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Abstract—In this paper, the passivity analysis of Takagi-
Sugeno (T-S) fuzzy neutral system with interval time-
varying delay and linear fractional parametric uncertainty 
is investigated. Based on the Lyapunov-Krasovskii 
functional and the free weighting matrix method, delay-
dependent sufficient conditions for solvability of the passive 
problem are obtained in terms of Linear matrix inequalities 
(LMIs). Finally, a simulation example is provided to 
demonstrate effectiveness and applicability of the theoretical 
results.  
 
Index Terms—Passivity, Takagi-Sugeno fuzzy systems, 
Interval time-varying delay, Lyapunov-Krasovskii 
functional, Linear matrix inequalities (LMIs)  
 

I.  INTRODUCTION 

The Takagi-Sugeno (T-S) model [1] has been paid 
considerable attention in the past two decades. It has been 
shown that the T-S model method gives an effective way 
to represent complex nonlinear systems by some simple 
local linear dynamic systems, and some analysis methods 
in the linear systems can be effectively extended to the T-
S fuzzy systems. Recently the T-S fuzzy neutral system 
has been introduced in [2] and the stability and 
stabilization analysis of fuzzy neutral systems have been 
extensively investigated, see, e.g.,[2-6] and the references 
therein. 

On the other hand, The delay varying in an interval has 
strong application background, which commonly exists in 
many practical systems. For example, it has been 
described in [7] that the lower bound of the delay in the 
networked control systems is often larger than zero. The 
investigation for the systems with interval time-varying 

delay has been caused considerable attention, see [8-11] 
and the references therein. 

The passivity theory, intimately related to circuit 
analysis methods, has received a lot of attention from the 
control community during the last several decades, see, 
e.g., [12,13]. It provides a nice tool for analyzing the 
stability of systems, and has found applications in diverse 
areas such as stability, complexity, signal processing. The 
fuzzy control systems associated with passivity have been 
studied preliminarily in [14]; [15] investigated the 
passivity and pacification of uncertain fuzzy systems; By 
utilizing the Lyapunov functional method, the ˆIto  
differential rule and the matrix analysis techniques, the 
passivity and pacification problems have been 
investigated for a class of uncertain stochastic fuzzy 
systems with time-varying delays [16]. 

However, to the best of the authors’ knowledge, the 
passivity analysis of T-S fuzzy neutral system with 
interval time-varying delay and linear fractional 
parametric uncertainty has not been addressed, which 
motivates the present study.   

Notations. 
nR  and 

n mR ×
 denote, respectively, the n-

dimensional Euclidean space and the set of all n m×  

real matrices. The notation A B>  means that A B−  is 

positive definite. A
ur

 represents the sum of A  and its 

transpose. I  is the identity matrix with appropriate 
dimension. “*” denotes the elements below the main 

diagonal of a symmetric block matrix. 
2 0
[ , )L t ∞  denotes 

the space of square integral functions on 
0

[ , )t ∞ . 
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II.  PROBLEM FORMULATION 

In this section, a class of neutral T-S fuzzy systems 
with interval time-varying delay and linear fractional 

parametric uncertainty is considered. For each i ∈ @S=  

{1, 2, , }rL , where r  is the number of plant rules, the ith 

rule of  T-S fuzzy model is represented as follows: 
Plant Rule i: IF 

1( )z t  is 
1iM , 

2 ( )z t  is 
2iM , ,L ( )pz t  

is 
ipM , THEN 

( ) ( ) ( ) ( ) ( ( )) ( ) ( ( ))

( ),

( ) ( ) ( ( )) ( ),

( ) ( ), [ ,0],

i i i

i

i i i

M

x t A t x t B t x t t C t x t t

D w t

y t E x t F x t t H w t

x t t t

τ τ

τ

ψ τ

= + − + −


+


= + − +
 = ∈ −

& &

(1) 
 

where 
1 2( ), ( ), , ( )pz t z t z tL  are the premise variables, and 

each 
1( 1, 2, , )iM l p= L   is a fuzzy set; ( ) nx t R∈  is the 

state variable, ( ) my t R∈  is the output vector, ( ) lw t R∈  

is the disturbance input belonged to 
2 0
[ , )L t ∞ ; ( ) :tψ  

[ , 0)
M

nRτ− →   is a smooth vector-value initial function; 

( ) [ , ]
m M

tτ τ τ∈ is the interval time-varying delay, where 

0
m M

τ τ≤ ≤  and ( )t dτ ≤& ; , , ,i i i iD E F H are constant 

matrices with appropriate dimensions; ( ), ( ),
i i

A Bt t   

( )
i

C t are matrices with appropriate dimension and 

admissible linear fractional parametric uncertainties, that 
is, these matrices satisfy 

1 2 3( )

[ ( ), ( ) , ( )]

[ , , ] [ , , ] ,
i

i i i

i i i i i iL t

A t B t C t

A B C E E E= + ∆
        (2) 

1( ) [ ( ) ] ( ),t I F t J F t−∆ = −                                       (3) 

0,
T

I JJ− >                                                        (4) 

where , , , ,
ii i i LA B C ( 1, 2,3)liE l =  and J are known 

real constant matrices with appropriate dimension, and 

( )F t  is a matrix function satisfying 

( ) ( ) .TF t F t I≤                                  (5) 

Remark 1. The uncertainty ( )t∆  satisfying (3)-(5) is 

referred to as a linear fractional parametric uncertainty. 

Note that when 0J = , ( )t∆  reduces to a norm-bounded 

parametric uncertainty that has been extensively 
investigated in the study of robust control problems. 

Applying a center-average defuzzier, product inference 
and singleton fuzzifier, the dynamic fuzzy model in (1) 
can be represented by 

1

1

( ) ( ( ))[ ( ) ( ) ( ) ( ( ))

( ) ( ( )) ( )],

( ) ( ( ))[ ( ) ( ( )) ( )],

( ) ( ), [ ,0],

r

i i i
i

i i

r

i i i i
i

M

x t z t A t x t B t x t t

C t x t t D w t

y t z t E x t F x t t H w t

x t t t

µ τ

τ

µ τ

ψ τ

=

=


= + −


+ − +


 = + − +



= ∈ −

∑

∑

&

&

 (6) 
where  

1

11

( ( ))
( ( ))

( ( ))
i

p
l il l

r p
l il li

z t
M z t

M z t
µ =

==

=
Π

Π∑
                    (7) 

with 1 2( ) ( );( ), ( ), , ( )pz t z t z t z t= L  ( ( ))il lM z t is the 

grade of membership of ( )lz t  in ilM ; For notational 

simplicity, 
i

µ  is used to represent ( ( ))
i

z tµ  in this paper. 

By the definition in (7), it follows that 0
i

µ ≥  and  

1
1.

i

r

i
µ

=
=∑  

Definition 1 [17]. The system (1) is called passive if 

there exists a scalar 0γ >  such that 

0 0
( ) ( ) 2 ( ) ( ) , 0

t t
T Tw s w s ds w s y s ds t

ρ ρ

ργ− ≤ ≥∫ ∫   

for all solution of (1) under zero initial condition. 

Lemma 1 [18]. Suppose ( )t∆  is given by (3). Given 

matrices ,TM M=  L  and E  of appropriate dimension, 

the following statements are equivalent: 
(i) the inequality 

( ) ( ) 0T T TM L t E E t L+ ∆ + ∆ <                  

holds for all ( )F t satisfying ( ) ( ) ;TF t F t I≤  

(ii) for 0ε >  

* 0.

* *

T

T

M E L

I J

I

ε

ε ε

ε

 
 

− < 
 − 

                        

Lemma 2 [11]. Let 1 2,Ξ Ξ and Ω be constant matrices 

appropriate dimensions and 0 ( )m Mtτ τ τ≤ ≤ ≤ , then 

1 2( ( ) ) ( ( )) 0m Mt tτ τ τ τ− Ξ + − Ξ + Ω <        

if and only if 

 1( ) 0M mτ τ− Ξ + Ω <                       

and 

 2( ) 0M mτ τ− Ξ + Ω <                        

hold. 
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III.  MAIN RESULTS 

Theorem 1. For a prescribed 0γ > , scalars mτ and Mτ , 

the system (1) is passive if there exist scalars ( )i iε ∈S , 

matrices 0, 0, ( 1, 2,3),
l

P Z Q l> > =   0, 0,k kS S> >  

( 1, 2; ), ,
ki ki

M N k i= ∈S  such that the following LMIs 

hold 
 

µ $13

2

( )

* 0 0 0
( ) 0,* * 0 0

* * *

* * * *

1,2;

T

i ii i i i

i

i

T
i i

i

l E L

I H
l R

I J

I

l i

ε

γ

ε ε

ε

 Ω Λ Ξ
 
 − −
 Ξ = <− 
 −
 

−  

= ∈

uur

S
                                                                                       (8) 
 where 

 

3

1 1 1
1

22 24

33 34

44

2

1 2

2 1 2

3 2

2

0
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* *

* * *

* * * *
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0

0

0 0
,

0

* (1 )

T T
l i

l

i i
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i

T T
i

T
i

T T T
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i

R Q P A S R

A S

S C S

N N B S
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d Z S C
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Ω Ω
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 Ω







− 
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− − 
− − + 

∑

uuur
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$
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1 2 3
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[ , ,0, ,0, ],

(1) , (2) ,

[ ,0,0, ,0, ],

[0, ,0,0,0, ],

T T T T T
i i i i i

i M m i i M m i

i i i i

T
T T T T

i i i

E D S F D S

M N
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L L S L S

τ τ τ τ

Λ = − −
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=

=

     

with   

1 2

1 2

22
1 1 2

24
1

[0,0, , ,0,0],

[0,0,0, , ,0],

[ ( ) ],

,

T T T
i i i

T T T
i i i

i m M m

i i

M M M

N N N

S R R Z

S B

τ τ τ
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=

Ω = − + + − +

Ω =

uur                

33 34
1 1 1 2 1

44
2 1 2

, ,

(1 ) .

T
i i i i i

i i i

Q R M M M

d Q N M

Ω = − − + Ω = −

Ω = − − + −

uuur

uuur uuur           

Proof. Choose the Lyapunov-Krasovskii functional as 
follows: 

1 2 3 4( ) ( ) ( ) ( ) ( ),t t t t tV x V x V x V x V x= + + +      (9) 

where 

1( ) ( ) ( ),T
tV x x t Px t=                              

2 1 2
( )

3

( ) ( ) ( ) ( ) ( )

( ) ( ) ,

m

M

t t
T T

t
t t t

t
T

t

V x x s Q x s ds x s Q x s ds

x s Q x s ds

τ τ

τ

− −

−

= +

+

∫ ∫

∫
 

 

3 1

2

( ) ( ) ( )

( ) ( ) ,

m

m

M

t t
T

t m
t s

t t
T

t s

V x R d ds

R d ds

τ

τ

τ

τ ξ θ ξ θ θ

ξ θ ξ θ θ

−

−

−

=

+

∫ ∫

∫ ∫
                    

       

4 ( )
( ) ( ) ( )

t
T

t t t
V x s Z s ds

τ
ξ ξ

−
= ∫                    

with  ( ) ( ).t x tξ = &  

Taking derivative of ( )tV x  along the trajectory of the 

system (6), we have 

1 2 3 4( ) ( ) ( ) ( ) ( ),t t t t tV x V x V x V x V x= + + +& & & & &       (10) 

where  

1( ) 2 ( ) ( ),T
tV x x t P tξ=&                           (11) 

3

2 11

2

3

3

11

2

3

( ) ( )( ) ( ) ( ) ( )

(1 ( )) ( ( )) ( ( ))

( ) ( )

( )( ) ( ) ( ) ( )

(1 ) ( ( )) ( ( ))

( ) ( ),

T T
t l m ml

T

T
M M

T T
l m ml

T

T
M M

V x x t Q x t x t Q x t

t x t t Q x t t

x t Q x t

x t Q x t x t Q x t

d x t t Q x t t

x t Q x t

τ τ

τ τ τ

τ τ

τ τ

τ τ

τ τ

=

=

= − − −

− − − −

− − −

≤ − − −

− − − −

− − −

∑

∑

&

&

(12) 

3 1 2

1

2

( ) ( )[ ( ) ] ( )

( ) ( )

( ) ( ) ,

m

m

M

T
t m M m

t
T

m t

t
T

t

V x t R R t

s R s ds

s R s ds

τ

τ

τ

ξ τ τ τ ξ

τ ξ ξ

ξ ξ

−

−

−

= + −

−

−

∫

∫

&

                 

(13) 

4 ( ) ( ) ( ) (1 ) ( ( )) ( ( )).T T
tV x t Z t d t t Z t tξ ξ ξ τ ξ τ≤ − − − −&

(14) 
Employing the free-weighing matrix method [19-21], we 
have 

( )
1

2 ( ) [ ( ) ( ( )) ( ) ] 0,
m

r t
T

i i m
t t

i

t M x t x t t s ds
τ

τ
µ ς τ τ ξ

−

−
=

− − − − =∑ ∫
(15) 
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( )

1

2 ( ) [ ( ( )) ( ) ( ) ] 0,
M

r t t
T

i i M t
i

t N x t t x t s ds
τ

τ
µ ς τ τ ξ

−

−
=

− − − − =∑ ∫
(16) 

1
2 ( ) [ ( ) ( ) ( ) ( ) ( ( ))

( ) ( ( )) ( )] 0,

r T
i i ii

i i

t S t A t x t B t x t t

C t x t t D w t

µ ς ξ τ

τ
=

− + + −

+ − + =

∑
&

 

(17) 
where 

( ) [ ( ), ( ), ( ), ( ( )), ( ),T T T T T T
m Mt x t t x t x t t x tς ξ τ τ τ= − − −

( ( ))]T t tξ τ−  and 
1 2[0, ,0, 0,0, ]T T TS S S= . 

Then it follows from (10)-(17) that 

3
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2
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1 2
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2

( ) 2 ( ) ( ) ( ) ( )
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T

t
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x t Q x t

d x t t Q x t t

x t Q x t

t R R Z t

s R s ds

s R s ds

d

τ

τ

τ

γ

ξ

τ τ

τ τ

τ τ

ξ τ τ τ ξ

τ ξ ξ

ξ ξ

=

−

−

−

− −
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− − −

− − − −
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+ + − +

−

−
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∑

∫

∫
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1
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B t x t t
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w

τ

τ
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τ
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ξ
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τ
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=

−

−
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−
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&
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(18) 

Using Lemma 1 in [10], we have 

1

1 1

1 1
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.
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m
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T

m m
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x t x tR R
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−
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Via the method in [7], we obtain 
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2
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1
21
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m
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τ
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τ

τ
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−
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−
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1
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So it follows from (18)-(21) that 

1
21

1
2

1

1

( ) 2 ( ) ( ) ( ) ( )

( )[( ( ) )

( ( )) ( )] ( )

2 ( ) ( )

2 ( ) ( ) ( ) ( )

( )( ) ( )

( ) ( )*

T T
t

r T T
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T
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ii
i

V x w t y t w t w t
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γ
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γ
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µ
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−

=

−
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− −
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+
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∑

∑
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(22) 
where 

1 1
2 2( ) ( ( ) ) ( ( )) ( )T T

i m i i M i i it t M R M t N R N tτ τ τ τ− −ϒ = − + − + Ω  

and ( )i tΩ  is obtained form iΩ   by replacing the terms 

, ,i i iA B C  with ( ), ( ), ( )i i iA t B t C t , respectively. 

By the Schur complements, Lemma 1 and Lemma 2, 
the LMIs (8) give that 

( )
0,

*

i i

i

t
i

I Hγ

ϒ Λ 
< ∈ 

− − 
uur S. .           (23) 

Then, it follows from (22) and (23) that 

( ) 2 ( ) ( ) ( ) ( ) 0.T T
tV x w t y t w t w tγ− − <&          (24) 

Integrating (24) with respect to t over time interval 

[0, ], 0,t tρ ρ ≥   we have  

0
0

0

( ) ( ) ( ) ( )

2 ( ) ( ) .

t
T

t

t
T

V x V x w s w s ds

w s y s ds

ρ

ρ

ρ

γ− −

≤

∫

∫
                   

 So, under the zero initial condition, we have 

0 0
( ) ( ) 2 ( ) ( ) .

t t
T Tw s w s ds w s y s ds

ρ ρ

γ− ≤∫ ∫  

The proof is completed here. 
Remark 2.  Letting J = 0 in (8) yields the Theorem 1 in 
 [22]. In view of this, our results in the article extend the 
corresponding results in [22]. 
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IV.  SIMULATION EXAMPLE 

In this section, a simulation example is given to 
illustrate the effectiveness of the developed approach. 
Consider the system (1) with parameters as follows 
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, ,

         

Choose the scalar 1.25γ = , then solving the LMIs in 

(8) via the algorithm “feasp” in Matlab, it is found that 
these      LMIs are feasible. So, according to Theorem 1, 
the system (1) is passive. For convenience of the 
simulation, let 

 
1 1
( ) sin( ( )),t x tµ π=  

2 1
( ) 1 sin( ( ))t x tµ π= −          
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1 2 0.3

T
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=
 

≥ + + 
                     

Then, the simulation results of the state response of the 
plant is given in Fig.1, while Fig.2 shows the system 

output. And the curve of  

0
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t
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−
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∫

∫
                    

 is provided in Fig. 3. 
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Fig. 1. State response x(t). 
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V.  CONCLUSION  

This paper has investigated the passivity problem for 
the T-S fuzzy neutral system with interval time-varying 
delay and linear fractional parametric uncertainties. Delay 
dependent sufficient conditions for solvability of the 
passive problem are obtained by means of the Lyapunov-
Krasovskii functional and the free weighting matrix 
method. The presented criterion in terms of LMIs can be 
readily solved via the standard numerical algorithm in 
Matlab. Finally, a simulation example is provided to 
demonstrate effectiveness and applicability of the 
theoretical results. 
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