
I.J. Intelligent Systems and Applications, 2011, 3, 1-10
Published Online May 2011 in MECS (http://www.mecs-press.org/)

A Dynamic Self-Adjusted Buffering Mechanism
for Peer-to-Peer Real-Time Streaming

Jun-Li Kuo, Chen-Hua Shih and Yaw-Chung Chen

Computer Science, National Chiao Tung University, HsinChu, Taiwan
Email: estar.cs95g@nctu.edu.tw; shihch@csie.nctu.edu.tw; ycchen@cs.nctu.edu.tw

Abstract—Multimedia live stream multicasting and on-line
real-time applications are popular recently. Real-time
multicast system can use peer-to-peer technology to keep
stability and scalability without any additional support from
the underneath network or a server. Our proposed scheme
focuses on the mesh architecture of peer-to-peer live
streaming system and experiments with the buffering
mechanisms. We design the dynamic buffer to substitute the
traditional fixed buffer.

According to the existing measurements and our
simulation results, using the traditional static buffer in a
dynamic peer-to-peer environment has a limit of improving
quality of service. In our proposed method, the buffering
mechanism can adjust buffer to avoid the frozen or reboot
of streaming based on the input data rate. A self-adjusted
buffer control can be suitable for the violently dynamic
peer-to-peer environment. Without any support of
infrastructure and modification of peer-to-peer protocols,
our proposed scheme can be workable in any chunk-based
peer-to-peer streaming delivery. Hence, our proposed
dynamic buffering mechanism varies the existing peer-to-
peer live streaming system less to improve quality of
experience more.

Index Terms—multimedia, live streaming, real-time service,
peer-to-peer, buffer control, IPTV

I. INTRODUCTION

With advancement and development of network
technology, more and more on-line applications appended
to the Internet are popular among many people in the
recent years. In addition, some services limited to the
bandwidth challenges become practicable and feasible
because of an increase of broadband access. For example,
the service of multimedia multicast satisfies hundreds or
thousands of users simultaneously. More and more
people enjoy multimedia services easy from youTube or
many Web 2.0 websites. It is easy that users just click a
mouse to access Internet as well as press a remote
controller to watch Internet television.

The Internet television owns more outstanding
advantages than traditional television, such as rich and
various programs as well as watching television anytime
and everywhere via wireless mobile device. Even a
successful IPTV (Internet Protocol TeleVision) system
can allow arbitrary users to create the user-generated
content. Several researchers forecast and expect that
IPTV will be the television in the next generation [1].

However, the traditional server-client system cannot
afford the high bandwidth of multimedia streaming for
IPTV; hence, many researchers considered that peer-to-
peer (P2P) architecture should be a good network overlay
to broadcast multimedia streaming based on four reasons:

(1) P2P technology has been developed successfully
for file sharing and has been demonstrated to heal
with the accessed utilization for thousands of
users simultaneously. P2P technology also owns
the scalability, such as BitTorrent and eDonkey.

(2) P2P can use the resource of each peer adequately,
especially bandwidth resource. Peers can
cooperate with each other to share available
bandwidth for the scalable applications.

(3) P2P content distribution uses an application layer
multicast without any additional support from the
underneath network.

(4) P2P servicing model greatly reduces server cost.
In summary, using P2P overlay has become an
increasingly popular approach for live streaming
over the Internet.

Presently, the live media distribution is called “P2P
live streaming” and is different from video on demand
(VoD). P2P live streaming service usually provides in-
time programs, such as live ball game, first-hand stock
information, or the latest news. On the other hand, VoD
service often provides the rebroadcasted movies or series.
Obviously, the limit of real-time matters must be
considered more in live streaming than in VoD. Therefore,
various kinds of discussed issues in the P2P live
streaming system were derived and referred to quality of
service (QoS). In this paper, we consider in the users’
opinions instead of the developers’ opinions.

The structures of P2P live streaming system can be
roughly differentiated between tree-based structure and
mesh-based structure. According to the data-driven way
(i.e. how to acquire data), we can call them tree-push and
mesh-pull respectively. Tree-push means that the
ancestors usually push available source to their
descendants. On the contrary, mesh-pull means that the
peer collects available source by itself and competes
against other peers. Additionally, many recent studies
addressed the concept about hybrid; hence, push and pull
already have combined each other or worked together [2].
In our practice and experience, tree and mesh own their

Copyright © 2011 MECS I.J. Intelligent Systems and Applications, 2011, 3, 1-10

2 A Dynamic Self-Adjusted Buffering Mechanism for Peer-to-Peer Real-Time Streaming

individual advantages respectively, maybe the
programming developers take trade-off into account to
select one structure among them to implement a P2P live
streaming system:

(1) Single-tree structure is simple and efficient but
vulnerable to dynamics;

(2) Multiple-tree structure is more resilience but more
complex than single tree;

(3) Mesh structure is more robust but occurs to longer
delay and control overhead.

So far, most of the previous research modifies
application multicast to improve the quality of experience
(QoE) [12] for the audiences and almost probes into (1)
Overlay structure, (2) Peer adaptation, (3) Data
scheduling, and (4) Hybrid reconstruction.

(1) Overlay structure. Briefly, overlay structure
includes basic architecture and data delivery
strategy. Basic architecture of mesh consists of
swarming and gossip. Swarming originates from
the swarm of BitTorrent, means the group of peers
that all share the same torrent. Therefore,
swarming is like as the BT-liked protocol. Besides,
gossip is similar with swarming, and peer
selection of gossip protocol is freer than swarming.

 Data delivery strategy varies according to above-
mentioned basic architecture. In general, the
centralized delivery strategy has the higher
efficiency but the less scalability than the
distributed delivery strategy. The developers try to
find the most suitable overlay structure for P2P
live streaming.

(2) Peer adaptation. Peers join or leave arbitrarily,
also called peer churn. No matter what overlay
structure is used, P2P streaming system needs a
recovery mechanism to ensure a reliable work
after peer churn. The overlay is reconstructed to
maintain an adequate amount of source for all
peers. In addition, peers can change partners to get
the better QoS. These behaviors are generally
called peer adaptation.

(3) Data scheduling. In mesh-pull scheme, a
successful download must decide who to be
requested, which one chunk1 to get, and how to
get available chunk. A good data schedule can
select a workable peer to get a useful chunk to
maintain QoS.

 The well-known data scheduling includes rarest
first and optimistic unchoke in BitTorret, which is
much efficient and nice in P2P file sharing.
However, the data schedule of BitTorret is not
suitable for live streaming service. A data
schedule for P2P live streaming takes basically the
prompt delivery and buffered queue into account.

1 A chunk is a unit of video data block.

(4) Hybrid reconstruction. Several inherent
shortcomings of mesh overlay are difficult to
overcome, so some researchers consider that an
integration of mesh and tree is a resolution for the
challenges from mesh [11].

Making these four alterations mentioned above in an
old and an existing system is resource-consuming
because it is necessary to modify the original multicast, to
alter the real-time protocol, or to increase the overhead of
each peer. Hence, these issues can only be considered
when developing a new P2P streaming system.
Furthermore, so far, previous studies never aimed at
buffer control to improve QoS.

To vary the existing peer-to-peer live streaming system
less but improves quality of experience more, our
proposed scheme focuses on the mesh architecture of P2P
live streaming system and experiments with the buffering
mechanisms. P2P swarming2 based on mesh must have a
component to buffer video data for the smoothness. We
enlarge or shorten the buffer size with the variation of
data rate to prevent from the unstable source due to peer
churn. Only buffer process of client is modified to
improve the global efficiency of streaming system
without any additional overhead and modification.

The rest of this paper is organized as follows. In
Section 2, we present the buffer introduction of PPLive
and Cool-Streaming. In Section 3, we discuss our
proposed scheme in detail. Simulation results are
presented in Section 4, and we conclude the work in
Section 5.

II. RELATED WORK

Buffer control is indispensable to a P2P network, and it
is also one component of P2P live streaming system to
avoid jitter, especially in swarming delivery under
randomly mesh architecture. The buffer of P2P live
streaming is smaller than 10 MB of each peer according
to the measurement, and the buffer size equally reserves
the video data for 200 seconds around [3]. Two reasons
why mesh structure use buffer mechanism are necessary.
First, buffer keeps video playing smoothly. As a result,
every peer must buffer a sufficient quantity of video data
and ensure the stable source to begin playing back.
Second, buffer mitigates the possible challenges because
of P2P churns. In general, peer churn often causes an
interruption or a break of data delivery; hence, the
buffered data can deal with the emergency before the
overlay recovery.

A. The Buffer Observation of PPLive
PPLive is a popular Internet application for P2P

streaming, but it is a pity that PPLive software is not open
to academia. Therefore, we only deduce its principles
from the monitoring measurements [3].

2 Swarming means peers all cooperate to get the same work in a group.

Copyright © 2011 MECS I.J. Intelligent Systems and Applications, 2011, 3, 1-10

 A Dynamic Self-Adjusted Buffering Mechanism for Peer-to-Peer Real-Time Streaming 3

Depending on Figure 1, PPLive starts to establish and
set up buffer after opening to execute. And then PPLive
program requires the memory space to buffer data, the
initial buffer size equals approximately 100 chunks.
Buffer size grows with time until up to the size of 1000
chunks, and then it stops growing or grows slowly. The
reason of growing buffer size slowly is that 1000 chunks
are enough sufficient to play back; thus, enlarging buffer
space is not important to do immediately. The
coordination with Figure 1 and Figure 2, we can know
that buffer size stops growing entirely when it is the size
of 1100 chunks. In addition, the change of network
parameters will not vary the buffer size; thus, the buffer
control of PPLive is the type of static fixed buffer.

Figure 1. Buffer size vs. buffer saturation at initial time

However, Figure 2 reveals a drawback in fixed buffer
mechanism. When the incoming streaming is less or
unstably provided to buffer, the buffer still holds a fixed
size. This inflexible method may lead to video frozen,
video skipping, and program rebooting, and then further
impact the users’ QoE. These three situations all result
from a lack of buffered data; in other words, the chunks
cannot arrive at the destination before the playback
deadline.

Figure 2. Buffer variation

As Figure 3 illustrates, the occasional nulls cause the
small gaps of the in-order buffer, and the gaps result in
video skipping. If a block of chunks cannot be collected
but the communication of peers still keep well, the video
player is frozen until the available chunks meet the
playable region of buffer. The reason of video frozen is
the less availability of stringent chunks due to the

network congestion or a bad algorithm of chunk selection.
However, if peer leaving leads to a starvation and peer
adaptation cannot handle the trouble immediately, the
user’s streaming programming cannot but reboot.

PlayingBuffer

now

Input streaming

(a) Skipping

(b) Frozen

(c) Reboot

Available chunk

Null (unavailable chunk)
Figure 3. Buffer accidental events

Three accidental events are discussed via the buffer
situation in some paper, i.e. buffer occupancy decides to
enter which one mode as Figure 3 shown. In our research,
we also simplify the subject by a discussion of buffer
occupancy. Buffer is like a bridge between peer
connections and application player. When QoS of
network starts to degrade or some peer detects
insufficient resource, client-program should adjust the
data scheduling or execute peer adaptation early to deal
possibly with the imminent predicament.

B. The Buffer Introduction of CoolStreaming
CoolStreaming is one successful, famous, and open

P2P live streaming system. The history of CoolStreaming
as well as its basic architecture and designing concepts
are in the academic report [4]. On the other hand, one
paper about CoolStreaming [5] specifies obviously how
to design components of its system and procedures of its
algorithm in detail. In addition, another paper about
CoolStreaming [6] illustrates the mathematical and
numerical analysis, the simulative and evaluative results,
and the test in real world. Especially, buffer mechanism is
mentioned and described in the article about theory of
CoolStreaming as Figure 4 and Figure 5 shown [6].
Importantly, CoolStreaming still lives, so it keeps
updating, correcting, and modifying. The latest design for
P2P live streaming and the investigation report of users’
true experience are introduced: Coolstreaming+ system
modifies buffer management and data scheduling to
improve the efficiency of hybrid pull-push and multiple
sub-streams [7], and analyzes online statistics to find a
way for NAT traversal [8].

As Figure 4 shown, a video stream is encoded to a
division into many chunks. Every chunk has the sequence
number to identify itself and buffer can sort the chunk in
order according to their sequence numbers. A video
stream is decomposed into many sub-streams to avoid a
point failure. All sub-streams combine to the complete
video stream. When some one delivery path (sub-stream)

Copyright © 2011 MECS I.J. Intelligent Systems and Applications, 2011, 3, 1-10

4 A Dynamic Self-Adjusted Buffering Mechanism for Peer-to-Peer Real-Time Streaming

is disconnected, peer can still receive other sub-streams to
combine a part of video stream.

As Figure 5 shown, the structure of CoolStreaming
buffer includes synchronization buffer and cache buffer.
Synchronization buffer receives incoming chunks from
every sub-stream to synchronize these chunks in the
correct memory space and then push them to cache buffer.
Cache buffer sort chunks with sequence numbers in order
to prepare for playback.

The buffer of CoolStreaming is also fixed as like as
PPLive, and there is not any mechanism for dealing with
emergency. The designers considered that if peers or
neighbors are selected well, consequently the stable and
sufficient data source can be provided well. Focusing on
the optimal overlay construction or peer adaptation is a
current method popularly.

Single stream of chunks with sequence number

Sub-streams {S1, S2, S3, S4}

1 2 3 4 9 10

S1

S2

S3

S4

1

2

3

4

5

6

7

8

9

10

…

…

…

…

…

C
om

bine
D

ecom
pose

Figure 4. Example of stream decomposition

S1

S2

S3

S4

5

6

7

8

9

10

11

13

14

19
11 10 9 8 7 6 5

Synchronization buffer

Cache buffer

Available chunk

Null (unavailable chunk)
Figure 5. Structure of buffers and chunk combination process in a peer

III. PROPOSED SCHEME

A. Algorithm for Proposed Scheme
As we mentioned above, the partner leaving can break

a delivery path, and a lack of data resource temporarily
leads to a reboot. Once the reboot happens, the user be
compelled to execute peer selection again and waits for a
long time to watch the frames again. The users must
complain about the long waiting time. However, the
reboot can be avoided via the method that peer monitors
the variation of its data rate, and adjusts the buffer size
based on the data rate. The decrease of data rate often
indicates a warning of partner leaving. When the data rate
of the peer decreases, the size of buffer is enlarged. And
thus the buffer early reserves some un-continuous data. In
this duration of overlay recovery, collecting sequential

data is not the top priority in the schedule of our proposed
algorithm. A lack of data source must result in bad QoS
during recovery time. Although users watch the un-
continuous frames, the matter avoids the reboot. In
summary, we want to sacrifice playback quality of video
to decrease the probability or frequency of reboot.

The decrease of data rate also indicates a sudden jitter
or bottleneck of network bandwidth. This situation is
different from the above peer leaving. Peers still keep and
maintain the delivery paths or multicast streams to share
data chunks between each others. In this situation, peers
do not need to recover overlay, peers can choose to wait
for a quality restoration passively or handle peer
adaptation actively. The size of buffer is enlarged to pass
the corner for unstable network bandwidth. After peer
churn, peer adaptation, overlay recovery, or etc., the
buffer shortens to the original size when coming back in
the stable quality.

Figure 6 illustrates the final states of a peers’ life cycle
in the mesh scheme. The black lines denote the regular
and success processes, and the grey dotted lines denote
the accidental failures with error exceptions. A peer
corresponds directly with the server when new joining. In
new joining process, the server gives new peer an
identification and executes the authentication. Then the
second process is an initiation of preconditioned
parameters, including the playback time synchronization,
a set of candidate partners, the information of TV
programs, other arguments of player, etc. Next, after the
initiation, start-up process is responsible for selecting the
partners and initializing the buffer to start gathering the
video data.

New joining

Initiation

Start-up

Run
Play
Peer adaptation
Buffer management

Wait
Skip
Peer re-selection
Buffer check

Stop

Reboot

Figure 6. Final states of peers’ life cycle

The importance of our algorithm put emphasis on three
threads including video play, peer adaptation, and buffer
management in the run process. The threads execute
nonstop in the background. Buffer management of our
algorithm monitors and computes received data rate to
judge whether buffer must be enlarged or shortened.
When received data rate decreases, buffer size is enlarged
to gather and reserve non-continuous chunks beforehand

Copyright © 2011 MECS I.J. Intelligent Systems and Applications, 2011, 3, 1-10

 A Dynamic Self-Adjusted Buffering Mechanism for Peer-to-Peer Real-Time Streaming 5

to reduce the probability of reboot. However, QoS
degradation is inevitable consequently because the
gathered chunks are non-continuous.

As Figure 6 illustrated, when a problem happens in
playback, player is not able to show any image and then it
enters into wait process. The player waits for available
video data from buffer to play frames again. In wait
process, the system can judge how to deal with the
problem. In general, the controller of system can check
buffer to decide that the video should be frozen, skipped,
or rebooted as Figure 3 shown. The worst case is
rebooting due to player system will return to the initiation
state after rebooting; hence, the expected time of playing
video again is very much long.

B. Client Program Flow
In summary, we list these processes and their

responsibilities in Table I:

TABLE I
THE RESPONSIBILITIES AND FUNCTIONS OF CLIENT’S PROCESS IN OUR

PROPOSED SCHEME

Process Responsibility Functions

New join Identification Bind with server
Ensure identification and authentication

Initiation Configuration

Setup network parameters
Load and link media player
Synchronize playback information
Get candidate partners from server

Start-up Preparation
Build local P2P overlay
Initialize buffer
Open decode stream

Run

Play

Get data from buffer to playback
Execute decode stream
Update information to server
Interact with user

Peer
adaptation

Reselect partners
Maintain local P2P overlay

Buffer
management

Monitor and compute incoming bit rate
Enlarge or shorten size of buffer
Schedule chunk selection

Wait

Interruption Stop to playback
Buffer check Decide playback skip
Peer
reselection Reselect partners

Reboot Renewal
Close decode stream and clear buffer
Close connections with peers
Prepare for initiation and start-up again

Stop Exit
Exit P2P network
Close media player
Disconnect all connections

1. New join: A peer connects to the server and logins for
identification and authentication in the first process.
And then the peer binds the server to keep alive.

2. Initiation: A peer must configure the software to work
successfully in P2P network. This configuration
includes two parts, one is about network, and another
is about media application. Under the asymmetrical
incoming/outgoing bandwidth, each peer sets up
network parameters to adapt itself in P2P network.

Peer gets the information of the playback time
synchronization and a set of candidate partners from
server. Media player is linked and loaded in this
process.

3. Start-up: After the processes of new-join and initiation,
peer starts up the preparation for smoothness before
playback. It selects partners from candidates to build
local P2P overlay. It also initializes the buffer and
opens decode stream. These actions are done for
starting to gather the video data.

 The duration since start-up process to run process is
called as start-up delay. Users are always intolerable
for long start-up delay. The good P2P overlay, good
data scheduling, good network capacity, and good
buffer mechanism can shorten the start-up delay to
improve QoE.

4. Run: This process is the most important part of our
proposed scheme. It includes video play, peer
adaptation, and buffer management; buffer
management is the most significant contribution
among them. In traditional schemes, buffer
management just gives assistance to data scheduling
and sorts data to extract from buffer for playback. In
our proposed scheme, besides working above jobs,
buffer management monitors and computes incoming
data bitrates. According to the incoming data bitrates,
buffer size and data schedule can be adjusted into
dynamic P2P environment.

 Peer adaptation always finds and evaluates suitable
candidate partners to improve P2P efficiency of data
delivery, i.e. to build a robust overlay for locality. In
other words, peer adaptation can reselect partners to
maintain local P2P overlay. Peer adaptation handles
the assignments of lower network layer, and play
handles the assignments of higher application layer to
interact with users. Its important work is the media
playback including decoding and screening, play must
update and report relative information to server
periodically.

5. Wait: When any error interrupts playback leading to
that player shows incorrect images, the program flows
into wait process. We focus the kind of P2P network
error, such that wait triggers interruption, buffer check,
and peer reselection sequentially.

 First, interruption stops playing to avoid decode error
of play in run process (usually means the null error).
Interruption notices the player waits for available video
data from buffer to play again. Second, buffer is
checked to decide that the video should be skipped,
frozen, or rebooted. This decision influences peer
reselection. Third, peer reselection is executed if it is
necessary.

 Peer reselection is similar with peer adaptation, but
reselection has two differences from adaptation. (1)
Peer reselection works in play-off time, it builds new
connections between other peers; peer adaptation
works in play-on runtime, it maintains old connections

Copyright © 2011 MECS I.J. Intelligent Systems and Applications, 2011, 3, 1-10

6 A Dynamic Self-Adjusted Buffering Mechanism for Peer-to-Peer Real-Time Streaming

for local overlay. (2) Peer reselection can require
server to fetch a new list of candidate partners for
overlay recovery; peer adaptation knows new partners
by itself via exchanging overlay information with each
other.

6. Reboot: This process deals with renewal and reset to
prepare to initialize and start up again. Therefore,
reboot needs to close video stream and transmission
stream, and clear buffer.

7. Stop: Users end up this application, and thus clients
disconnect all transmissions and streams to exit P2P
network.

We can discover this client program flow influence the
performance of P2P system. For examples, start-up
process produces start-up delay; run process produces
playback delay; wait process produces recovery time.
However, these performance metrics are subjective. An
objective discussion is in next section.

C. Parameters of System Performance
In P2P applications for file sharing or VoD service, the

utilization of download bandwidth is as high as possible.
However, for live streaming, the incoming bit rate equals
to the encoding rate of playback quality. Because the
users (peers) cannot get the future data and do not need
the past data in the live shows. If the incoming bit rate is
stable and approximate to the playback quality, the users
should enjoy the smooth playback. We define an
efficiency ratio (R) of the incoming bit rate to the
playback quality rate (q).

Efficiency ratio (R) =
Incoming bit rate (kbps)

Playback quality rate (kbps) (1)

If R > 1, the packet duplication or the impermanent
remedy for packet loss happens.

If R = 1, the user can watch smoothly.
If R < 1, the available data is insufficient to play.

We also define Rt as the efficiency ratio of some time t,
so the average throughput of an incoming stream is surely
∫t Rt q dt. A lower efficiency ratio usually indicates a
more dynamic overlay with frequent peer churn (leaving).
We also define a chunk available rate meant that the
number of the collected availably chunks is divided by
the number of the total accessible chunks. The chunk
available rate is higher, and the source has the higher
availability to delivery efficiently. The chunk available
rate is always smaller than the efficiency ratio; however,
the chunk available rate converges toward the efficiency
ratio approximately in long time.

Chunk available rate =
of available chunks

of total chunks
≤ 1.0

 (2)

A QoE criterion is evaluated by the smoothness of
playback called playable rate, also called continuity [5].
The playable rate is defined as the playable time over the
total playback duration. In another opinion, the playable

rate equals to the number of video chunks that arrive
before playback deadlines over the total number of video
chunks. Of course, the playable rate is approximate to the
chunk available rate.

Playable rate =
of chunks in buffer before deadline

of total chunks
Playable time

Total playback duration=
 (3)

We can deduce that the average throughput of an
incoming stream should equal to the total number of
chunks, i.e. chunk available rate × t. In general, efficiency
ratio is often smaller than 1.0, and efficiency ratio ≥
chunk available rate ≥ playable rate, because the
challenges of peer competition, end-to-end delay, chunk
unavailability, in-time deadline, overlay reconstruction,
etc. exist in P2P network. While the playback duration is
very large, R = efficiency ratio chunk available rate ≒ ≒
playable rate. In addition, if the playable rate decreases,
the probability of reboot increases. If the reboot happens
when a continuous nulls n in buffer, the probability of
reboot is (1 – R)n. We call n the threshold of reboot,
represented how long the frozen time the streaming
service can tolerate.

IV. SIMULATION

A. Simulation Environment
We implement a media simulator including server-

program, swarm-program, and client-program in Java
language. The server-program plays a data source server
in a swarm to provide video data, and the swarm-program
creates five threads to simulate five peers individually in
a swarm. The peers sometimes cooperate to complement
the media chunks, but sometimes compete for rare source.
When providing data to clients, swarm-program simulates
the peer competition to bring chunks into clients’ buffer
out-of-order and the peer churn to vary the incoming bit
rate violently. Peer churn breaks the stable incoming
stream and leads to a degradation of quality. The client-
program plays video for users and gathers statistics of
packet level to estimate QoE. We can observe all
simulation results from the client-program with many
dynamic network metrics.

Figure 7 provides an overview of our simulation
system. Server-program can open a video and multicast to
client through swarming. At the same time of
multicasting, the experiments can handle the rate
variation via the swarm-program. In addition, server and
client both have a media player to observe three delays
(i.e. the start-up delay, end-to-end delay, and buffer
preparation latency between server and client) leading to
the lag of IPTV. On the screen of the client-program,
users can experience the quality via their real eyes, this
describes the subjective QoE. On the other hand, under
the background of the client-program, we can get
statistics from packet level via the occupation of buffer.

Copyright © 2011 MECS I.J. Intelligent Systems and Applications, 2011, 3, 1-10

 A Dynamic Self-Adjusted Buffering Mechanism for Peer-to-Peer Real-Time Streaming 7

Server Swarm Client

Computer A Computer B Computer C

The server-program plays
a data source server

The swarm-program plays
peer competition and peer
churn

The client-program analyzes
QoE and QoS

Figure 7. The simulated system

In the experiments, we can vary three arguments to test
and compare: efficiency ratio, start-up time, and buffer
size. For example, we assume that the playback rate is
300 kbps, and the efficiency ratio R is 0.4 when the
incoming bit rate decreases from 300 kbps to 120 kbps.
We denote buffer size as Bsize, and Bsize = 8 means that
buffer can contain the content for 8 seconds. In order to
understand easily, we assume that the size of a chunk is
300 kilobytes, and the video rate is 300 kbps; hence, a
chunk can be played a second.

B. Simulation Results
Our estimation for QoE includes the probability of

reboot and the playable rate to infer the possible
interruption of streaming service. First, we define a
probability function denoted as P (Bsize, n, R) meaning the
probability of reboot under the conditions when buffer
size, threshold of reboot, and efficiency ratio are Bsize, n,
and R respectively. A penalty of reboot hurts QoE more
heavily than a frozen process or a skipping process. As a
result, a live streaming service should reduce the
probability of reboot. Second, we use the playable rate to
discuss the smoothness of playback. The high playable
rate indicates that few interrupted time is in playback
time and has a nice QoE.

1) The probability of reboot

The efficiency ratio of live streaming equals 1.0
usually; however, we decrease the efficiency ratio to
simulate the condition of neighbors leaving which leads
to the insufficient incoming source. First, when we
assume Bsize is 8 and n is 4, Figure 8 shows the correlation
between probability of reboot and efficiency ratio. Our
proposed dynamic buffer scheme can reduce the
probability of reboot by 6 % than fixed buffer scheme,
and more than half of users can watch a video when the
efficiency ratio decreases to 0.3 in our proposed scheme.
Compared with the fixed buffer, our proposed scheme has
a low probability of reboot even if the efficiency ratio is
very low. Beside, when the efficiency ratio is
approximate to 0.0 and 1.0, the difference between the
fixed buffer scheme and the dynamic buffer scheme is
very small. When the efficiency ratio is approximate to
1.0, the incoming data is sufficient and the buffer does
not need to adjust its size in our proposed scheme, so
both schemes have the similar performance. When the

efficiency ratio is approximate to 0.0, there is not any
incoming data to be able to buffer, so both schemes have
the similar performance, too.

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Efficiency ratio

Pr
o
ba

bi
lit

y
of

 r
eb

oo
t Fixed buffer

Dynamic buffer

Figure 8. Probability of reboot P is correlated with

efficiency ratio R when Bsize is 8 and n is 4, i.e. P
(8, 4, R)

Second, we assume Bsize is 8 seconds and R is 0.3 as
Figure 9 illustrated. As we can see, the probability of
reboot will become smaller when the threshold of reboot
n increase in both schemes. However, our proposed
dynamic buffer scheme improves more when the
threshold of reboot is larger, because the incoming bit
rate is monitored in our proposed scheme, this leading to
a low probability of long continuous nulls. Furthermore,
the threshold of reboot n is larger, the tolerance for
streaming skips is higher to hurt users’ QoE. An
assumption of n = 1 or 2 illustrates that the streaming
reboots immediately when a skip happens. In fact, the
threshold of reboot n is smaller than the start-up time;
hence, n = 4 ~ 6 is the reasonable range in the experiment.

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6 7 8

Threshold of reboot

Pr
o
b
ab

ili
ty

 o
f

re
b
o
o
t

Fixed buffer

Dynamic buffer

Figure 9. Probability of reboot P is correlated with

threshold of reboot n when Bsize is 8 and R is 0.3,
i.e. P (8, n, 0.3)

Third, the efficiency ratio is given 0.3 in the
experiment. As Figure 10 shown, the variation of buffer
size does not affect the performance between the fixed
buffer scheme and our proposed scheme. The larger
buffer size can prepare more data, and thus the
probability of reboot is lower surely. But the large buffer
size leads to a high memory cost and a heavy overhead of
data scheduling. Our proposed scheme is always 5 %
better than the fixed buffer scheme.

From above charts, we demonstrate that the efficiency
ratio affects directly the probability of reboot, and our

Copyright © 2011 MECS I.J. Intelligent Systems and Applications, 2011, 3, 1-10

8 A Dynamic Self-Adjusted Buffering Mechanism for Peer-to-Peer Real-Time Streaming

proposed scheme with unfixed buffer can be more
suitable than the scheme with fixed buffer in the dynamic
overlay. On the other hand, the threshold of reboot
influences the buffer scheme less and may be a tradeoff
for users’ QoE. In addition, our proposed scheme for
dynamic buffer can use a self-adjusted buffer control
regardless of the buffer size.

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16

Buffer size

P
ro

ba
bi

li
ty

 o
f

re
bo

ot

Fixed buffer

Dynamic buffer

Figure 10. Probability of reboot P is correlated with size of

buffer Bsize when R is 0.3, i.e. P (Bsize, Bsize/2, 0.3)

2) The playable rate

In this section, we regularly and periodically vary rate
to experiment as Figure 11 shown. The incoming bit rate
just equals the playback rate when it reaches the peak.
Therefore, the efficiency of buffer is obviously revealed
when data rate declines. We use the playable rate to
estimate the QoE. In addition, we can demonstrate briefly
what to influence QoE deeply by varying the arguments
for repeating experiments again and again.

0

100

200

300

0.0

1.0

0.5

In
co

m
in

g
bi

t r
at

e
(k

bp
s)

Efficiency ratio

Incoming bit rate

Figure 11. The variation of incoming bit rate in the simulated time

First, we vary the client’s start-up time to observe the
playable rate of streaming. On the best effort Internet,
start-up buffer always has been a useful mechanism to
deal with the rate variations of streaming sessions. Small
buffer often means a shorter startup delay [9]. As Figure
12 illustrated, the playable rate is well improved when the
start-up time increases. The reason for this is that the
start-up time is a preparing time for buffering; hence, the
longer time results in the fuller buffer preparation.
However, the enhance of the playable rate increases
lightly when the start-up time is more than a certain value
(maybe five seconds in our experiment) because no more
chunks is needed to preserve initially. Moreover, if the
time of start preparation is long, the waiting time of the
initial video increases and the playback delay of the
streaming increases as compared with the traditional
television. Live baseball game for example, other

audiences already cheered for a home run, but the pitcher
did not throw the ball on the screen of P2P streaming.

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16

Start-up time (second)

Pl
ay

ab
le

 r
at

e

Fixed buffer

Dynamic buffer

Figure 12. The playable rate via start-up time

Second, we vary the client’s buffer size to observe the
playable rate of streaming. The size of buffer and its rate
of drainage and replenishment determine the smoothness
of the playback [10]. As Figure 13 illustrated, the
playable rate is well improved when the buffer size
increases. The size of buffer can be larger to contain more
content, but it has a limit to improve the playable rate
because only in-time content rather than the future or the
oldness one is needed to buffer. The small buffer is
insufficient for the jitter from network or the peer churn
from P2P overlay. However, the larger buffer leads to the
more complex algorithm of chunk selection and the more
overhead of memory.

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16

Buffer size (for seconds)

Pl
ay

ab
le

 r
at

e

Fixed buffer

Dynamic buffer

Figure 13. The playable rate via buffer size

Third, we vary the connection’s efficiency ratio to
observe the playable rate of streaming. As Figure 11
illustrated, the variation of incoming bit rate (efficiency
ratio) is similar to a regular sierra. The bit rate just equals
the playback rate when bit rate reaches the peak.
Therefore, the efficiency of buffer is always smaller than
1.0 and is obviously revealed when data rate declines. For
the entire simulated time t, the total throughput of
incoming stream equals:

∫t Rt q dt = the grey area in Figure 11
 = (0.5 t + 0.5 Rt t) q (4)

And, the average of efficiency ratio = the total throughput
of incoming stream divides by q and t:

average of R = ∫t Rt q dt / q t
= (0.5 t + 0.5 Rt t) q / q t
= 0.5 + 0.5 R (5)

Copyright © 2011 MECS I.J. Intelligent Systems and Applications, 2011, 3, 1-10

 A Dynamic Self-Adjusted Buffering Mechanism for Peer-to-Peer Real-Time Streaming 9

Because of peer competition, end-to-end delay, chunk
unavailability, and limitation of in-time deadline, the
playable rate must be smaller than the average of
efficiency ratio. In the other hand, the foot is R equaled to
the minimum of Rt, so the playable rate should be larger
than R. Therefore, the playable rate should be in the
interval [R, 0.5 + 0.5 R]:

R ≤ playable rate ≤ 0.5 + 0.5 R (6)

As Figure 14 illustrated, the performance of playable
rate raises with the increase of efficiency ratio. When the
efficiency ratio is more approximate to 1.0, the playable
rate is closer to the up bound, because the wave of
efficiency ratio is small to maintain a stable incoming bit
rate well. As a result, a high and stable efficiency ratio
can bring a good QoE. On the other hand, when the
efficiency ratio is more approximate to 0.0, the playable
rate is closer to the low bound, because the wave of
efficiency ratio is large to experience an unstable
incoming bit rate. As a result, a low and unstable
efficiency ratio brings a bad QoE. We can imagine that
the low efficiency ratio represents a dynamic P2P
network with frequent peer churn; hence, a peer cannot
get any chunk even if it has sufficient bandwidth, vice
versa.

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Efficiency ratio

Pl
ay

ab
le

 r
at

e

Fixed buffer

Dynamic buffer

Up bound

Low bound

Figure 14. The playable rate via efficiency ratio

The performance of our proposed dynamic buffer
scheme is always better than the performance of fixed
buffer scheme. The gap between the performance of
dynamic buffer scheme and the performance of fixed
buffer scheme is obvious when the efficiency ratio is in
[0.3, 08], because the buffer is timely enlarged or
shortened depending on the incoming bit rate to get the
in-time chunks. The improvement illustrates that the self-
adjusted buffer control can be used to avoid the
temporary starvation of source and to avoid the reboot.
We demonstrate that rather our proposed scheme can be
suitable for the P2P network with unstable bit rate, than
the fixed buffer scheme. In addition, the gap is unobvious
when the efficiency ratio is high, because the buffer
shouldn’t be adjusted in our proposed scheme. The gap is
also unobvious when the efficiency ratio is low because
the incoming bit rate is too low to support buffer.

In summary, we cannot find that buffer size or start-
up preparation is more important than another. The goal
of start-up waiting is to fill the buffer; hence, the start-up

time is influenced not only by receiving rate, but also by
buffer size. On the other hand, the buffer management is
independent, this is one reason why we would like to
modify buffer dynamically.

Buffer enlarged and start-up time lengthened can
improve QoS. However, when encountering peer churn,
the sudden shortage of video source leads to the quality
degradation. As a result, using fixed buffer in dynamic
P2P environment has a limit of improving QoS. The
original design of fixed buffer may make video frames
more continuous than the dynamic design, but when
content bottleneck happens, the waiting time of reboot
recovery is longer. On the other hand, video is played off
and on in our proposed scheme, but long waiting time is
less experienced.

Our proposed scheme of dynamic buffer is better than
the fixed buffer when incoming bit rate decreases. When
the efficiency rate is much high, the performance is good
in both schemes, because there are any difference
between the dynamic buffer and the fixed buffer when the
incoming bit rate is stable. When the efficiency rate is
much low, the performance is bad in both schemes, any
buffer mechanism cannot work because of a lack of the
incoming resource. However, our proposed scheme is
superior to the fixed buffer when efficiency rate
decreases. Because the self-adjusted buffer control can
adjust the size of buffer according to dynamic incoming
bit rate, our proposed scheme can improve the playable
rate when the incoming bit rate drops down.

V. CONCLUSION

Our works discuss in the QoS of P2P live streaming
and improve QoE. We proposed a concept about the self-
adjusted buffer control to reduce the probability of
rebooting. This buffering mechanism is suitable for mesh
structure. Control mechanism monitors and computes the
incoming data rate and checks the occupation of buffer to
modify dynamically the size of buffer. This modification
improves the efficiency of collecting data depending on
network dynamic bitrates. Finally, we demonstrated that
the method can reduce reboots to improve playback QoS
via the simulation results. In addition, we point out some
unavoidable drawbacks or limitations of innate P2P
network.

The performance of IPTV is influenced by too many
factors; hence a comprehensive comparison is difficult to
discuss integration. We focus on the design of buffer
forming to prevent from network jitter. We break up the
traditional static buffer and design a dynamic buffer
control to improve a part of performance. Through the
evaluation of simulation results, we can analyze that our
proposed scheme is better than traditional scheme and
improves QoE a little.

This buffering mechanism only need to modify a little
on client terminals and it is unnecessary to modify the
total P2P system. It is suitable for chunk-based buffer

Copyright © 2011 MECS I.J. Intelligent Systems and Applications, 2011, 3, 1-10

10 A Dynamic Self-Adjusted Buffering Mechanism for Peer-to-Peer Real-Time Streaming

design, and it can work on all existing P2P live streaming
system nowadays.

In the future, we will put the self-adjusted buffer
control in the current P2P live streaming system to
experiment. In advanced studies, we will integrate buffer
control with peer adaptation, churn recovery and chunk
scheduling together to design an integrated
implementation for P2P live streaming system.

APPENDIX A DEMO

REFERENCES

[1] Yarali, A. and A. Cherry, Internet Protocol Television
(IPTV). IEEE TENCON, 2005.

[2] Locher, T., et al., Push-to-Pull Peer-to-Peer Live
Streaming. Lecture Notes in Computer Science, 2007.

[3] Hei, X., Y. Liu, and K.W. Ross, Inferring Network-Wide
Quality in P2P Live Streaming Systems. Selected Areas in
Communications, 2007.

[4] Zhang, X., J. Liu, and B. Li, On large-scale peer-to-peer
live video distribution: Coolstreaming and its preliminary
experimental Results. IEEE International Workshop on
Multimedia Signal Processing, 2005.

[5] Zhang, X., et al., CoolStreaming/DONet: A data-driven
overlay network for peer-to-peer live media streaming.
IEEE International Conference on Computer
Communications, 2005.

[6] Xie, S., et al., Coolstreaming: Design, Theory, and
Practice. IEEE Transactions on Multimedia, 2007.

[7] Li, B., et al., Inside the new coolstreaming: Principles,
measurements and performance implications. IEEE
Journal on Selected Areas in Communications, 2007.

[8] Li, B., et al., An empirical study of the Coolstreaming+
system. IEEE Journal on Selected Areas in
Communications, 2007.

[9] Liao, X., et al., AnySee: Peer-to-peer live streaming. IEEE
International Conference on Computer Communications,
2006: p. 2411-2420, 3337.

[10] Tang, Y., et al., Deploying P2P networks for large-scale
live video-streaming service. IEEE Communications
Magazine, 2007. 45(6): p. 100-106.

[11] Hei, X., Y. Liu, and K. Ross, IPTV over P2P streaming
networks: The mesh-pull approach. IEEE Communications
Magazine, 2008. 46(2): p. 86-92.

[12] Agboma, F., M. Smy, and A. Liotta, QOE ANALYSIS OF
A PEER-TO-PEER TELEVISION SYSTEM. IADIS
International Conference on Information Systems, 2008.

Jun-Li Kuo (estar.cs95g@nctu.edu.tw) received his M.S.
degree in Computer Science and Information Engineering from
National Central University, Taiwan in 2006. He is a Ph.D.
student in Computer Science at National Chiao Tung University,
Taiwan. His research interests include peer-to-peer network and
WiMax multimedia, cloud computing.

Chen-Hua Shih (shihch@csie.nctu.edu.tw) is currently a
Ph.D. candidate in computer science at National Chiao Tung
University, Hsinchu City, Taiwan. He received his B.S. degree
in computer science and information engineering at National
Central University, Jhongli City, Taiwan. His research interests
include QoS, mobile IP, wireless networks, and network
protocols.

Yaw-Chung Chen (ycchen@cs.nctu.edu.tw) received his
Ph.D. degree in computer science from Northwestern University,
Evanston, Illionis, USA in 1987. During 1987-1990, he worked
at AT&T Bell Laboratories. Now he is a professor in the
Department of Computer Science of National Chiao Tung
University, and the Director of NCTU/III Joint Research Center.
His research interests include multimedia communications, high
speed networking, and wireless networks.

Copyright © 2011 MECS I.J. Intelligent Systems and Applications, 2011, 3, 1-10

	I. Introduction
	II. Related Work
	A. The Buffer Observation of PPLive
	B. The Buffer Introduction of CoolStreaming

	III. Proposed Scheme
	A. Algorithm for Proposed Scheme
	B. Client Program Flow
	C. Parameters of System Performance

	IV. Simulation
	A. Simulation Environment
	B. Simulation Results
	1) The probability of reboot
	2) The playable rate

	V. Conclusion
	Appendix A Demo
	References

