the cluster center vector and the cluster weight vector, 

1 2, ,...,k k k kDw w w=< >w v 1 2, ,...,i i iDv v v

β  is a parameter to control the influence of weight. It is 
clear from Eq.(1)-(3) that weight is assigned to the 
features of different clusters.  

kjw

      The latest advance in soft subspace clustering is the 
introduction of the concept of entropy. Unlike fuzzy 
weighting subspace clustering, the weights in this kind of 
subspace clustering algorithm are controllable by entropy, 
and the developed algorithms are therefore referred to as 
entropy weighting subspace clustering algorithms 

( )2

1 1
( , ) ( log )

i k

K D

kj ij kj kj kjx C
k j

E w x v rw
∈

= =

= − +∑∑ ∑C W

1 1
(1 )

K D

k kj
k j

wλ
= =

+ −∑ ∑

Besides EWKM, entropy is also taken into account in 
the local adaptive
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By comparing Eq.(2) and Eq.(3), it is found that their 
objective functions are very 
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similar and the only 
o c

 
and maximization of the subspace in which the clusters 
exist. The objective function of ASC can be expressed as: 

difference is that the effect f cluster size is onsidered 
in Eq.(3) but omitted in Eq.(2). 
      By inspecting these soft subspace clustering 
techniques, it is clear that the within-cluster 
compactness is only considered to develop the 
corresponding algorithms. It is however anticipated that 
the performance of clustering can be further enhanced 
by including more discriminative information. Recently, 
Chen has proposed an adaptive algorithm for soft subspace 
clustering (ASC) [26] by taking into account both 
minimization of the compactness of the subspace clusters
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wλ
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where kh  is a balance parameter and ( )ksize S the size of 
the subspace. We can observe that ASC considers 
subspace information in clustering besides the within-
cluster compactness which is omitted in other soft 
subspace clustering, however, this subspace clustering 
alg

    focus on the within-compactness and 

ameter. 
ve initialization method to achieve 
ing result. 

B. Our contributions 
The major contributions of this paper are as follows.

orithm requires an additional step to obtain the adaptive 
parameter which increase the running time.  

By inspecting the existing soft subspace clustering 
algorithms, the problems we find out are as follows: 

1. Most of the existing subspace clustering 
techniques
omitted the other important information of the 
subspace. 

2. Require to set or spend more time to figure out 
the value of additional par

3. Lack of effecti
a better cluster
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1. Unlike most existing soft subspace clustering 
algorithms, we proposed the concept of subspace 
difference to develop the within-subspace 
information. Both the within-cluster compactness 
and subspace difference are employed at the same 
time to develop a new optimization objective 
function, which is used to derive the proposed soft 
subspace clustering based on subspace difference 
(SDSC) algorithm. 

2. We proposed an improved initialization algorithm 
in high dimensional space with a new density 
measure by considering the distribution of each 
point’s neighborhoods. It means the density of a 
point is composed of the similarity and the 
structure between neighbors.  

3.  The performance of the proposed SDSC 
algorithm was investigated using real high-
dimensional data, and achieved better clustering 
result. 

III. THE NOVEL INITIALIZATION METHOD 

A. The existing initialization algorithms 
Currently, cluster center initializing methods have been 

categorized into three major families, namely random 
sampling methods, distance optimization methods, and 
density estimation methods [21]. Random sampling 
methods are the most widely used methods which usually 
initialize cluster centers either by using randomly selected 
input samples, or random non-heuristic parameters. Being 
one of the earliest references in literature, Forgy [22] 
adopted uniformly random input samples as seed clusters. 
Distance optimization methods are proposed to optimize 
the inter-cluster separation. Among them, SCS [23] is a 
variable K-Means implemented in SAS. However, it is 
sensitive to both initial parameter and presentation order of 
inputs. Density estimation methods are based on the 
assumption that dataset follow Gaussian mixture 
distribution, which identifies the dense areas to the initial 
cluster centers. Algorithm KR [24] proposed by Kaufman 
estimates the density through pairwise distance comparison, 
and initializes seed clusters using input samples from areas 
with high local density. KR also has the drawback of huge 
computational complexity. As a result, it is ineffective with 
large datasets. 

These methods are limited to huge computational 
complexity and presentation order of inputs. Moreover, 
these approaches would loss effectiveness in high 
dimensional space due to “curse of dimensionality” [4] 
and the inherently sparse data. 

B. Algorithm DBNDI 
Searching initial centers in high dimensional space is 

an interesting and important problem which is relevant for 
the wide various types of k-means algorithm. However, 
this is a very difficult problem, due to the “curse of 
dimensionality” and the inherently sparse data. Motivated 
by these problems, we propose a new algorithm DBNDI, 
which explores a new method to calculate the density for 
improving the search accuracy. We explore a novel 
density measure by considering the distribution of each 
point’s neighborhoods. It means the density of a point is 
composed of the similarity and the structure between 

neighbors. The notions of similarity and density can be 
describe as follows. 
Definition 2[19].Let be the t-nearest neighbors set 
of . For

( )tNN p
)pp (q tNN∀ ∈ , the similarity between p and , is 

defined as: 
q

( , ) / ( )
( , )

0 (
StNN p q t p tNN q

Sim p q
p tNN q

⎧ ∈⎪= ⎨
∉⎪⎩ )

              (12) 

where ( , ) { ( ) ( )}StNN p q x x tNN p and x tNN q= ∈ ∈ .
( , )StNN p q  is the amount of elements in .  Then 

we can assign different weights to each point according to 
their unique structure of neighbors. The algorithm 
calculates a new weight for each neighbor of a point 
based on the distances proportion between the point and 
its neighbors. Let be the distance between any 
two points in the dataset by using traditional Euclidean 
distance measure

( , )StNN p q

( , )dist p q

[20]. The sum distance between p and its 
near neighbors can be measured, and it can be formally 
defined as: 

1
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=
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where ( ), 1,...,iq tNN p i k∈ =

'
iw

.Given the influents imposed by 
different distances proportion of near neighbors, we assign 
weights in the following definition. 
Definition 3.The notion of probability density of point p, 
named DBNDF (Distance-Based Neighborhood Density 
Factor), is calculated as: 

'
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1,...,i t= . t is the size of near neighbor list of p , θ is the 
value of similarity threshold for Sim , and is 
the

( ,p q) iq
i th− nearest neighbor of .It’s easy to 

get

p

'
iw0 1< < and '

1
1

t

i
i

w
=

=∑ to one point in high dimensional 

space.  
To identify the similarity requires determining the 

value ofθ . This is a very experience-dependent process. 
Owing to the existing problems of high dimensional space, 
the number of low similarity is numerous, and the number 
of high similarity is relatively lack. The ideal value of 
parameter can filter out low similarity and distinguish the 
reasonable scope of similarity.  

Based on these ideas, a counting-based approach is 
adopted to facilitate the calculation ofθ . In this approach, 
as for the whole pairs of the point and its neighbors, we can 
find all different similarities by definition 3. Let V be a 
vector to record the different similarities and their numbers. 
Then we use ( )sum V

( )avg V
to state the total number of all 

similarities and as the average value of ( )sum V
(avg
. If 

the amount of any similarity in V gets most close to , 
it means this element divided all similarities into two parts, 
the similarities of each part have approximately same 
amount. And the similarity of this element can be the value 
of

)V

θ . Based on a large number of experiments, we find that 
the above rule is appropriate in most cases. Fig.2 shows the 
process of calculating the value of θ . 
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Figure 2.The calculation of θ  

After determining the parameter, Fig.3 describes the 
process of proposed algorithm. It is deviated from IMSND 
that the improved algorithm could obtain the adaptive 
parameter θ according to the similarity distribution. In this 
wise, DBNDI is able to improve the clustering accuracy 
and the ability of detecting the noise. 
Algorithm DBNDI 
Input: dataset 1 2 3{ , , ,..., }nX x x x x= , the size of 

neighborhood t, density thresholdσ , and the 
number of clusters k 

Output: cluster center set CS 
Steps:  
1. Initialization. CS = ∅ . 
2. Declare a membership matrix U of size n t× to store 

neighbors of each point, Fill in this matrix by using 
traditional Euclidean distance measure. The value in 
matrix is the index of each point’s neighbors. 

3. Declare a similarity matrix W of size n t× to store the 
similarity of each point. Calculate all similarities 
using Definition 1. 

4. Declare a parameterθ to be similarity threshold. As 
mentioned in Fig.1, determine the value of similarity 
thresholdθ . 

5. Based on Definition 2, count the density factor 
DBNDF of each data point and rank them in order. 

6. Given the density thresholdσ , mark and eliminate 
the data points as outliers while their DBNDF values 
are below the threshold. 

7. According to the order of DBNDF values generated 
in Step 5, points with higher density neighborhoods 
and lower similarity are chosen as the initial centers 
until the number of centers achieves k. 

Figure 3.The process of DBNDI algorithm 

While reviewing some research works on initializing 
cluster centers [4, 5, 7, 9], the following are typical 
criterions of cluster initialization algorithms:  
(1) Ability to deal with noise: According to density 

threshold, the point with low density will be detected.  
It can greatly reduce the influence of noise for 
choosing the initial cluster centers. 

(2) Deterministic results: The cluster centers generated 
by DBNDI are deterministic. In other words, for the 
same data the result with each running of the 
algorithm is the same. Other algorithms based on 
probability, such as Forgy [9], give non-deterministic 
results as the cluster centers may be different with 
each running. 

(3) High dimensionality: Contrary to traditional 
initialization approaches, DBNDI is based on the new 

tion 3.2, it is obvious that DBNDI is 

STERING LGORITHM 

tions of 
e 

 have a common feature: the 
levant to the distribution of its 

pro

density measure which lies in the data distribution 
structure so that it can avoid the curse of 
dimensionality. 

(4) Immunity to the order of inputs: From the 
discussion in sec

Step1:  Declare a vector V of two elements, one 
stores similarity, and the other represents its 
amount. 

Step2:  Filling in the vector V. 
Step3:  Calculate ( )sum V . 
Step4:  Compute . ( )avg V
Step5:  Filter out the similarity in V which is most 

implemented in whole data space. However, most of 
the other algorithms, such as SCS [4], limited to the 
order of inputs. 

IV. CLU A SDSC 
In this section, we first introduce the no

subspace difference, and then describe the subspac
clustering algorithm SDSC. 

A. Subspace difference 
Soft subspace techniques

value of the weight is re
jection subspace [27]. It means that the more compact 

the data distributed, the greater the dimension weight will 
be. Hence, the information of the weight distribution 
reflects the dispersion of data points in the subspace. 
Taken the weight of each clusters as a data object, the 
greater the compactness of the weight is, the more 
centralized the data distributed, and the subspace is more 
optimal. Therefore, considering the compactness of 
dimension weight in the objective function will benefit 
the clustering process to obtain better clustering results. 
Unlike existing soft subspace clustering, Traditional 
clustering is not related to the concept of dimension 
weight, we assumed the weight of each dimension is 
equal [26]. Based on the refinement 
of 1 2 ... 1k k kDw w w+ + + = , the compactness of dimensional 
weight can be expressed as follows: 

' 2

1
( ) (1 )k kj

j
diff S w

=
∑= −                  
D

                           (4) 

Where refers to the kth kS subspace. We could calculate 

( ) ( )2' ( ) [ 1 , 1 ]kdiff S D D D− −  using the refinement ∈
of 1 2k kw w ... 1kDw+ + + = , then nor

 1], and give the form
finition 1(subspac

 

malize it to the range of 
[0, al definition as follows.  
De e difference): Given ( )kdiff S  to 
represent subspace difference of the kth subspace:

( ) ( )2

1
( ) 1 1 1

D

k kj
j

diff S D w D D
=
∑= − − − +                     (5)

The new objective function is written as follows: 
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1 1
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2
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= = ∈
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The first term in Eq.(6) is the within-clu
compactness, and the second term is the subspace 
dif

ster 

ference. The positive parameter kp controls each 
dimension’s balance[26], we can definite it as: 

 
1

1 D

k kj
j

p X
D =

= ∑
 

( )2

i kkj ij kjx C
X x

∈
= −∑where v . 

jective function 
Minimization of J with the constraints forms a class of 

constrained nonlinear optimization problems whose 
solutions are unknown. The usual method toward 

B. Ob
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optimization of J is to use the partial optimization for W 
and V. In this method, we first fix V and minimize J with 
respect to W. Then, we fix W and minimize J with respect 
to V. we use the Lagrangian multiplier technique to obtain 
the minimization problem: 

( )

( )

1
1 1

2

1

1 1

1 1
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11 1
1

1
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Substituting this expression back to Eq.(9), we obtain 
( )

1

1 1
22
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kj D

kj
l

X D Dw
DX

=
∑

− +
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C. Clustering Algorithm SDSC  
The SDSC algorithm that minimizes 1J , using Eq.(8) 

and Eq.(10), is summarized as follows: 
Algorithm SDSC 
Input: dataset , the size of 

neighbor shold
1 2 3{ , , ,..., }nX x x x x=

hood t, density thre σ , and the 
number of clusters k 

Output: { }1 2C , ,..., kC C C= and W 
Initialization Method: Algorithm DBNDI or  

Random Initialization 
Let p be the number of iteration, p=0;  
Denote V, W as and , respectively. 
Repeat 
1. For each center , and for each point 

(0)V (0)W

kv ix : 

Set ( ){ }1,2,...,arg min ,
lk i l K s l iC x k dist v x== = , 

where ( ) 2

1
, (

l

D

s l i lj ij lj
j

dist v x w x v
=
∑= − ; )

2. p=p+1; 
3. Using Eq.() to calculate 
4. Using Eq.() to calculate ; 

Until 

( )pV ; 
( )pW

( ) ( 1) ( ) ( 1)p p p pandε ε− −− < −V V W W  <

Figure 3.The process of SDSC algorithm 

where ε is a small positive number aiming to control the 
algorithm process. SDSC algorithm is based on the 
classical framework of k-means. Unlike the other k-
means type soft subspace algorithms, SDSC algorithm 
pays attention to the subspace difference and re-defines 
the iterative formula. Correspondingly, the new 
algorithm not only continues the convergence 
conditions of k-means (cluster centers converge), also 
focuses on the dimension weights convergence.  

The SDSC algorithm is scalable to the number of 
dimensions and the number of objects. This is because 
SDSC only adds a new step to the k-means clustering 
process to calculate the dimension weights of each 
cluster. Next, we only consider the three major 
computational steps to analyze the runtime complexity. 
First, partitioning the objects, this step simply compares 

the summation of ( ) 2

1
, (

l

D

s l i lj ij lj
j

dist v x w x v
=
∑= − )  for 

each object in all k clusters. Thus, the complexity for this 
step is O(KND) operations. Similarly, the complexity of 
updating cluster centers and calculating dimension 
weights are all O(KND) . If the clustering process needs 
p iterations to converge, the total computational 
complexity of this algorithm is O(KNDP).  

V. EXPERIMENTS AND ANALYSIS 
The main purpose of this section is to verify the 

accuracy of our proposed SDSC algorithm. The 
performance of SDSC is evaluated both on real world high 
dimensional data and artificial data. Each dataset is 
normalized into a range between 0 and 1 using maxing-min 
normalization. 

A. Datasets 
In order to demonstrate the superiority of our proposed 

method on high dimensional data, we used five real 
datasets to examine the effectiveness of SDSC. The first 
one is Spam-Base [29] datasets is obtained from UCI 
Machine learning Repository. The second one is Email-
1431 [30] dataset. It is an English email corpus which 
contains 642 normal emails and 789 spam emails. After 
preprocessing, each email document is mapped to a 2002-
dimensional vector by employing the vector space mode 
(VSM). The Third one is Ling-Spam [31] dataset. It 
contains 2412 linguist messages and 481 spam messages. 
We have removed low frequency words (frequency less 
than 0.5%) and high frequency words (frequency higher 
than 40%) in the preprocessing stage. Finally we have 4435 
words. The last two datasets extracted from TanCorp [32], 
after preprocessing, we choose 1191 words, and then we 
have Tan-5711-1191 dataset and Tan-6301-1191 dataset. 
Their detailed parameters are summarized in Table 1. 

To measure the scalability of SDSC to the number of 
dimensions and the number of objects, we generated 8 
datasets based on the method suggested by Aggarwal et 
al [8], the detailed descriptions are summarized in Table 
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2. 1 4D − datasets validate the scalability to the  number of 
objects. Each of them contains 4 clusters and 1000 
dimensions. 5 8D −  datasets validate the scalability to the  
number of dimensions. Each of them contains 4 clusters 
and 5000 objects. 

Table 1. Some information about the real-world datasets 

Datasets Size Dimension Cluster number
SpamBase 4601 54 2 
Email-1431 1431 2002 2 
Ling-Spam 2893 4435 2 

Tan-5711-1191 5711 1191 3 
Tan-6301-1191 6301 1191 4 

Table 2. Summarized p rameters of the synthetic datasets 

4

a

 clusters and 1000 dimensions 
1 4D −  

the number of 
objects 

1 2 3 4D  D  D  D  
100

4 clusters and 5000 objects. 
00 20000 30000 40000 

5 8D −  
the f 
dim 5D  number o

ensions 6D  7D  8D  
1000 2000 3000 4000 

B. Experiment Setup 
We have implemented SDSC in C++ and all 

experiments were run on a PC with a 2.99GHz CPU and 
AM  order to rmance of our 

algorithm SDSC, we compare its performance with 
FWKM [16], EWKM [17] and FSC [25]. As mentioned in 
section 2, we expl  
dimensional data

t 
d 

(random initialization), an  
technique to SDSC algorith   
Three comparable algorithms all require input parameters; 

 on the value suggested
arameters of DBND

spe

we employ two 
s Micro-F1 [27] and Macro-F1 [27] . 

s defined as. 

2GB R . In  evaluate the perfo

ore a novel initialization method for high
. To have a better comparable results, first, 

like the other soft subspace algorithm, we will implemen
SDSC algorithm with the same initialization metho

d then we apply DBNDI
m and the other algorithms.

we specify their parameters based
by [16], [17] and [25]. The input p

 
I are 

cified in Table 2. 

To measure the goodness of clustering, 
well-known indexe
Where F1 [27] i

2F1 Recall Precision
Recall Precision
× ×

=
+

                                    

all is ratio betw

     (15) 

e mber of correct positive 
s and the nu es; precision 

ct positive 
predictions [27]. 

tasets Parameter settings 

where rec en the nu
prediction r of positivmbe e exampl
is ratio between the numbers of corre

Table 3. Speci Value nput Parameters for DBNDI fied s of I

Da

SpamBase t=50, σ =0.02 
Email-1431 t=50, σ =0.02 
Ling-Spam t=50, σ =0.02 

Tan-5711-1191 t=45, σ =0.02 
Tan-6301-1191 t=40, σ =0.025 

C. Experimental results on Real-World Data 
      Accordin ximation 
techniques,  no longer 

bution 
of L

d table 7. Experimental res

propriate 
algorithm s for   a time-
consum  
thr

ed extensive experiments on the eight 
sets, investigated the scalability of our 

g to the use of sampling or appro
the k-means type algorithms are

determinate and may vary with different runs of the 
algorithm. Hence the experiments randomly run 100 times 
using these methods and analyze their average accuracy.  

Table 4 and Table 5 show the accuracy of four methods 
with the random initialization. As they show, SDSC yields 
better results than the competing algorithms on four 
datasets, in terms of both Micro-F1 and Macro-F1. We 
noted that the average accuracy of our proposed algorithm 
is almost beyond 80% which is improved while it compares 
to the other three techniques. As for the uneven distri

ing-Spam dataset, the average accuracy of the other 
three algorithms is almost 60%; however, SDSC continues 
to show advantages and achieves the clustering accuracy of 
80%. To the highest dimensional dataset, Emial-1431, 
other clustering algorithms on average only receives the 
clustering precision of 70% which is given 90% using 
SDSC algorithm.  

The comparisons results with the DBNDI algorithm are 
shown in table 6 an ults 
demonstrate that the initial centers chosen by DBNDI can 
benefit clustering results. The obvious improvements 
indicate that the proposed initial algorithm is more suitable 
for K-Means type algorithm in high dimensional space. 

As Fig.5 shows, while clustering the same dataset, the 
time for EWKM clustering is significantly more than other 
three algorithms, this is because selecting the ap

 parameter EWKM algorithm is
ing process. The average running time of other

ee algorithms are almost same; however, SDSC 
algorithm has a better clustering accuracy in the same 
operating conditions. 

D. Simulation Result 
     We conduct
synthetic data
pro osed to thp e number of data points and the number of 
dimensions. The results are reported below. 
     Fig.6 shows the relationships between the runtime and 
the number of dimensions and objects, repectively. We can 
see that the runtime of SDSC increased linearly as the 
number of dimensions and objects increased. These results 
were consistent with the algorithm annlysis in Sction 3 and 
demonstrated that SDSC is scalable.  
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Table 4. Comparison of the clustering results on the rea

 SpamBase Email-1431 

l-world datasets (Micro-F1) with the random initialization 

Ling-Spam Tan-5711-1191 Tan-6301-1191 
SDSC 0.7013 0.9257 0.7962 0.8954 0.8091 

EWKM( γ =0.5) 0.5673 0.5829 

FWKM

0.6543 0.5783 0.4984 

( β =1.5) 0.6411 0.6027 0.8402 0.6683 0.5648 
FSC(α =2.1) 0.5984 0.6542 0.6146 0.6428 0.6184 

 

Table 5. Compar the clustering ults on the real-w

amBase Email-1431 

ison of  res orld datasets (Miaro-F1) with the random initialization 

Ling-Spam Tan-5711-1191 Tan-6301-1191  Sp
SD 0.8001 0.9146 SC 0.7849 0.9028 0.8054 

EWKM( γ 0.4192 0.4634 =0.5) 0.5184 0.4793 0.5012 

FWKM( β =1.5) 0.4996 0.4871 
FSC(

0.4957 0.5839 0.5237 
α =2 0.6157 .1) 0.4735 0.4843 0.4918 0.4896 

Table 6. ompariso of the clust ing results on the real-wor

1431 

 C n er ld datasets (Micro-F1) with the DBNDI initialization 

Ling-Spam T SpamBase Email- an-5711-1191 Tan-6301-1191 
SDSC 9620 0.8123 0. 0.8892 0.9527 0.8956 

EW ( γKM =0.5) 0.6098 0  

FWK

 .6247 0.7016 0.6234 0.5761 
0. 672 6983 0.6M( β =1.5) 0.8714 0.7029 0.6172 

FSC(α =2.1) 0.6483 0.7037 0.6749 0.7011 0.6798 

Table 7. Comparison of the clustering results on the real-w

 SpamBase Email-1431 

ld datasets (Miaro-F1) with the DBNDI initialization or

Ling-Spam Tan-5711-1191 Tan-6301-1191 
SDSC 0.8793 0.9309 0.8094 0.9164 0.9034 

EWKM( γ =0.5) 0.5092 0.5783 

FWKM(

0.6035 0.5672 0.6092 

β =1.5) 0.5004 0.5267 

FSC(

0.5861 0.6049 0.5984 

α =2.1) 0.5284 0.7035 0.5283 0.5381 0.5436 
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 Figure 5.Comparison of the runtime of different algorithms 

ONCLUSIONS U  WORK 

In r, we have pr d  k-means type 
sub ng algorith with a novel 
initi or high n a. In 
this algorithm, we simultaneously minimize the within-
cluster compactness and optimize the subspace by 
evaluating the subspace difference. Besides, we introduce 
a novel initialization method which suitable for high 
dimensional data, and benefit the clustering results. SDSC 

utperformed other k-means type 
KM, EWKM and FSC. Except for 

ameters of our 

I. C  AND F TURE

 this pape opose  a new
space clusteri m, SDSC, 
alization method f  dime sional sparse dat

requires no additional input parameters. The experimental 
results on both synthetic and real datasets have shown that 
the new algorithm o
algorithms, such as FW
clustering accuracy, the new algorithm is scalable to high 
dimensional data and easy to use because it has no input 
parameters. Future work will focus on how to develop a 
more effective way to specify the input par
proposed initialization algorithm according to the various 
structure of dataset. 
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