1.J. Intelligent Systems and Applications, 2021, 5, 1-13
Published Online October 2021 in MECS (http://www.mecs-press.org/)
DOI: 10.5815/ijisa.2021.05.01

=

|
| Modern Education
| and Computer Science

| PRESS

Comparing Performance of Supervised Learning
Classifiers by Tuning the Hyperparameter on
Face Recognition

M. llham Rizgyawan, Ulfah Nadiya

Technical Implementation Unit for Instrumentation Development, Indonesian Institute of Sciences, Bandung, 40135,
Indonesia

E-mail: muhal76@lipi.go.id, ulfa001@lipi.go.id

Aris Munandar, Jony Winaryo Wibowo, Oka Mahendra, Irfan Asfy Fakhry Anto, Rian Putra
Pratama, Muhammad Arifin, Hanif Fakhrurroja

Technical Implementation Unit for Instrumentation Development, Indonesian Institute of Sciences, Bandung, 40135,
Indonesia

E-mail: aris001@lipi.go.id, jony00l@lipi.go.id, okamO01@lipi.go.id, irfa009@lipi.go.id, rian018@lipi.go.id,
muha2018@lipi.go.id, hani002@lipi.go.id

Received: 12 July 2021; Revised: 10 August 2021; Accepted: 29 August 2021; Published: 08 October 2021

Abstract: In this era, face recognition technology is an important component that is widely used in various aspects of
life, mostly for biometrics issues for personal identification. There are three main steps of a face recognition system:
face detection, face embedding, and classification. Classification plays a vital role in making the system recognizes a
face accurately. With the growing need for face recognition applications, the need for machine learning methods are
required for accurate image classification is also increasing. One thing that can be done to increase the performance of
the classifier is by tuning the hyperparameter. For this study, the evaluation performance of classification is conducted
to obtain the best classifier among four different classifier algorithms (decision tree, SVM, random forest, and
AdaBoost) for a specific dataset by tuning the hyperparameter. The best classifier is obtained by evaluating the
performance of each classifier in terms of training time, accuracy, precision, recall, and F1-score. This study was using
a dataset of 2267 facial data (128D vector space) derived from the face embedding process. The result showed that
SVM is the best classifier with a training time of 0.5 s and the score for accuracy, precision, recall, and F1-score are
about 98%.

Index Terms: Classifier, Hyperparameter, Face Recognition.

1. Introduction

A face is a key to the human perception system [1]. Different facial cues can identify different people. The most
important facial cues include nose, eyes, jaw, hair, and mouth [2]. The advances in technology, the development of
existing hardware and software, allows faces to be processed into objects or often known as face recognition. Face
recognition has been used for many applications, which are for security, image database investigation, face
identification, access control, video surveillance, generally identify verification, smart card application, the criminal
justice system, shopping sense like in Amazon Go, etc [3,4,5,6,7].

The general process of face recognition consists of face detection, face embedding, and classification. The first
process of face recognition is started by detecting whether there is a face or not in a picture/frame. This is done by
identifying the sizes of a known number of faces and their locations [8]. If the face has been found in a frame, then the
face embedding will be performed. Face embedding acts as a feature extractor from the detected faces. The goals of this
process are to reduce the machine training time and the space complexity [9]. Feature extractor transforms an input into
a set of features and selects a feature containing the most relevant information [10]. The selected features are then
classified by the classifier. Generally, this process consists of a machine learning algorithm that has been trained with a
number of certain datasets so it can obtain the desired criteria.

The very important part of the face recognition process is classification because it is a learning process that allows
the system to differentiate the classes by reaching the minimum possible error based on the training dataset to obtain
accurate facial recognition. Face classifications are frequently performed using a supervised learning algorithm due to

This work is open access and licensed under the Creative Commons CC BY 4.0 License. Volume 13 (2021), Issue 5

mailto:muha176@lipi.go.id
mailto:aris001@lipi.go.id
mailto:jony001@lipi.go.id
mailto:okam001@lipi.go.id
mailto:irfa009@lipi.go.id
mailto:rian018@lipi.go.id
mailto:muha2018@lipi.go.id

Comparing Performance of Supervised Learning Classifiers by Tuning the Hyperparameter on Face Recognition

high-dimensional data. Image classification can be done by using some kind of supervised learning algorithms such as
support vector machine (SVM), random forest, AdaBoost, decision tree, etc. Each algorithm is modeled in such a way
so it has certain different hyperparameters. This hyperparameter affects the performance of the classifier in building a
robust and accurate model [11,12], hence, the optimal hyperparameters are needed to obtain maximum performance.

Previous studies have been comparing several classifiers on face recognition to find the best classifier. Emir et al.,
Abdel et al., and Huda et al. [13,14,15] have been comparing SVM classifier and random forest classifier on face
recognition and using Histogram of Oriented Gradients (HOG) as the feature extractor. They got a result that random
forest reached higher accuracy than SVM with the accuracy value is 97.2% [13], 95.1% [14], and 95.9% [15]. Nurbaity
et al. [16] are also comparing naive Bayes, SVM, and multi-linear perceptron (MLP) classification. The result showed
that naive Bayes has higher accuracy than the others with a value of 93.2%. Wang et al. [17] compared Adaboost, SVM,
linear logic classification, nearest neighbor algorithm (KNN), and linear discrimination (LDA) and the result is linear
logic got the highest accuracy among the others with the value is 99%. Last, Nabatchian et al. [18] tested the
performance of KNN, SVM, and hidden Markov model (HMM) classifiers, and the best accuracy was reached by
HMM with the value of 91%.

This study also evaluates several different classifier algorithms for a specific dataset by evaluating the performance
of each classifier to obtain the best classifier by tuning its hyperparameters which most studies have not done before
because tuning the hyperparameter would be a tedious and continuous task to randomly trying the hyperparameter
values, whereas hyperparameter can improve the performance of the classifier. Hyperparameter tuning is also tricky in
the sense that there is no direct way to calculate how a change in the hyperparameter value will reduce the loss of the
model, so tuning a model is trial-and-error based engineering.

The used dataset contains 2267 facial data (128D vector space) derived from the face embedding process. In this
paper, we conducted data pre-processing, model validation, hyperparameter tuning, and model evaluation on four
classifiers: decision tree, SVM, random forest, and AdaBoost. This study also enriches a reference to the comparison of
the classifier algorithm that developers can use in choosing the best classifier algorithm according to their needs to
obtain an optimum face recognition system. Besides the accuracy level, this research also evaluates the performances in
terms of training time, precision, recall, and F1-score. And the result showed that the best classifier is SVM with a
training time is 0.5 s and the score for accuracy, precision, recall, and F1-score are about 98%.

This paper consists of five sections. The first is an introduction that discusses an overview of the face recognition
process, particularly for classification parts, and discusses previous studies and the background of this research. The
second section is a literature review which tells us about literature related to this research. The third discusses the
methodology which consists of a dataset and experimental methods. The fourth discusses the experimental result of the
proposed methods. The last part is the conclusion of this research and its future work.

2. Literature Review

A supervised learning classifier is being applied for many domains, one of them is face recognition. This algorithm
predicts the values of a class from labeled data. This algorithm has some hyperparameters that can be tuned manually
by configuring them to obtain optimal predictive performance. To be able to adjust the hyperparameters, we need to
understand the means of the hyperparameter and the effect on the model, hence, this section discusses a brief
explanation about the classifier model that we used for this experiment and its hyperparameter and the effect on the
classifier model.

2.1. Support Vector Machine (SVM)

Support Vector Machine (SVM) is one of the supervised algorithms that is commonly used for image classification
due to SVM performs better than another classifier in terms of less structured data [19]. SVM represents a geometrical
model that finds the best margin that differentiates data points of different categories using this function (1) [20].

miny, w3 @)
subject to this constraint in (2):

y®OWTx +wy) =1 v, 2)

where y™ being the label for data-point n, x being the matrix, w being the weight vector, and w, being the bias. The
decision boundary of SVM is given in (3).

maxy, w,M, 3)

where M is the margin in the decision boundary as in (4).

2 Volume 13 (2021), Issue 5

Comparing Performance of Supervised Learning Classifiers by Tuning the Hyperparameter on Face Recognition

< L y®WTx® 4 w) v, 4)

[lwll2

In this experiment, we optimized the hyperparameter of SVM before we trained the models. In SVM,
hyperparameter helps to find the balance between the bias (w,) and variance (w) that will affect the decision boundary
(max,,,,, M) and thus prevent the model from underfitting or overfitting. SVM has several parameters [21]. In this

experiment, we use four different parameters. The parameters are in Table 1.

Table 1. The SVM Parameters

Default -
Parameters Data Type Value Description
o Float 1.0 The value must be strictly positive
. If none, uses ‘rbf’
‘sigmoid’, ‘precomputed’, g e If“callable’, then the kernel matrix from data matrices
Kernel - AN A s rbf . .
callable, ‘linear’, ‘rbf’, or ‘poly will be precomputed; the matrix is an array of shape
Kernel coef. for ‘sigmoid’, ‘rbf” and “poly’.
. - , . s . If gamma = ‘scale’, then gamma =
Gamma scale’, ‘auto’, or float scale 1/(n._features* X.var())
. If gamma = ‘auto’, then gamma = 1/n_features
Polynomial Degree for kernel value ‘poly’. Ignored by other kernels
Integer 3
Degree value

2.2. Decision Tree

The decision tree model has two components, which are nodes and branches, and has three important steps,
splitting, pruning, and tree decision. [22]. A decision tree has an issue of robust to irregulates input data and it is
insensitive to outliers, it is easily overfitting and unstable [23]. This overfitting can be counteracted by adjusting the
hyperparameters. The hyperparameters will stop the recursive splitting process (splitting is a process of partitioning a
node into two or more sub-nodes), so it is setting constraints on tree size. There are several parameters for the decision
tree algorithm [24,25,26]. In this paper, the experiment uses four different parameters, which are as in Table 2.

Table 2. The decision tree parameters

Default

Parameters Data Type Value

Description

It measures the split quality. The value is “gini” for the Gini
impurity and “entropy” for the information gain
The tree maximum depth. If the value is the default, the
Max Depth Integer None node is expanded until all leaves are less than

min_samples_split or until it is pure

It is a sample minimum number to split the internal node:

. If an integer, min_samples_split is the min.
Min Samples number
- Integer or float 2 . o .

Split . If float, min_samples_split is a fraction, and
ceil(min_samples_split * n_samples) is the
samples min. number of each split

It is a sample minimum number at the leaf node. A split
point can be allowed if it leaves at least min_samples_leaf
training samples in the right and left branches. It may
effects the smoothing of the model, particularly for
Integer or float 1 regression.
. If integer, min_samples_leaf is the min. number.
. If float, min_samples_leaf is a fraction, and
ceil(min_samples_leaf * n_samples) is the min.
number of samples of each node

Criterion “gini”, “entropy” “gini”

Min Samples
Leaf

2.3. Random Forest

Random forest combines decision trees, feature sub-sampling, and bootstrap aggregation to reduce the trade-off in
the decision tree by decreases the model variance, so it can increase the accuracy [27]. Random forest collects M
randomized trees as denoted in (5) [28].

my (%), D) (5)
the j-th tree gives the predicted value at point x, &, ©,, being independent random variables, and D,, being

independent of sample. Random forest prediction is given by the average of the prediction of M randomized trees and it
is denoted in (6).

Volume 13 (2021), Issue 5 3

Comparing Performance of Supervised Learning Classifiers by Tuning the Hyperparameter on Face Recognition

My (X, O1 - O, Dn) = 5 Zhey M (X, Oy D) (6)

In the random forest, several hyperparameters that can be tuned during the training process. The hyperparameters
include the number of the randomized tree (M) and the number of independent samples (D,,). Several parameters that
used in this paper are in Table 3 [29].

Table 3. The random forest parameters

Parameters Data Type Iile;fﬁlelt Description
n Estimators Integer 100 The trees number in the forest
The tree maximum depth. If the value is the default, the
Max Depth Integer None node is extended until all of the leaves are less than
min_samples_split or until it is pure
It is a sample minimum number to split the internal
node:
Min Samples . If an integer, min_samples_split is the min.
Split Integer or float 2 number _ o .

. If float, min_samples_split is a fraction and
ceil(min_samples_split * n_samples) is the
samples min. number of each split

It is a sample minimum number at the leaf node. A split
point can be allowed if it leaves at least
min_samples_leaf training samples in the right and left
branches. It may effects the smoothing of the model,
Min Samples Integer or float 1 particularly for_ regression._ . .
Leaf . If integer, min_samples_leaf is the min.

number

. If float, min_samples_leaf is a fraction and
ceil(min_samples_leaf * n_samples) is the
min. number of samples of each node

2.4. Adaboost

Adaboost improves different classification performances by combining the weak classifiers to become a strong
classifier with a scheme of weighted majority voting [30]. Adaboost is popular for face recognition applications, for
example in the Viola-Jones framework [31]. It utilizes the exponential loss function L (y, f (x)) = e /™, where f(x)
being the prediction and y being the actual label. The equation for optimizing the cost function is denoted in (7) [30].

Jw®, v}y = B L™, FE ™) + wlp(x™,v)) 7)

where y™ being the instance label n, L(y™), =1 (x™) is the loss function at the previous stage, wit} being an
updated weight depending on whether the data-points are classified correctly, and ¢(x™, v{") being a weak learner
which added into the model at stage t.

Tuning the hyperparameter will affect the accuracy of the models. In the case of Adaboost, tuning the
hyperparameters will change the number of weak learners (@(x™,v{®})) and control the loss function

(Liy™, fie=1 (x ™)) used for calculating the weight (w). This experiment uses three different parameters as in Table
4 [32][33].

Table 4. The Adaboost parameters

Default

Parameters Data Type Value Description
n Estimators integer 50 The estimator maximum number

The weight is applied to each classifier at each boosting

Learning rate float 1 iteration. Each classifier contribution can increase by
increasing the learning rate value

e If ‘SAMME.R’, use SAMME.R as a real boosting

algorithm. SAMME.R has faster performance than

Algorithm ‘SAMME’, ‘SAMME.R’ ‘SAMME R’ SAMME, it has a lower test error with fewer

boosting iterations
o |If ‘SAMME’, uses SAMME as a discrete boosting
algorithm

4 Volume 13 (2021), Issue 5

Comparing Performance of Supervised Learning Classifiers by Tuning the Hyperparameter on Face Recognition

3. Methods

This research aims to find the best performance of a classifier. The general process of the face recognition task can
be described by the following list: Face Detection, Face Embedding, and Classification. The experiment was conducted
in a workstation with the specification as follows: CPU Intel Core i7-8700 3.2GHz 6 Core 12 Threads, RAM 32GB
DDR4 PC-19200, GPU: GeForce RTX 2070.

The first process of face recognition is started by detecting whether there is a face or not in the picture/frame. The
algorithm then returned the list of the face(s) and its location in the form of a bounding box(es). Histogram of Oriented
Gradients (HOG) is used along with linear Support Vector Machine (SVM) to detect face and its location. HOG is used
for this paper because it is a simple and fast algorithm and performs well in detecting face [34] by dividing the image
into many cells where a histogram counts the occurrences of pixels’ orientations given by their gradients [35]. It
summarizes the distribution of measurements within the image regions [36]. In this experiment, we used the HOG
library in python.

The next step is face embedding. Face embedding acts as a feature extractor from the detected face(s).
Convolutional Neural Network (CNN) with metric loss is used to embed detected face(s) into a 128D vector space. We
used CNN because it is a powerful feature extractor that can extract complex data layer by layer and finally form ideal
features suitable for classification [37]. This paper also used a CNN library from python.

The vector space from the face embedding process is the final feature used in classification. The details of the
classification process will be described in the next subsection. After the classification process, we will evaluate the
performance of each classifier to obtain the best classifier. The overview of general methods is shown in Fig.1.

Face detection using Detected face and > Face embbeding | Extracted feature in the furm+ Classification using Performance
HoG and SVM its location using CNN of 1280 vector space several algorithms evaluation

Fig.1. Overview of the General Methods

Y

3.1. Dataset

The used dataset contains 2267 face data. The face data is a 128D vector derived from the face embedding process
with the addition of the label column. There are nine classes of face, consisting of person 1 to 8 plus unknown class.
The full dataset is then divided into two separate datasets for training and testing samples by random sampling. The
training dataset contains 1813 data while the test dataset contains 454 data. The distribution class of the dataset showed
in Fig.2. The training data becomes an input for hyperparameter optimization to obtain the best configuration of
hyperparameter that will be used in the final model.

100 +

a0 -

801

70 A

60 4

50 4

Distribution

40 4

30 A

204

—IQoTmMMmMQgONm>

101

0

Train Test

Fig.2. The distribution of dataset class

Volume 13 (2021), Issue 5 5

Comparing Performance of Supervised Learning Classifiers by Tuning the Hyperparameter on Face Recognition

3.2. Experimental Methods: Classification Process

The experimental methods of the classification process can be seen in Fig.3. In this case, an experiment is
conducted by measuring several metrics, mainly accuracy and computing performance to find the best classifier. There
are four classification algorithms tested in this experiment: Decision Tree, SVM, Random Forest, and Adaboost. The
best parameter is searched for each classifier with the process of hyper-parameter optimization. The parameters and
their data type are shown in Table 5 as follows.

Table 5. The parameter and its type

Classifier Parameter 1 Parameter 2 Parameter 3 Parameter 4
. Criterion Max Depth Min Samples Split Min Samples
1 Decision Tree Leaf
Categorical Integer Integer Integer
o Kernel Polynomial Degree Gamma
2 SVM .
Real Categorical Integer Real
n Estimators Max Depth Min Samples Split Min Samples
3 | Random Forest Leaf
Integer Integer Integer Integer
n Estimators = Learning Rate Algorithm -
4 Adaboost :
Integer Real Categorical -

Import Dataset
Split w/
random sampling

Training Testing
Data Data

h 4

Hyperparameter
Optimization

v h 4 h 4

‘ Model Training

Final Evaluation

Fig.3. Classification Process

The process of hyperparameter optimization is shown in Fig.4. Each classifier is optimized in 1000 epochs using
three optimizer algorithms: Forest, GBRT, and Gaussian Process. Accuracy in each epoch is measured using Cross-
Validation with 3 folds, which then averaged to be used as the metric of the optimization. The average accuracy is
multiplied with -1 as the optimizer set as a minimizer of the value function. Parameters of the best result in each
classifier are then used as the parameters to train the final classifier.

The final training process of the classifier can be seen in Fig.5. Each classifier is trained for the final model test
using the best configuration of the parameter. After training, the model is tested using a test dataset and then we
calculated the performance of each classifier using several metrics measurements to obtain the best performance of the
classifiers.

There are several metrics measured in this final model test. The first one is accuracy. Accuracy simply measures
the percentage of correctly identified conditions. Accuracy is denoted as in (8).

6 Volume 13 (2021), Issue 5

Comparing Performance of Supervised Learning Classifiers by Tuning the Hyperparameter on Face Recognition

where TP is true positive, TN being true negative, FP is false positive, and FN being false negative.

(TP+TN)

Accuracy = ———
Y (TP+TN+FP+FN)

Read configuration
Read data

Training
Data

¥

all Yes

classifiers

WV

F

all

optimizers,

No

h 4

all

epochs

No

all Yes
cross-val

folds

Calculate Average
Score

¢ ¢ Append Result
Cross-val Cross-val
Training Data Testing Data

Optimize

Classifier Training

Classifier Testing

Append Score

Save Results to CSV
Plot Convergence
Graphic

Fig.4. Hyperparameter Optimization Process

Volume 13 (2021), Issue 5

(8)

Comparing Performance of Supervised Learning Classifiers by Tuning the Hyperparameter on Face Recognition

The next metrics are Precision and Recall. Precision is a fraction of true predicted instances over all of the
predicted instances. While Recall is a fraction of true predicted instances over all of the true instances. Precision and
Recall are calculated as in (9) and (10).

TP

Precision = 9)
TP+FP
Recall = —= (10)
TP+FN

Precision and recall are often in the inverse relation, where trade-offs cannot be avoided to choose one over the
other. In some cases, precision is better to measure than recall and vice versa. But in the more general case, a harmonic
average of precision and recall can be utilized as a single metric to measure the model. This harmonic average of
precision and recall is called F1-score or F-measure and can be calculated as in (11).

F1— score = 2 - Precision-Recall (11)

Precision+Recall

|: Start :|

Y

YEE
all
classifiers

{ Read Data J

Training Testing
Data Data

Set Best Params
from HPO

v

{ Model Training

%T

[Final Testing

Append Result

Fig.5. The Process of Final Model Test
4. Results and Discussion

The methods that have been proposed in the previous section are then implemented on the system. First, we
optimized the hyperparameters of each classifier. The second one is we noted the configuration result of the

hyperparameter from the training process and tested the hyperparameter configuration of each classifier to analyze the

8 Volume 13 (2021), Issue 5

Comparing Performance of Supervised Learning Classifiers by Tuning the Hyperparameter on Face Recognition

performance. The results are discussed in the following sub-section.
4.1. Hyperparameter Optimization

Classifier algorithms have several parameters to set. The parameters need to be optimized for classifiers to reach
the global minimum of error as close as possible. There are 12 configurations of optimization tested in this experiment.
Each configuration is optimized in 1000 epoch. The convergence of the optimization showed in Fig.6.

Cameprgence il

Fig.6. The convergence of the optimization

As can be seen, most classifiers need less than 200 epochs to converge, with only minor improvement seen after
200 epochs. Most classifiers also have relatively significant improvement within 100 epochs of optimization, with the
exception of SVM. Adaboosts has around 5% improvement, Decision Trees has around 17% improvement, and
Random Forest has around 24% improvement. Interestingly, while SVM has the lowest improvement, at 0 epoch SVM
is still better than all of the other classifiers after convergence. The result of each configuration after 1000 epochs can be
seen in Table 6.

Table 6. The result of each configuration

Classifier Optimizer Results Parameter 1 = Parameter2 = Parameter 3 Parameter 4
0 Decision Tree forest -0.90900 entropy 65 3 3

1 Decision Tree gbrt -0.90954 entropy 897 8 3

2 Decision Tree Gp -0.91119 entropy 381 2 1

3 SVM forest -0.98786 21.52478 Poly 4 1.043849
4 SVM gbrt -0.98896 36.77783 Rbf 8 1.757579
5 SVM Gp -0.98841 2.35168 Rbf 7 3.481410
6 Random Forest forest -0.96471 199 73 2 1

7 Random Forest gbrt -0.96857 62 364 2 1

8 Random Forest Gp -0.96636 84 864 2 1

9 Adaboost forest -0.61553 23 0.07733 SAMME.R -

10 Adaboost Gbrt -0.60844 30 0.00492 SAMME.R -

11 Adaboost Gp -0.60900 153 0.00095 SAMME.R -

The best configuration of each classifier is noted, then the parameters of each configuration are applied to the final
model training.

4.2. Final Model Test

Each classifier algorithm is then trained for the final model test, using the parameters of the best configuration of
each classifier. After training, the model is tested using a test dataset with the result that can be seen in Table 7.

Volume 13 (2021), Issue 5 9

Comparing Performance of Supervised Learning Classifiers by Tuning the Hyperparameter on Face Recognition

Table 7. The tested result

Decision Tree SVM Random Forest Adaboost
Training time (s) 1.1242 0.5311 1.7507 1.8799
Accuracy Score 0.9471 0.9846 0.9626 0.7753
Precision 0.9602 0.9896 0.9893 0.8266
Recall 0.9147 0.9830 0.9332 0.5714
Training time (s) 1.1242 0.5311 1.7507 1.8799

As shown in Table 3, SVM scores the best in all of the measurement metrics compared to all of the other
classifiers. Random Forest closely follows SVM, especially in the Precision score with the difference of +0.0003 points.
The Adaboost classifier scores the worst with a relatively significant margin. While the other classifiers scores above 94%
of accuracy, Adaboost falls behind with 77% accuracy. The confusion matrix of the SVM test can be seen in Fig.7.

Normalized confusion matrix - svm

-0.8

True labels

0.0044 0.99

Unknown

A B C D E F G H Unknown
Predicted labels

Fig.7. The confusion matrix of SVM

These results are also confirmed by research that has been done in the last five years that used SVM as a classifier
for face recognition and has been proven in making a high level of accuracy. This SVM classifier algorithm is used for
face recognition research with various purposes, such as P. C. Vasanth and K. R. Nataraj [38] used SVM for expression
classification and produced good accuracy in displaying the expression and facial action units. Rustam and Ruvita [39]
also used the SVM classifier for face recognition systems to perform gender classification by comparing the polynomial
kernel (d = 5) and RBF kernel (¢ = 0.05) the and the result is SVM with a polynomial kernel (d = 5) reached 100% of
accuracy. Rayani and K. Rajakumar [40] obtained an accuracy of 85% while using SVM for face detection and face
recognition. Another one is Sharma and Sachdeva [41] who obtained an accuracy value of 98.7% by utilizing SVM as a
classifier for face recognition. Prakash and Singh [42] reviewed numerous papers and concluded that SVM has a more
effective technique than the others and SVM can be trained successfully for face recognition and SVM is also a better
learning algorithm compare to the nearest center approach in terms of face recognition, And the last, P. S. Hiremath et
al. [43] and A. Tofighi et al. [44] have been comparing the SVM and K-Nearest Neighbor (KNN) for face recognition
and got the result that SVM performs better than KNN with the scores are 99.2% on 3D face recognition [43] and
93.5% on recognizing the face of an image and a video [44].

10 Volume 13 (2021), Issue 5

Comparing Performance of Supervised Learning Classifiers by Tuning the Hyperparameter on Face Recognition

5. Conclusions

An analysis has been made for the performances of four different classifiers which are SVM, decision tree, random
forest, and Adaboost. This is done by calculating some metrics including recall, F1-score, accuracy, and precision. From
the experiment, we obtain that SVM gives the best performance in all measurement matrices and reached an accuracy
score of 98%. Hyperparameter tuning is proven to improve the performance of a classifier, especially in terms of
accuracy, for example, SVM. In previous studies, it showed that SVM is not the best classifier compare to other
classifiers, but when we optimize the hyperparameter like in this experiment, SVM has the highest accuracy than others.
It proves that hyperparameters are critical in building a robust and accurate model of the classifier. This study also
enriches a reference to the comparison of the classifier algorithm that developers/programmers can use in choosing the
best classifier algorithm according to their needs. Further, this research is expected to continue by modeling the
relationship between each hyperparameter, hence, it will be easier to tune and obtain the best classifier as needed.
Another, we can also make another research to obtain a high accuracy value classifier that also has the best performance
in a real-time embedded system with less time-consuming, efficient, and cost-effectively, due to face recognition creates
a potential for many businesses aspect.

References

[1] W. Zhao, R. Chellappa, P. J. Phillips, and A. Rosenfeld, “Face recognition: A literature survey,”“ ACM Computing Surveys, vol.
35, no. 4, pp. 399-458, 2003.

[2] M. Nusseck, D. W. Cunningham, C. Wallraven, and H. H. Bulthoff, “The contribution of different facial regions to the recognition
of conversational expressions,“ Journal of Vision, vol. 8, no. 8, pp. 1-13, 2008.

[3] S. Umer, B. C. Dhara, and B. Chanda, “Face recognition using fusion of feature learning techniques,” Measurement, vol. 146,
pp. 43-54, 2019.

[4] L. Li, X. Muy, S. Li, and H. Peng, “A review of face recognition technology,” IEEE Access, vol. 8, pp. 139110 — 139120, 2020.

[5] D. N. Parmar and B. B. Mehta, “Face recognition methods and applications,” Int. J. Comput. Tech. & Appl., vol. 4, no. 1, pp.
84-86, 2013.

[6] K. Wankhede, B. Wukkadada, and V. Nadar, “Just walk-out technology and its challenges: A case of Amazon Go,” IEEE 2018
Int. Conf. Inventive Research in Comput. Appl. (ICIRCA), 2018.

[7]1 Subrat Kumar Rath, Siddharth Swarup Rautaray,"A Survey on Face Detection and Recognition Techniques in Different Application
Domain”, IMECS, vol.6, no.8, pp.34-44, 2014.DOI: 10.5815/ijmecs.2014.08.05

[8] A. Kumar, A. Kaur, and M. Kumar, “Face detection techniques: A review,” Artificial Intelligence Review, vol. 52, pp.
927-948, 2018.

[9]1 R. Khokher, R. C. Singh, and R. Kumar, “Footprint recognition with principal component analysis and independent component
analysis,” Macromolecular Symp., vol. 347, no. 1, pp. 16-26, 2015.

[10] Z. Sufyanu, F. S. Mohamad, A. A. Yusuf, and A. Nuhu, “Feature extraction methods for face recognition,” Int. J. Applied Eng.
Research (IRAER), vol. 5, pp. 5658-5668, 2016.

[11] P. Probst, A. Boulesteix, and B. Bischl, “Tunability: Importance of hyperparameters of machine learning algorithms,” J. Machine
Learning, vol. 20, pp. 1-32, 2019

[12] P. Gaspar, J. Carbonell, and J. Oliveira, “On the parameter optimization of support vector machines for binary classification,” J.
Integrative Bioinformatics, vol. 9, no. 3, pp. 33-43, 2012.

[13] E. Kremic and A. Subasi, “Performance of random forest and SVM in face recognition,” The Int. Arab J. Inf. Tech., vol. 13, no. 2,
pp. 287-293, 2016.

[14] A. I. Salhi, M. Kardouchi, and N. Belacel, “Fast and efficient face recognition system using random forest and histogram of
oriented gradients,” IEEE 2012 The Int. Conf. The Biometrics Special Interest Group (BIOSIG), 2012.

[15] H. Mady, and S. M. S. Hilles, S.M.S. “Face recognition and detection using random forest and combination of LBP and HOG
features,” IEEE Int. Conf. Smart Comput. and Electronic Enterprise (ICSCEE2018), 2018.

[16] N. Sabri, J. Henry, and Z. Ibrahim, “A comparison of face detection classifier using facial geometry distance measure,” 2018 9th
IEEE Control and Sys. Grad. Research Coll. (ICSGRC 2018), 2018.

[17] W. Changyuan, X. Pengxiang, L. Guang, and W. Qiyou, “A comparative study of face recognition classification algorithms,” Int. J.
Adv. Network, Monitoring, and Controls, vol. 5, no. 3, pp. 23-29, 2020.

[18] A. Nabatchian, I. Makaremi, E. Abdel-Raheem, and M. Ahmadi, “Pseudo-Zernike moment invariants for recognition of faces
using different classifiers in FERET database,” IEEE Third Int. Conf. on Convergence and Hybrid Inf. Tech., 2008.

[19] D. A. Salazar, J. I. Velez, and J. C. Salazar, “Comparison between SVM and logistic regression: Which one is better to
discriminate?,” Revista Colombiana de Estadistica, vol. 35, no. SPE2, pp. 223-237, 2012.

[20] S. Sperandei, “Understanding logistic regression analysis,” Biochemia Medica, vol. 24, no. 1, pp. 12-18, 2014.

[21] C. C. Chang and C. J. Lin, “LIBSVM: A library for support vector machine,” 2021. [Online]. Available:
https://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf. [Accessed: 25-June- 2021].

[22] Y. Y. Songand Y. Lu, “Decision tree methods: Applications for classification and prediction,” Shanghai Archives of Psychiatry,
vol. 27, no. 2, pp. 130-135, 2015.

[23] B. Kami'nski, M. Jakubczyk, and P. Szufel, “A framework for sensitivity analysis of decision trees,” Central Eur. J. Oper.
Research, vol. 26, pp. 135-159, 2017.

[24] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of statistical learning: Data mining, inference, and prediction, 2" ed.,
Springer, 2009.

Volume 13 (2021), Issue 5 11

https://www.csie.ntu.edu.tw/%7Ecjlin/papers/libsvm.pdf

[25]

[26]
[27]

[28]
[29]
(30]
[31]
[32]
[33]

[34]

[35]
[36]
[37]
[38]
[39]
[40]
[41]
[42]
[43]

[44]

Comparing Performance of Supervised Learning Classifiers by Tuning the Hyperparameter on Face Recognition

L. Breiman and A Cutler, “Random Forests”, 2021. [Online]. Available:
https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm. [Accessed: 27-July-2021].

L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classification and Regression Trees, 1 ed., Wadsworth, Belmont, CA, 1984.

T. K. Ho, “The random subspace method for constructing decision forests,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 20, no. 8, pp. 832-844, 1998.

E. Scornet, "Tuning parameters in random forests," ESAIM: Proceedings and Surveys, vol. 60, pp.144-162, 2018.

L. Breiman, “Random Forests," Machine Learning, vol. 45, no. 1, pp. 5-32, 2001.

R. Wang, “AdaBoost for feature selection, classification and its relation with SVM, A Review,” Physics Procedia, vol. 25, pp.
800-807, 2012.

C. Papageorgiou, M. Oren, and T. Poggio, “A general framework for object detection,” IEEE The Sixth Int. Conf. on Comput.
Vision, 1998.

J Zhu, S. Rosset, H. Zou, and T. Hastie, “Multi-class Adaboost,” 2006. [Online]. Available:
https://web.stanford.edu/~hastie/Papers/samme.pdf. [Accessed: 25-June-2021].

Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-line learning and an application to boosting,” J. of
Comput. and Sys. Scie., vol. 55, pp. 119-139, 1997.

Shivanand S. Gornale, Pooja U. Patravali, Kiran S. Marathe, Prakash S. Hiremath,” Determination of Osteoarthritis Using
Histogram of Oriented Gradients and Multiclass SVM", International Journal of Image, Graphics and Signal Processing, Vol.9,
No.12, pp. 41-49, 2017.

A. P. Singh and A. Kumar, "Robust face recognition system using HOG features and SVM classifier,” Int. J. of Information Scie.
and Appl. (1JISA), vol. 11, no. 1 (special issue), pp. 105 -109, 2019.

S. Chang, D. Xiaoqging, and F. Chi, "Histogram of the oriented gradient for face recognition," Tsinghua Scie. and Tech., vol. 16, no.
2, pp. 216-224, 2011.

Y. Li, Z Wang, Y. Li, X. Zhao, and H. Huang, " Design of face recognition system based on CNN," J. Phys.: Conf. Ser., vol. 16,
no.1, 2020.

V. P.C.and N. K. R., “Facial expression recognition using SVM classifier,” Indonesian J. of Elect. Eng. and Inform. (1JEEI), vol.
3, no. 1, pp. 16-20, 2015.

Z. Rustam and A. A. Ruvita, “Application support vector machine on face recognition for gender classification,” J. of Phys.: Conf.
Series, vol. 1108, no. 012067, 2018.

C. Rayani and R. K., “Face detection and recognition using support vector machine,” Int. J. of Eng. and Adv. Tech. (IJEAT), vol. 8,
no. 4, pp. 382-384, 2019.

S. Sharma and K. Sachdeva, “Face recognition using PCA and SVM with surf technique,” Int. J. of Comput. Appl., vol. 129, no. 4,
pp. 41-46, 2015.

N. Parakash and Y. Singh, “Support vector machine for face recognition,” Int. Research J. of Eng. and Tech. (IRJET), vol. 2, no. 8,
pp. 1517-1529, 2015.

P. S. Hiremath, Manjunatha Hiremath,"3D Face Recognition based on Radon Transform, PCA, LDA using KNN and SVM",
International Journal of Image, Graphics and Signal Processing, vol.6, no.7, pp.36-43, 2014.

Alireza Tofighi, Nima Khairdoost, S. Amirhassan Monadjemi, Kamal Jamshidi,"A Robust Face Recognition System in Image and
Video", International Journal of Image, Graphics and Signal Processing, vol.6, no.8, pp.1-11, 2014.

Authors’ Profiles

M. Ilham Rizqyawan was born in 1990. He received B.Eng. Degree in Computer Science/Informatics from
Indonesian Computer University (UNIKOM) in 2013 and M.Eng. in electrical engineering from Institut Teknologi
Bandung (ITB) in 2017. He currently works in Technical Implementation Unit for Instrumentation Development,
Indonesian Institute of Sciences, Indonesia as a researcher. His research interests include applied artificial
intelligence in healthcare, human-computer interaction, and data visualization.

Ulfah Nadiya was born in 1996. She received BSc degree in Electrical Engineering from Institut Teknologi
Bandung, Indonesia in 2017, MSc in Electrical Engineering from Institut Teknologi Bandung, Indonesia in 2019.
Her research interests include information security, internet of things (1oT), and healthcare. She is currently a
researcher in Technical Implementation Unit for Instrumentation Development, Indonesian Institute of Sciences,
Indonesia.

Aris Munandar, Jony Winaryo Wibowo, Oka Mahendra, Irfan Asfy Fakhry Anto, Rian Putra Pratama, Muhammad Arifin,
and Hanif Fakhrurroja are currently a researcher in Technical Implementation Unit for Instrumentation Development, Indonesian
Institute of Sciences, Indonesia.

12

Volume 13 (2021), Issue 5

https://web.stanford.edu/%7Ehastie/Papers/samme.pdf

Comparing Performance of Supervised Learning Classifiers by Tuning the Hyperparameter on Face Recognition

How to cite this paper: M. llham Rizgyawan, Ulfah Nadiya, Aris Munandar, Jony Winaryo Wibowo, Oka Mahendra, Irfan Asfy
Fakhry Anto, Rian Putra Pratama, Muhammad Arifin, Hanif Fakhrurroja, "Comparing Performance of Supervised Learning
Classifiers by Tuning the Hyperparameter on Face Recognition”, International Journal of Intelligent Systems and
Applications(IJISA), Vol.13, No.5, pp.1-13, 2021. DOI: 10.5815/ijisa.2021.05.01

Volume 13 (2021), Issue 5 13

	1. Introduction
	2. Literature Review
	2.1. Support Vector Machine (SVM)
	2.2. Decision Tree
	2.3. Random Forest
	2.4. Adaboost
	3. Methods

	3.1. Dataset
	3.2. Experimental Methods: Classification Process
	4. Results and Discussion

	4.1. Hyperparameter Optimization
	4.2. Final Model Test
	5. Conclusions
	References

