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Abstract—Multimedia live stream multicasting and on-line 
real-time applications are popular recently. Real-time 
multicast system can use peer-to-peer technology to keep 
stability and scalability without any additional support from 
the underneath network or a server. Our proposed scheme 
focuses on the mesh architecture of peer-to-peer live 
streaming system and experiments with the buffering 
mechanisms. We design the dynamic buffer to substitute the 
traditional fixed buffer. 
 

According to the existing measurements and our 
simulation results, using the traditional static buffer in a 
dynamic peer-to-peer environment has a limit of improving 
quality of service. In our proposed method, the buffering 
mechanism can adjust buffer to avoid the frozen or reboot 
of streaming based on the input data rate. A self-adjusted 
buffer control can be suitable for the violently dynamic 
peer-to-peer environment. Without any support of 
infrastructure and modification of peer-to-peer protocols, 
our proposed scheme can be workable in any chunk-based 
peer-to-peer streaming delivery. Hence, our proposed 
dynamic buffering mechanism varies the existing peer-to-
peer live streaming system less to improve quality of 
experience more. 
 
Index Terms—multimedia, live streaming, real-time service, 
peer-to-peer, buffer control, IPTV 
 

I. INTRODUCTION 

With advancement and development of network 
technology, more and more on-line applications appended 
to the Internet are popular among many people in the 
recent years. In addition, some services limited to the 
bandwidth challenges become practicable and feasible 
because of an increase of broadband access. For example, 
the service of multimedia multicast satisfies hundreds or 
thousands of users simultaneously. More and more 
people enjoy multimedia services easy from youTube or 
many Web 2.0 websites. It is easy that users just click a 
mouse to access Internet as well as press a remote 
controller to watch Internet television. 

The Internet television owns more outstanding 
advantages than traditional television, such as rich and 
various programs as well as watching television anytime 
and everywhere via wireless mobile device. Even a 
successful IPTV (Internet Protocol TeleVision) system 
can allow arbitrary users to create the user-generated 
content. Several researchers forecast and expect that 
IPTV will be the television in the next generation [1]. 

However, the traditional server-client system cannot 
afford the high bandwidth of multimedia streaming for 
IPTV; hence, many researchers considered that peer-to-
peer (P2P) architecture should be a good network overlay 
to broadcast multimedia streaming based on four reasons: 

(1) P2P technology has been developed successfully 
for file sharing and has been demonstrated to heal 
with the accessed utilization for thousands of 
users simultaneously. P2P technology also owns 
the scalability, such as BitTorrent and eDonkey. 

(2) P2P can use the resource of each peer adequately, 
especially bandwidth resource. Peers can 
cooperate with each other to share available 
bandwidth for the scalable applications. 

(3) P2P content distribution uses an application layer 
multicast without any additional support from the 
underneath network. 

(4) P2P servicing model greatly reduces server cost. 
In summary, using P2P overlay has become an 
increasingly popular approach for live streaming 
over the Internet. 

Presently, the live media distribution is called “P2P 
live streaming” and is different from video on demand 
(VoD). P2P live streaming service usually provides in-
time programs, such as live ball game, first-hand stock 
information, or the latest news. On the other hand, VoD 
service often provides the rebroadcasted movies or series. 
Obviously, the limit of real-time matters must be 
considered more in live streaming than in VoD. Therefore, 
various kinds of discussed issues in the P2P live 
streaming system were derived and referred to quality of 
service (QoS). In this paper, we consider in the users’ 
opinions instead of the developers’ opinions. 

The structures of P2P live streaming system can be 
roughly differentiated between tree-based structure and 
mesh-based structure. According to the data-driven way 
(i.e. how to acquire data), we can call them tree-push and 
mesh-pull respectively. Tree-push means that the 
ancestors usually push available source to their 
descendants. On the contrary, mesh-pull means that the 
peer collects available source by itself and competes 
against other peers. Additionally, many recent studies 
addressed the concept about hybrid; hence, push and pull 
already have combined each other or worked together [2]. 
In our practice and experience, tree and mesh own their 
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individual advantages respectively, maybe the 
programming developers take trade-off into account to 
select one structure among them to implement a P2P live 
streaming system: 

(1) Single-tree structure is simple and efficient but 
vulnerable to dynamics; 

(2) Multiple-tree structure is more resilience but more 
complex than single tree; 

(3) Mesh structure is more robust but occurs to longer 
delay and control overhead. 

So far, most of the previous research modifies 
application multicast to improve the quality of experience 
(QoE) [12] for the audiences and almost probes into (1) 
Overlay structure, (2) Peer adaptation, (3) Data 
scheduling, and (4) Hybrid reconstruction. 

(1) Overlay structure. Briefly, overlay structure 
includes basic architecture and data delivery 
strategy. Basic architecture of mesh consists of 
swarming and gossip. Swarming originates from 
the swarm of BitTorrent, means the group of peers 
that all share the same torrent. Therefore, 
swarming is like as the BT-liked protocol. Besides, 
gossip is similar with swarming, and peer 
selection of gossip protocol is freer than swarming. 

 Data delivery strategy varies according to above-
mentioned basic architecture. In general, the 
centralized delivery strategy has the higher 
efficiency but the less scalability than the 
distributed delivery strategy. The developers try to 
find the most suitable overlay structure for P2P 
live streaming. 

(2) Peer adaptation. Peers join or leave arbitrarily, 
also called peer churn. No matter what overlay 
structure is used, P2P streaming system needs a 
recovery mechanism to ensure a reliable work 
after peer churn. The overlay is reconstructed to 
maintain an adequate amount of source for all 
peers. In addition, peers can change partners to get 
the better QoS. These behaviors are generally 
called peer adaptation. 

(3) Data scheduling. In mesh-pull scheme, a 
successful download must decide who to be 
requested, which one chunk1 to get, and how to 
get available chunk. A good data schedule can 
select a workable peer to get a useful chunk to 
maintain QoS. 

                                                          

 The well-known data scheduling includes rarest 
first and optimistic unchoke in BitTorret, which is 
much efficient and nice in P2P file sharing. 
However, the data schedule of BitTorret is not 
suitable for live streaming service. A data 
schedule for P2P live streaming takes basically the 
prompt delivery and buffered queue into account. 

                                                           
1 A chunk is a unit of video data block. 

(4) Hybrid reconstruction. Several inherent 
shortcomings of mesh overlay are difficult to 
overcome, so some researchers consider that an 
integration of mesh and tree is a resolution for the 
challenges from mesh [11]. 

Making these four alterations mentioned above in an 
old and an existing system is resource-consuming 
because it is necessary to modify the original multicast, to 
alter the real-time protocol, or to increase the overhead of 
each peer. Hence, these issues can only be considered 
when developing a new P2P streaming system. 
Furthermore, so far, previous studies never aimed at 
buffer control to improve QoS. 

To vary the existing peer-to-peer live streaming system 
less but improves quality of experience more, our 
proposed scheme focuses on the mesh architecture of P2P 
live streaming system and experiments with the buffering 
mechanisms. P2P swarming2 based on mesh must have a 
component to buffer video data for the smoothness. We 
enlarge or shorten the buffer size with the variation of 
data rate to prevent from the unstable source due to peer 
churn. Only buffer process of client is modified to 
improve the global efficiency of streaming system 
without any additional overhead and modification. 

The rest of this paper is organized as follows. In 
Section 2, we present the buffer introduction of PPLive 
and Cool-Streaming. In Section 3, we discuss our 
proposed scheme in detail. Simulation results are 
presented in Section 4, and we conclude the work in 
Section 5. 

II. RELATED WORK 

Buffer control is indispensable to a P2P network, and it 
is also one component of P2P live streaming system to 
avoid jitter, especially in swarming delivery under 
randomly mesh architecture. The buffer of P2P live 
streaming is smaller than 10 MB of each peer according 
to the measurement, and the buffer size equally reserves 
the video data for 200 seconds around [3]. Two reasons 
why mesh structure use buffer mechanism are necessary. 
First, buffer keeps video playing smoothly. As a result, 
every peer must buffer a sufficient quantity of video data 
and ensure the stable source to begin playing back. 
Second, buffer mitigates the possible challenges because 
of P2P churns. In general, peer churn often causes an 
interruption or a break of data delivery; hence, the 
buffered data can deal with the emergency before the 
overlay recovery. 

A. The Buffer Observation of PPLive 
PPLive is a popular Internet application for P2P 

streaming, but it is a pity that PPLive software is not open 
to academia. Therefore, we only deduce its principles 
from the monitoring measurements [3]. 

 
2 Swarming means peers all cooperate to get the same work in a group. 
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Depending on Figure 1, PPLive starts to establish and 
set up buffer after opening to execute. And then PPLive 
program requires the memory space to buffer data, the 
initial buffer size equals approximately 100 chunks. 
Buffer size grows with time until up to the size of 1000 
chunks, and then it stops growing or grows slowly. The 
reason of growing buffer size slowly is that 1000 chunks 
are enough sufficient to play back; thus, enlarging buffer 
space is not important to do immediately. The 
coordination with Figure 1 and Figure 2, we can know 
that buffer size stops growing entirely when it is the size 
of 1100 chunks. In addition, the change of network 
parameters will not vary the buffer size; thus, the buffer 
control of PPLive is the type of static fixed buffer. 

 
Figure 1. Buffer size vs. buffer saturation at initial time 

However, Figure 2 reveals a drawback in fixed buffer 
mechanism. When the incoming streaming is less or 
unstably provided to buffer, the buffer still holds a fixed 
size. This inflexible method may lead to video frozen, 
video skipping, and program rebooting, and then further 
impact the users’ QoE. These three situations all result 
from a lack of buffered data; in other words, the chunks 
cannot arrive at the destination before the playback 
deadline. 

 
Figure 2. Buffer variation 

As Figure 3 illustrates, the occasional nulls cause the 
small gaps of the in-order buffer, and the gaps result in 
video skipping. If a block of chunks cannot be collected 
but the communication of peers still keep well, the video 
player is frozen until the available chunks meet the 
playable region of buffer. The reason of video frozen is 
the less availability of stringent chunks due to the 

network congestion or a bad algorithm of chunk selection. 
However, if peer leaving leads to a starvation and peer 
adaptation cannot handle the trouble immediately, the 
user’s streaming programming cannot but reboot. 

PlayingBuffer

now

Input streaming

(a) Skipping

(b) Frozen

(c) Reboot

Available chunk

Null (unavailable chunk)  
Figure 3. Buffer accidental events 

Three accidental events are discussed via the buffer 
situation in some paper, i.e. buffer occupancy decides to 
enter which one mode as Figure 3 shown. In our research, 
we also simplify the subject by a discussion of buffer 
occupancy. Buffer is like a bridge between peer 
connections and application player. When QoS of 
network starts to degrade or some peer detects 
insufficient resource, client-program should adjust the 
data scheduling or execute peer adaptation early to deal 
possibly with the imminent predicament. 

B. The Buffer Introduction of CoolStreaming 
CoolStreaming is one successful, famous, and open 

P2P live streaming system. The history of CoolStreaming 
as well as its basic architecture and designing concepts 
are in the academic report [4]. On the other hand, one 
paper about CoolStreaming [5] specifies obviously how 
to design components of its system and procedures of its 
algorithm in detail. In addition, another paper about 
CoolStreaming [6] illustrates the mathematical and 
numerical analysis, the simulative and evaluative results, 
and the test in real world. Especially, buffer mechanism is 
mentioned and described in the article about theory of 
CoolStreaming as Figure 4 and Figure 5 shown [6]. 
Importantly, CoolStreaming still lives, so it keeps 
updating, correcting, and modifying. The latest design for 
P2P live streaming and the investigation report of users’ 
true experience are introduced: Coolstreaming+ system 
modifies buffer management and data scheduling to 
improve the efficiency of hybrid pull-push and multiple 
sub-streams [7], and analyzes online statistics to find a 
way for NAT traversal [8]. 

As Figure 4 shown, a video stream is encoded to a 
division into many chunks. Every chunk has the sequence 
number to identify itself and buffer can sort the chunk in 
order according to their sequence numbers. A video 
stream is decomposed into many sub-streams to avoid a 
point failure. All sub-streams combine to the complete 
video stream. When some one delivery path (sub-stream) 

Copyright © 2011 MECS                                                                                     I.J. Intelligent Systems and Applications, 2011, 3, 1-10 



4 A Dynamic Self-Adjusted Buffering Mechanism for Peer-to-Peer Real-Time Streaming  

is disconnected, peer can still receive other sub-streams to 
combine a part of video stream. 

As Figure 5 shown, the structure of CoolStreaming 
buffer includes synchronization buffer and cache buffer. 
Synchronization buffer receives incoming chunks from 
every sub-stream to synchronize these chunks in the 
correct memory space and then push them to cache buffer. 
Cache buffer sort chunks with sequence numbers in order 
to prepare for playback. 

The buffer of CoolStreaming is also fixed as like as 
PPLive, and there is not any mechanism for dealing with 
emergency. The designers considered that if peers or 
neighbors are selected well, consequently the stable and 
sufficient data source can be provided well. Focusing on 
the optimal overlay construction or peer adaptation is a 
current method popularly. 
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Figure 4. Example of stream decomposition 
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Figure 5. Structure of buffers and chunk combination process in a peer 

III. PROPOSED SCHEME 

A. Algorithm for Proposed Scheme 
As we mentioned above, the partner leaving can break 

a delivery path, and a lack of data resource temporarily 
leads to a reboot. Once the reboot happens, the user be 
compelled to execute peer selection again and waits for a 
long time to watch the frames again. The users must 
complain about the long waiting time. However, the 
reboot can be avoided via the method that peer monitors 
the variation of its data rate, and adjusts the buffer size 
based on the data rate. The decrease of data rate often 
indicates a warning of partner leaving. When the data rate 
of the peer decreases, the size of buffer is enlarged. And 
thus the buffer early reserves some un-continuous data. In 
this duration of overlay recovery, collecting sequential 

data is not the top priority in the schedule of our proposed 
algorithm. A lack of data source must result in bad QoS 
during recovery time. Although users watch the un-
continuous frames, the matter avoids the reboot. In 
summary, we want to sacrifice playback quality of video 
to decrease the probability or frequency of reboot. 

The decrease of data rate also indicates a sudden jitter 
or bottleneck of network bandwidth. This situation is 
different from the above peer leaving. Peers still keep and 
maintain the delivery paths or multicast streams to share 
data chunks between each others. In this situation, peers 
do not need to recover overlay, peers can choose to wait 
for a quality restoration passively or handle peer 
adaptation actively. The size of buffer is enlarged to pass 
the corner for unstable network bandwidth. After peer 
churn, peer adaptation, overlay recovery, or etc., the 
buffer shortens to the original size when coming back in 
the stable quality. 

Figure 6 illustrates the final states of a peers’ life cycle 
in the mesh scheme. The black lines denote the regular 
and success processes, and the grey dotted lines denote 
the accidental failures with error exceptions. A peer 
corresponds directly with the server when new joining. In 
new joining process, the server gives new peer an 
identification and executes the authentication. Then the 
second process is an initiation of preconditioned 
parameters, including the playback time synchronization, 
a set of candidate partners, the information of TV 
programs, other arguments of player, etc. Next, after the 
initiation, start-up process is responsible for selecting the 
partners and initializing the buffer to start gathering the 
video data. 

New joining

Initiation

Start-up

Run
Play
Peer adaptation
Buffer management

Wait
Skip
Peer re-selection
Buffer check

Stop

Reboot

 
Figure 6. Final states of peers’ life cycle 

The importance of our algorithm put emphasis on three 
threads including video play, peer adaptation, and buffer 
management in the run process. The threads execute 
nonstop in the background. Buffer management of our 
algorithm monitors and computes received data rate to 
judge whether buffer must be enlarged or shortened. 
When received data rate decreases, buffer size is enlarged 
to gather and reserve non-continuous chunks beforehand 
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to reduce the probability of reboot. However, QoS 
degradation is inevitable consequently because the 
gathered chunks are non-continuous. 

As Figure 6 illustrated, when a problem happens in 
playback, player is not able to show any image and then it 
enters into wait process. The player waits for available 
video data from buffer to play frames again. In wait 
process, the system can judge how to deal with the 
problem. In general, the controller of system can check 
buffer to decide that the video should be frozen, skipped, 
or rebooted as Figure 3 shown. The worst case is 
rebooting due to player system will return to the initiation 
state after rebooting; hence, the expected time of playing 
video again is very much long. 

B. Client Program Flow 
In summary, we list these processes and their 

responsibilities in Table I: 

TABLE I 
THE RESPONSIBILITIES AND FUNCTIONS OF CLIENT’S PROCESS IN OUR 

PROPOSED SCHEME 

Process Responsibility Functions 

New join Identification Bind with server 
Ensure identification and authentication 

Initiation Configuration 

Setup network parameters 
Load and link media player 
Synchronize playback information 
Get candidate partners from server 

Start-up Preparation 
Build local P2P overlay 
Initialize buffer 
Open decode stream 

Run 

Play 

Get data from buffer to playback 
Execute decode stream 
Update information to server 
Interact with user 

Peer 
adaptation 

Reselect partners 
Maintain local P2P overlay 

Buffer 
management 

Monitor and compute incoming bit rate 
Enlarge or shorten size of buffer 
Schedule chunk selection 

Wait 

Interruption Stop to playback 
Buffer check Decide playback skip 
Peer 
reselection Reselect partners 

Reboot Renewal 
Close decode stream and clear buffer 
Close connections with peers 
Prepare for initiation and start-up again 

Stop Exit 
Exit P2P network 
Close media player 
Disconnect all connections 

1. New join: A peer connects to the server and logins for 
identification and authentication in the first process. 
And then the peer binds the server to keep alive. 

2. Initiation: A peer must configure the software to work 
successfully in P2P network. This configuration 
includes two parts, one is about network, and another 
is about media application. Under the asymmetrical 
incoming/outgoing bandwidth, each peer sets up 
network parameters to adapt itself in P2P network. 

Peer gets the information of the playback time 
synchronization and a set of candidate partners from 
server. Media player is linked and loaded in this 
process. 

3. Start-up: After the processes of new-join and initiation, 
peer starts up the preparation for smoothness before 
playback. It selects partners from candidates to build 
local P2P overlay. It also initializes the buffer and 
opens decode stream. These actions are done for 
starting to gather the video data. 

 The duration since start-up process to run process is 
called as start-up delay. Users are always intolerable 
for long start-up delay. The good P2P overlay, good 
data scheduling, good network capacity, and good 
buffer mechanism can shorten the start-up delay to 
improve QoE. 

4. Run: This process is the most important part of our 
proposed scheme. It includes video play, peer 
adaptation, and buffer management; buffer 
management is the most significant contribution 
among them. In traditional schemes, buffer 
management just gives assistance to data scheduling 
and sorts data to extract from buffer for playback. In 
our proposed scheme, besides working above jobs, 
buffer management monitors and computes incoming 
data bitrates. According to the incoming data bitrates, 
buffer size and data schedule can be adjusted into 
dynamic P2P environment. 

 Peer adaptation always finds and evaluates suitable 
candidate partners to improve P2P efficiency of data 
delivery, i.e. to build a robust overlay for locality. In 
other words, peer adaptation can reselect partners to 
maintain local P2P overlay. Peer adaptation handles 
the assignments of lower network layer, and play 
handles the assignments of higher application layer to 
interact with users. Its important work is the media 
playback including decoding and screening, play must 
update and report relative information to server 
periodically. 

5. Wait: When any error interrupts playback leading to 
that player shows incorrect images, the program flows 
into wait process. We focus the kind of P2P network 
error, such that wait triggers interruption, buffer check, 
and peer reselection sequentially. 

 First, interruption stops playing to avoid decode error 
of play in run process (usually means the null error). 
Interruption notices the player waits for available video 
data from buffer to play again. Second, buffer is 
checked to decide that the video should be skipped, 
frozen, or rebooted. This decision influences peer 
reselection. Third, peer reselection is executed if it is 
necessary. 

 Peer reselection is similar with peer adaptation, but 
reselection has two differences from adaptation. (1) 
Peer reselection works in play-off time, it builds new 
connections between other peers; peer adaptation 
works in play-on runtime, it maintains old connections 
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for local overlay. (2) Peer reselection can require 
server to fetch a new list of candidate partners for 
overlay recovery; peer adaptation knows new partners 
by itself via exchanging overlay information with each 
other. 

6. Reboot: This process deals with renewal and reset to 
prepare to initialize and start up again. Therefore, 
reboot needs to close video stream and transmission 
stream, and clear buffer. 

7. Stop: Users end up this application, and thus clients 
disconnect all transmissions and streams to exit P2P 
network. 

We can discover this client program flow influence the 
performance of P2P system. For examples, start-up 
process produces start-up delay; run process produces 
playback delay; wait process produces recovery time. 
However, these performance metrics are subjective. An 
objective discussion is in next section. 

C. Parameters of System Performance 
In P2P applications for file sharing or VoD service, the 

utilization of download bandwidth is as high as possible. 
However, for live streaming, the incoming bit rate equals 
to the encoding rate of playback quality. Because the 
users (peers) cannot get the future data and do not need 
the past data in the live shows. If the incoming bit rate is 
stable and approximate to the playback quality, the users 
should enjoy the smooth playback. We define an 
efficiency ratio (R) of the incoming bit rate to the 
playback quality rate (q). 

Efficiency ratio (R) = 
Incoming bit rate (kbps)

Playback quality rate (kbps)     (1) 

If R > 1, the packet duplication or the impermanent 
remedy for packet loss happens. 

If R = 1, the user can watch smoothly. 
If R < 1, the available data is insufficient to play. 

We also define Rt as the efficiency ratio of some time t, 
so the average throughput of an incoming stream is surely
∫t Rt q dt. A lower efficiency ratio usually indicates a 
more dynamic overlay with frequent peer churn (leaving). 
We also define a chunk available rate meant that the 
number of the collected availably chunks is divided by 
the number of the total accessible chunks. The chunk 
available rate is higher, and the source has the higher 
availability to delivery efficiently. The chunk available 
rate is always smaller than the efficiency ratio; however, 
the chunk available rate converges toward the efficiency 
ratio approximately in long time. 

Chunk available rate = 
# of available chunks

# of total chunks
≤ 1.0

  (2) 

A QoE criterion is evaluated by the smoothness of 
playback called playable rate, also called continuity [5]. 
The playable rate is defined as the playable time over the 
total playback duration. In another opinion, the playable 

rate equals to the number of video chunks that arrive 
before playback deadlines over the total number of video 
chunks. Of course, the playable rate is approximate to the 
chunk available rate. 

Playable rate =
# of chunks in buffer before deadline

# of total chunks
Playable time

Total playback duration=
   (3) 

We can deduce that the average throughput of an 
incoming stream should equal to the total number of 
chunks, i.e. chunk available rate × t. In general, efficiency 
ratio is often smaller than 1.0, and efficiency ratio ≥ 
chunk available rate ≥ playable rate, because the 
challenges of peer competition, end-to-end delay, chunk 
unavailability, in-time deadline, overlay reconstruction, 
etc. exist in P2P network. While the playback duration is 
very large, R = efficiency ratio  chunk available rate  ≒ ≒
playable rate. In addition, if the playable rate decreases, 
the probability of reboot increases. If the reboot happens 
when a continuous nulls n in buffer, the probability of 
reboot is (1 – R)n. We call n the threshold of reboot, 
represented how long the frozen time the streaming 
service can tolerate. 

IV. SIMULATION 

A. Simulation Environment 
We implement a media simulator including server-

program, swarm-program, and client-program in Java 
language. The server-program plays a data source server 
in a swarm to provide video data, and the swarm-program 
creates five threads to simulate five peers individually in 
a swarm. The peers sometimes cooperate to complement 
the media chunks, but sometimes compete for rare source. 
When providing data to clients, swarm-program simulates 
the peer competition to bring chunks into clients’ buffer 
out-of-order and the peer churn to vary the incoming bit 
rate violently. Peer churn breaks the stable incoming 
stream and leads to a degradation of quality. The client-
program plays video for users and gathers statistics of 
packet level to estimate QoE. We can observe all 
simulation results from the client-program with many 
dynamic network metrics. 

Figure 7 provides an overview of our simulation 
system. Server-program can open a video and multicast to 
client through swarming. At the same time of 
multicasting, the experiments can handle the rate 
variation via the swarm-program. In addition, server and 
client both have a media player to observe three delays 
(i.e. the start-up delay, end-to-end delay, and buffer 
preparation latency between server and client) leading to 
the lag of IPTV. On the screen of the client-program, 
users can experience the quality via their real eyes, this 
describes the subjective QoE. On the other hand, under 
the background of the client-program, we can get 
statistics from packet level via the occupation of buffer.
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Server Swarm Client

Computer A Computer B Computer C

The server-program plays 
a data source server 

The swarm-program plays 
peer competition and peer 
churn

The client-program analyzes 
QoE and QoS

 
Figure 7. The simulated system 

In the experiments, we can vary three arguments to test 
and compare: efficiency ratio, start-up time, and buffer 
size. For example, we assume that the playback rate is 
300 kbps, and the efficiency ratio R is 0.4 when the 
incoming bit rate decreases from 300 kbps to 120 kbps. 
We denote buffer size as Bsize, and Bsize = 8 means that 
buffer can contain the content for 8 seconds. In order to 
understand easily, we assume that the size of a chunk is 
300 kilobytes, and the video rate is 300 kbps; hence, a 
chunk can be played a second. 

B. Simulation Results 
Our estimation for QoE includes the probability of 

reboot and the playable rate to infer the possible 
interruption of streaming service. First, we define a 
probability function denoted as P (Bsize, n, R) meaning the 
probability of reboot under the conditions when buffer 
size, threshold of reboot, and efficiency ratio are Bsize, n, 
and R respectively. A penalty of reboot hurts QoE more 
heavily than a frozen process or a skipping process. As a 
result, a live streaming service should reduce the 
probability of reboot. Second, we use the playable rate to 
discuss the smoothness of playback. The high playable 
rate indicates that few interrupted time is in playback 
time and has a nice QoE. 

1) The probability of reboot 

The efficiency ratio of live streaming equals 1.0 
usually; however, we decrease the efficiency ratio to 
simulate the condition of neighbors leaving which leads 
to the insufficient incoming source. First, when we 
assume Bsize is 8 and n is 4, Figure 8 shows the correlation 
between probability of reboot and efficiency ratio. Our 
proposed dynamic buffer scheme can reduce the 
probability of reboot by 6 % than fixed buffer scheme, 
and more than half of users can watch a video when the 
efficiency ratio decreases to 0.3 in our proposed scheme. 
Compared with the fixed buffer, our proposed scheme has 
a low probability of reboot even if the efficiency ratio is 
very low. Beside, when the efficiency ratio is 
approximate to 0.0 and 1.0, the difference between the 
fixed buffer scheme and the dynamic buffer scheme is 
very small. When the efficiency ratio is approximate to 
1.0, the incoming data is sufficient and the buffer does 
not need to adjust its size in our proposed scheme, so 
both schemes have the similar performance. When the 

efficiency ratio is approximate to 0.0, there is not any 
incoming data to be able to buffer, so both schemes have 
the similar performance, too. 
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Figure 8. Probability of reboot P is correlated with 

efficiency ratio R when Bsize is 8 and n is 4, i.e. P 
(8, 4, R) 

Second, we assume Bsize is 8 seconds and R is 0.3 as 
Figure 9 illustrated. As we can see, the probability of 
reboot will become smaller when the threshold of reboot 
n increase in both schemes. However, our proposed 
dynamic buffer scheme improves more when the 
threshold of reboot is larger, because the incoming bit 
rate is monitored in our proposed scheme, this leading to 
a low probability of long continuous nulls. Furthermore, 
the threshold of reboot n is larger, the tolerance for 
streaming skips is higher to hurt users’ QoE. An 
assumption of n = 1 or 2 illustrates that the streaming 
reboots immediately when a skip happens. In fact, the 
threshold of reboot n is smaller than the start-up time; 
hence, n = 4 ~ 6 is the reasonable range in the experiment. 
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Figure 9. Probability of reboot P is correlated with 

threshold of reboot n when Bsize is 8 and R is 0.3, 
i.e. P (8, n, 0.3) 

Third, the efficiency ratio is given 0.3 in the 
experiment. As Figure 10 shown, the variation of buffer 
size does not affect the performance between the fixed 
buffer scheme and our proposed scheme. The larger 
buffer size can prepare more data, and thus the 
probability of reboot is lower surely. But the large buffer 
size leads to a high memory cost and a heavy overhead of 
data scheduling. Our proposed scheme is always 5 % 
better than the fixed buffer scheme. 

From above charts, we demonstrate that the efficiency 
ratio affects directly the probability of reboot, and our 
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proposed scheme with unfixed buffer can be more 
suitable than the scheme with fixed buffer in the dynamic 
overlay. On the other hand, the threshold of reboot 
influences the buffer scheme less and may be a tradeoff 
for users’ QoE. In addition, our proposed scheme for 
dynamic buffer can use a self-adjusted buffer control 
regardless of the buffer size. 
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Figure 10. Probability of reboot P is correlated with size of 

buffer Bsize when R is 0.3, i.e. P (Bsize, Bsize/2, 0.3) 

2) The playable rate 

In this section, we regularly and periodically vary rate 
to experiment as Figure 11 shown. The incoming bit rate 
just equals the playback rate when it reaches the peak. 
Therefore, the efficiency of buffer is obviously revealed 
when data rate declines. We use the playable rate to 
estimate the QoE. In addition, we can demonstrate briefly 
what to influence QoE deeply by varying the arguments 
for repeating experiments again and again. 
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Figure 11. The variation of incoming bit rate in the simulated time 

First, we vary the client’s start-up time to observe the 
playable rate of streaming. On the best effort Internet, 
start-up buffer always has been a useful mechanism to 
deal with the rate variations of streaming sessions. Small 
buffer often means a shorter startup delay [9]. As Figure 
12 illustrated, the playable rate is well improved when the 
start-up time increases. The reason for this is that the 
start-up time is a preparing time for buffering; hence, the 
longer time results in the fuller buffer preparation. 
However, the enhance of the playable rate increases 
lightly when the start-up time is more than a certain value 
(maybe five seconds in our experiment) because no more 
chunks is needed to preserve initially. Moreover, if the 
time of start preparation is long, the waiting time of the 
initial video increases and the playback delay of the 
streaming increases as compared with the traditional 
television. Live baseball game for example, other 

audiences already cheered for a home run, but the pitcher 
did not throw the ball on the screen of P2P streaming. 
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Figure 12. The playable rate via start-up time 

Second, we vary the client’s buffer size to observe the 
playable rate of streaming. The size of buffer and its rate 
of drainage and replenishment determine the smoothness 
of the playback [10]. As Figure 13 illustrated, the 
playable rate is well improved when the buffer size 
increases. The size of buffer can be larger to contain more 
content, but it has a limit to improve the playable rate 
because only in-time content rather than the future or the 
oldness one is needed to buffer. The small buffer is 
insufficient for the jitter from network or the peer churn 
from P2P overlay. However, the larger buffer leads to the 
more complex algorithm of chunk selection and the more 
overhead of memory. 
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Figure 13. The playable rate via buffer size 

Third, we vary the connection’s efficiency ratio to 
observe the playable rate of streaming. As Figure 11 
illustrated, the variation of incoming bit rate (efficiency 
ratio) is similar to a regular sierra. The bit rate just equals 
the playback rate when bit rate reaches the peak. 
Therefore, the efficiency of buffer is always smaller than 
1.0 and is obviously revealed when data rate declines. For 
the entire simulated time t, the total throughput of 
incoming stream equals: 

∫t Rt q dt = the grey area in Figure 11 
 = (0.5 t + 0.5 Rt t) q     (4) 

And, the average of efficiency ratio = the total throughput 
of incoming stream divides by q and t: 

average of R  = ∫t Rt q dt / q t 
= (0.5 t + 0.5 Rt t) q / q t 
= 0.5 + 0.5 R                             (5) 
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Because of peer competition, end-to-end delay, chunk 
unavailability, and limitation of in-time deadline, the 
playable rate must be smaller than the average of 
efficiency ratio. In the other hand, the foot is R equaled to 
the minimum of Rt, so the playable rate should be larger 
than R. Therefore, the playable rate should be in the 
interval [R, 0.5 + 0.5 R]: 

R ≤ playable rate ≤ 0.5 + 0.5 R       (6) 

As Figure 14 illustrated, the performance of playable 
rate raises with the increase of efficiency ratio. When the 
efficiency ratio is more approximate to 1.0, the playable 
rate is closer to the up bound, because the wave of 
efficiency ratio is small to maintain a stable incoming bit 
rate well. As a result, a high and stable efficiency ratio 
can bring a good QoE. On the other hand, when the 
efficiency ratio is more approximate to 0.0, the playable 
rate is closer to the low bound, because the wave of 
efficiency ratio is large to experience an unstable 
incoming bit rate. As a result, a low and unstable 
efficiency ratio brings a bad QoE. We can imagine that 
the low efficiency ratio represents a dynamic P2P 
network with frequent peer churn; hence, a peer cannot 
get any chunk even if it has sufficient bandwidth, vice 
versa. 
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Figure 14. The playable rate via efficiency ratio 

The performance of our proposed dynamic buffer 
scheme is always better than the performance of fixed 
buffer scheme. The gap between the performance of 
dynamic buffer scheme and the performance of fixed 
buffer scheme is obvious when the efficiency ratio is in 
[0.3, 08], because the buffer is timely enlarged or 
shortened depending on the incoming bit rate to get the 
in-time chunks. The improvement illustrates that the self-
adjusted buffer control can be used to avoid the 
temporary starvation of source and to avoid the reboot. 
We demonstrate that rather our proposed scheme can be 
suitable for the P2P network with unstable bit rate, than 
the fixed buffer scheme. In addition, the gap is unobvious 
when the efficiency ratio is high, because the buffer 
shouldn’t be adjusted in our proposed scheme. The gap is 
also unobvious when the efficiency ratio is low because 
the incoming bit rate is too low to support buffer. 

In summary, we cannot find that buffer size or start-
up preparation is more important than another. The goal 
of start-up waiting is to fill the buffer; hence, the start-up 

time is influenced not only by receiving rate, but also by 
buffer size. On the other hand, the buffer management is 
independent, this is one reason why we would like to 
modify buffer dynamically. 

Buffer enlarged and start-up time lengthened can 
improve QoS. However, when encountering peer churn, 
the sudden shortage of video source leads to the quality 
degradation. As a result, using fixed buffer in dynamic 
P2P environment has a limit of improving QoS. The 
original design of fixed buffer may make video frames 
more continuous than the dynamic design, but when 
content bottleneck happens, the waiting time of reboot 
recovery is longer. On the other hand, video is played off 
and on in our proposed scheme, but long waiting time is 
less experienced. 

Our proposed scheme of dynamic buffer is better than 
the fixed buffer when incoming bit rate decreases. When 
the efficiency rate is much high, the performance is good 
in both schemes, because there are any difference 
between the dynamic buffer and the fixed buffer when the 
incoming bit rate is stable. When the efficiency rate is 
much low, the performance is bad in both schemes, any 
buffer mechanism cannot work because of a lack of the 
incoming resource. However, our proposed scheme is 
superior to the fixed buffer when efficiency rate 
decreases. Because the self-adjusted buffer control can 
adjust the size of buffer according to dynamic incoming 
bit rate, our proposed scheme can improve the playable 
rate when the incoming bit rate drops down. 

V. CONCLUSION 

Our works discuss in the QoS of P2P live streaming 
and improve QoE. We proposed a concept about the self-
adjusted buffer control to reduce the probability of 
rebooting. This buffering mechanism is suitable for mesh 
structure. Control mechanism monitors and computes the 
incoming data rate and checks the occupation of buffer to 
modify dynamically the size of buffer. This modification 
improves the efficiency of collecting data depending on 
network dynamic bitrates. Finally, we demonstrated that 
the method can reduce reboots to improve playback QoS 
via the simulation results. In addition, we point out some 
unavoidable drawbacks or limitations of innate P2P 
network. 

The performance of IPTV is influenced by too many 
factors; hence a comprehensive comparison is difficult to 
discuss integration. We focus on the design of buffer 
forming to prevent from network jitter. We break up the 
traditional static buffer and design a dynamic buffer 
control to improve a part of performance. Through the 
evaluation of simulation results, we can analyze that our 
proposed scheme is better than traditional scheme and 
improves QoE a little. 

This buffering mechanism only need to modify a little 
on client terminals and it is unnecessary to modify the 
total P2P system. It is suitable for chunk-based buffer 
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design, and it can work on all existing P2P live streaming 
system nowadays. 

In the future, we will put the self-adjusted buffer 
control in the current P2P live streaming system to 
experiment. In advanced studies, we will integrate buffer 
control with peer adaptation, churn recovery and chunk 
scheduling together to design an integrated 
implementation for P2P live streaming system. 

APPENDIX A  DEMO 
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