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Abstract: In previous studies, researchers have determined the classification of fruit ripeness using the feature 

descriptor using color features (RGB, GSL, HSV, and L * a * b *). However, the performance from the experimental 
results obtained still yields results that are less than the maximum, viz the maximal accuracy is only 76%. Today, 

transfer learning techniques have been applied successfully in many real-world applications. For this reason, researchers 

propose transfer learning techniques using the VGG16 model. The proposed architecture uses VGG16 without the top 

layer. The top layer of the VGG16 replaced by adding a Multilayer Perceptron (MLP) block. The MLP block contains 

Flatten layer, a Dense layer, and Regularizers. The output of the MLP block uses the softmax activation function. There 

are three Regularizes that considered in the MLP block namely Dropout, Batch Normalization, and Regularizes kernels. 

The Regularizes selected are intended to reduce overfitting. The proposed architecture conducted on a fruit ripeness 

dataset that was created by researchers. Based on the experimental results found that the performance of the proposed 
architecture has better performance. Determination of the type of Regularizes is very influential on system performance. 

The best performance obtained on the MLP block that has Dropout 0.5 with increased accuracy reaching 18.42%. The 

Batch Normalization and the Regularizes kernels performance increased the accuracy amount of 10.52% and 2.63%, 

respectively. This study shows that the performance of deep learning using transfer learning always gets better 

performance than using machine learning with traditional feature extraction to determines fruit ripeness detection. This 

study gives also declaring that Dropout is the best technique to reduce overfitting in transfer learning. 

 

Index Terms: Fruit ripeness, transfer learning, MLP, overfitting, accuracy. 
 

1.  Introduction 

Indonesia, as an agricultural country, has several agricultural products included mango, apple, orange, banana, 

durian, tomato, and others. Good quality fruit will have good selling points [1]. It is necessary to maintain the quality of 

fruit consistently to increase the selling value of the fruit. The fruit quality determined by the level of fruit maturity [2], 

so we need a system that can be determining fruit quality well. Determination of fruit quality by using the human senses 
often does not produce consistent quality and requires a long time. Besides that, to delegate one's expertise to others in 

determining the maturity of the fruit requires a long learning process. Therefore, we need tools that can help determine 

effectively and efficiently fruit maturity.  

Today, fruit recognition systems have become a challenging topic in the field of computer vision [3,4]. Various 

image analysis techniques have been developed to help and facilitate work, including automatic fruit harvest detection 

systems [5], automatic fruit recognition [6,7], fruit classification system [8], ripeness fruit system [9], fruit diseases 

detection system [10], and others. Generally, fruit recognition systems use the feature descriptor, namely the shape 

features [11], texture features [12], and color features [2,11-13]. The feature descriptor algorithm used to extract mainly 
information from the image stored in a feature vector [3,4,9]. But the performance of the feature descriptor, in the fruit 

recognition system, results in suboptimal performance [13]. To improve image classification performance requires an 

effective/robust feature descriptor.  

One of the best image feature descriptors in the field of machine learning and computer vision that has had great 

success to date is convolutional neural networks. Several researchers have utilized CNN as feature extraction in various 

applications. Feature extraction with CNN has proven to be very robust. CNN method has a modification in the form of 

Deep Convolutional Neural Network (Deep CNN) that is the beginning of deep learning. Digital image processing 

methods have been applied in the deep learning classification method also. Deep Learning has become one of the hot 
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topics in the world of Machine Learning because of its significant capabilities in modeling complex data such as 

imagery and sound. The Deep Learning method that currently has the most significant performance results in image 

recognition is Deep CNN [14-16].  

However, Deep CNN, like other Deep Learning methods, has a weakness that is the training process that takes a 

long time and needs the availability of large-scale databases. Several studies have proposed transfer learning to 

overcome these problems [17-19]. Transfer learning techniques have been applied successfully in many real-world 
applications, including solving NLP problems [20], image classification [19], CAD [21], name-entity recognition 

problems [22], and others. Like machine learning, overfitting problems are also problems that often arise. In the process 

of forming the Deep CNN model with transfer learning, the overfitting problems must be avoided [23-26]. To reduce 

overfitting in machine learning and deep learning can be done using Data Augmentation, Dropout [27], regularizes 

[16,26], early stopping [16,23], and Batch Normalization [28]. 

In previous studies, researchers have determined the classification of fruit ripeness using the feature descriptor 

with various colors features using the SVM technique. But from the experimental results obtained, the performance still 

results in less than maximum performance, namely the maximal accuracy obtained is only 76% [13]. Based on the 
advantages that have been achieved by the Deep CNN method on image classification and reducing overfitting 

techniques, then in this study, proposed transfer learning techniques to form a model that can determine the maturity of 

the fruit automatically. Deep CNN with transfer learning used in this study is to use VGG16 without the top layer. We 

use VGG16 because VGG16 has a smaller network architecture and easy to implement. The top layer of VGG16 was 

replaced by adding a Multi-layers Perceptron (MLP) block. In this study, the study used Data Augmentation, Dropout, 

regularizes, early stopping, and Batch Normalization to reduce overfitting. The focus of attention in this study is the 

effect of overfitting reduction techniques on transfer learning using VGG16 with the upper layer replaced with MLP 

blocks in determining fruit ripeness. Also, we have analyzed the outcome selecting of reducing overfitting techniques 
with the extracted features from VGG16 architectures. This study shows that the performance of fruit ripeness detection 

using transfer learning is better than machine learning with traditional feature extraction and achieved when obtaining 

the best overfitting reduction technique.   

This paper is organized as follows. In section 2 gives related work about deep learning, transfer learning, and 

overfitting. In section 3 discusses the fruit ripeness dataset that was conducted in the experiment. In section 4 describes 

the proposed architecture transfer learning. Testing results based on numerical experimental introduce in section 5. 

Discussion about experimental results explained in section 6 and finally, we conclude our work in section 7. 

2.  Related Work 

2.1.  Deep Learning 

Deep learning is a new scientific field in the field of machine learning and has excellent skills in computer vision 

[14]. Deep Learning has various sets of methods for training multi-layer artificial neural networks [15]. Deep learning 

systems and models are layered architectures that study different features at different layers [16]. The series of methods 

become very more effectively and better easier to identify patterns from the data entered. The Deep learning system is 

representational learning, where each layer gets input from the previous layers and distributed to the next layers 

[14,16,29]. The starting layer is associated with more general and coarse features. The deeper layers of the network 
learn details that are better and more specific than the dataset that ultimately provides output with certain belief factors. 

Deep Learning impacts the development progress that AI has achieved in stages. Not only for software, but the 

implementation of deep learning has also penetrated various industrial fields. Deep Learning has become one of the hot 

topics in the world of Machine Learning because of its significant capabilities in modeling complex data such as 

imagery and sound [14,15,30]. Deep learning approaches categorized into four categories [15], namely: Deep 

Supervised learning, Deep semi-supervised learning, deep unsupervised learning, and deep reinforcement learning. 

Deep supervised learning is a learning technique that uses data labeled. There are several different deep supervised 

learning approaches, namely: Deep Neural Networks (DNN), Convolutional Neural Networks (CNN), and Recurrent 
Neural Networks (RNN) [31]. 

The Deep Learning method that currently has the most significant results in image recognition is the Convolutional 

Neural Network (CNN) [21,29]. CNN has a large number of parameters and hyper-parameters such as weights, biases, 

number of processing units (number of neurons), number of layers, filter size, stride, learning rate, activation function, 

etc. [16]. Various CNN architectures discussed in several surveys. CNN architecture grouped into 7 (seven) categories 

[29], namely: spatial exploitation, depth, multi-path, width, feature map exploitation, channel boosting, and attention-

based CNNs. The architecture of CNN consists of two main parts [14,32], namely: Feature extractors and classifiers. 

The CNN extractor feature usually consists of a stack of several convolutional layers and a max-pooling layer. The 
classifier of CNN is a fully connected and softmax layer on the last screen. Some architectural models of CNN’s spatial 

exploration include LeNet, Alexnet, ZefNet, VGG, and GoogleNet. Some architectures from CNN are specifically 

designed for large-scale data analysis, (such as GoogleNet, ResNet), while VGG is considered an architecture general 

[29]. Even so, to get the best performance, deep learning generally requires an amount of data and training time more 



Implementation of Transfer Learning Using VGG16 on Fruit Ripeness Detection 

54                                                                                                                                                                       Volume 13 (2021), Issue 2 

than traditional machine learning systems.  

2.2.  Transfer Learning 

Traditional machine learning techniques try to learn each task from the beginning. But the fact is, in cases certainly, 

people can intelligently apply knowledge learned beforehand to solve new problems faster or with better solutions [18-

20]. For example, we might find that learning to recognize a motorcycle quickly if we already know to recognize a 

bicycle well. Likewise, learning to play the keyboard will be able to help facilitate piano learning. Based on these facts, 
then to solve new problems faster and better can use the transfer of knowledge previously owned. This knowledge 

transfer technique is called transfer learning or self-taught learning [33]. Transfer learning is a technique or method that 

utilizes a model that has trained on a particular dataset. The model used again to solve other similar problems by using 

it as a starting point, modifying and updating its parameters so that it matches the newly given dataset [17,18]. Transfer 

learning aims to find a model that is suitable for the training dataset by using learning results from other models that 

have been conducted before [34-35]. 

Three main issues have to consider in conducting transfer learning [36], namely: (1) What to transfer; (2) How to 

transfer, (3) When to transfer. "What to transfer" asks which piece of knowledge can transfer between domains or tasks 
(across domains). "How to transfer" issue after discovering which knowledge can transfer. The learning algorithm needs 

to develop knowledge transfer because some knowledge is specific to certain individual domains or tasks. While "when 

to transfer" asks in which situations the process of knowledge transfer must be carried out. Based on different situations 

between source and target domains and tasks, transfer learning can be categorized into 3 (three) categories [18], namely: 

inductive transfer learning, transductive transfer learning, and unsupervised transfer learning. Various transfer learning 

approaches can be read in [17,18], [34]. Transfer learning techniques have been implemented in a variety of real-world 

applications, included cross-class classification problems [37], name-entity recognition problems [22,38], NLP 

problems [20], image classification problems [19,39], and so on. Transfer learning methods with deep vision models 
based on computer vision used to overcome various complex problems widely [36]. 

2.3.  Overfitting 

Overfitting problems are problems often faced in machine learning and deep learning. Overfitting occurs when 

finding a good model (good fit) of training data, but the model properly cannot be generalized to new data (data not 

previously known) [23-26]. In other words, the model can only study patterns of trained data before, but the model is 

not relevant to other data. Overfitting identified by paying attention to the validation matrix, such as loss or accuracy. 

Usually, overfitting can occur when the validation metric stops increasing after a certain number of epochs and then will 

start to decrease. While training metrics will continue to improve because the model looks for the best fit for training 
data. 

There are several ways you can do to reduce overfitting in the deep learning model. The best option is to prepare 

more training data [23]. Unfortunately, in real-world situations, we are often unable to set up more training data because 

of the need for time, cost, and technical constraints. Another way to reduce overfitting is to reduce the capacity of the 

model to remember training data [24]. Like, the model will need to focus on relevant patterns in training data, which 

results in a more general model. Several options can do to deal with overfitting, namely: 

 

i. Remove the hidden layer. Reducing network capacity can be done by removing layers or reducing the number 
of elements in hidden layers. Removing one hidden layer so reducing the number of layer elements [24]. 

ii. Regularizer kernel. Apply regularization, by adding a loss function for large weights. To solve overfitting can 

be done by applying weight regularization to the model. This will add a network loss function for large 

weights. As a result, we have the simplest model which can force us to only study relevant patterns in training 

data. There are two regularization, namely L1 regularization and L2 regularization. L1 regularization will add 

a cost with the absolute value of the parameter. L2 regularization will add a cost with the quadrant value of the 

parameter. 

iii. Dropout. Using Dropout, randomly delete certain features by setting these features to zero. [27] states that the 
most widespread regularization technique used to reduce overfitting in deep learning is Dropout. 

iv. Early Stopping, another way to prevent happened overfitting is to stop the training process early. Instead of 

doing a training on several specific epochs, we can stop it from immediately generating a validation loss, 

because after that the model will get worse with increasing training [16]. 

v. Batch Normalization. Batch Normalization used to solve problems related to the internal covariance shift of 

feature maps. In [28] stated that Batch Normalization does as regularization, which in some cases eliminates 

the need for Dropout. 

3.  Fruit Ripeness Dataset 

In this study, the study created a fruit maturity dataset from the results of taking photographs with the camera. First 

of all, researchers collected ripe apples, ripe apples, ripe mango, ripe mango, ripe orange, ripe orange, ripe tomatoes, 
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and not ripe tomatoes. Fruit image capturing is done with a camera at a distance of 1 (one) meter from the fruit object 

and with the help of lighting lamps. During the process of capturing the fruit image, we set one white cardboard as the 

background. Each one fruit is taken 4 (four) fruit images by rotating 90 degrees from the side. Each captured images 

stored in the jpg extension, with image sizes between 2621x2166 pixels and 2043x1772 pixels. The total number of 

fruit images created is 1120 images. Each fruit images contain 140 categories. Some image categories of fruit are as 

stated in Fig. 1. 
 

 

Fig.1. Represented of each the categories of fruit ripeness dataset. 

4.  Proposed Transfer Learning Architecture 

As stated in the deep learning sub-chapter, the VGG model is considered the most common deep learning 

architecture. So, this research proposes deep CNN with transfer learning using VGG16 without the upper layer. The top 
layer of VGG16 was replaced by adding a Multi-layers Perceptron (MLP) block. This study uses a fruit maturity dataset 

labeled. Therefore, the category of learning transfer used in this study is inductive transfer learning using the ImageNet 

weighted VGG16 model. The knowledge transferred from the VGG16 model is the weight held by the VGG16 model 

from generating the model to the classification of 1000 on 14 million images. The weight of the VGG16 model used to 

perform feature extraction of the fruit maturity dataset. 

The feature extraction results from the VGG16 model fed to the MLP block. Thus, the feature extractor used in 

transfer leaning uses the feature extractor from VGG16, while the classifier of the proposed architecture uses the MLP 

block with the softmax activation classifier. MLP blocks contain Flatten layer, a Dense layer, and Regularizes. 
Regularizes used to get the best classification performance of the system (reducing overfitting) is Dropout, Batch 

Normalization, and Regularizes Kernel. Because the number of datasets in each image category only has 140 images, to 

reduce overfitting, besides using Regularizes, the Data Augmentation process done using ImageDataGenerator from 

Keras libraries. The activation function used in the MLP block is ReLu activation. The MLP block output layer uses the 

softmax activation function with 8 (eight) classes. The system architecture used for the classification of fruit maturity is 

as shown in Fig. 2. The stages of the model formation are as follows: 

 

(i) Generate training image data using the Data Augmentation process. While the validation and testing of image 
data do not use the Data Augmentation process. 

(ii) Feature extraction of each image (training image, validation image, and testing image) using feature extraction 

of the VGG16 model with ImageNet weight. 

(iii) Fed result of extraction features from the VGG16 model to Regularizer (Dropout, Batch Normalization, 

Regularizer Kernel). 

(iv) Fed result of Regularizer to flatten layer. 

(v) Fed result of Flatten layer to the Dense layer and using ReLu activation. 

(vi) Fed result of Dense layer to the Dense layer using the softmax activation function with 8 (eight) classes. 
 

 

Fig.2. Proposed transfer learning architecture using VGG16. 
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This study considers the influence of regularizers in reducing overfitting. In stage (iii) the formation of the model 

of transfer learning is carried out to replace the type of regularizes used. In this research, three types of regularizers that 

implemented in architecture that proposed. The first architecture is transfer learning architecture with the VGG16 model 

using Dropout. The second architecture is transfer learning architecture with the VGG16 model using Batch 

Normalization. The last of type is Regularizes Kernel. 

5.  Results of Numerical Experimental 

This study shows the effect of regularizes techniques on transfer learning in reducing overfitting of the fruit 

maturity dataset, with the architecture that stated in the proposed transfer learning sub-chapter. The regularizes 

technique that is the concern of this research is Dropout, Batch Normalization, and Regularizes kernel. In the process of 

forming the model in each training data the Data Augmentation process is performed using ImageDataGenerator from 

the Keras library with parameter settings rotation_range = 40, shear_range = 0.2, horizontal_flip = true, 

width_shift_range = 0.2, height_shift_range = 0.2, zoom_range = 0.2, and  fill_mode = 'nearest'. While the data 

validation and testing not done in the Data Augmentation process. The number of images for each category used for 
image training, validation, and testing is 100, 20, 20 images, respectively. 

In the implementation of the three types of transfer-learning architecture proposed to use the python and Keras 

library. The process of forming the model uses the callback function from the Keras library. The callback function uses 

EarlyStoping and ModelCheckpoint. The property of EarlyStoping used is monitor = val_loss, patience = 100. The 

property of the ModelCheckpoint used is monitor = val_accuracy, mode = max. The optimizer used is Adadelta with the 

property given is learning rate = 1.0, rho = 0.95, epsilon = 1e-08, and metrics = [‘accuracy’]. The number of epochs 

used in each model formation is 200 epochs. 

As machine learning and deep learning, It needs to know the performance of each proposed architecture. The 
performance of the three proposed architecture considered based on the accuracy, precision, recall, and F-Measure 

value achieved by each architecture. The formula for calculating the performance value is as follows [40]: 

 

cc
TP TN

A uracy
TP FP FN TN

+
=

+ + +
                                                                 (1) 

 

TP
Precision

TP FP
=

+
                                                                         (2) 

 

TP
Recall

TP FN
=

+
                                                                           (3) 

 

*
2*

Precision Recall
F Measure

Precision Recall

 
− =  

+ 
                                                          (4) 

 

where: 

TP = True Positive 

TN = True Negative 

FP = False Positive 

FN = False Negative 

 
By following the stages of each type of architecture proposed, the process of forming the model is considered 

based on the value of loss and accuracy. In this study, the research also looks for the best Dropout value and also 

considers the effect of Dropout value on system performance. Therefore, in this experiment, a Dropout value was 

changed between Dropout 0.2 to 0.7. It found that the best Dropout value was Dropout 0.5 based on the experimental 

result conducted on the fruit ripeness dataset. The representation of the loss value comparison between training and 

validation for 200 epochs using Regulator Dropout 0.5 is as stated in Fig. 3. The accuracy values comparison between 

training and validation during the formation of the model shown in Fig. 4. 
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Fig.3. Comparison of optimizer loss of train and validation data. 

 

Fig.4. Comparison of optimizer accuracy of train and validation data. 

Based on the experimental results obtained, the best accuracy value for architecture using Regulator Dropout 0.5 is 

90%, with an average precision value is 0.90. The average recall and F-Measure at Dropout 0.5 are 0.90 dan 0.90, 

respectively. The average precision value, recall value, and F-Measure value for each type of fruit maturity at Dropout 

0.5 are as shown in Fig. 5. The best performance of the architecture proposed in Ripe Apples and Unripe Apple. The 

comparison of the value of accuracy, precision, recall, and F-Measure for Dropout between 0.3 to 0.7 stated in Table 1. 

Based on the experimental results conducted, the performance of the proposed system resulted in better performance, 
namely accuracy values above 81%. While the accuracy value obtained in the [13] study only reached 76%. It shows 

that the proposed performance produces better results. The achievement of the proposed system with Dropout 0.5 has 

increased the accuracy value by 18.42% if it compared to the machine learning using extraction traditional color feature. 

A comparison of performance between color feature extraction [13] and transfer learning VGG16 using Dropout 0.5 is 

as represented in Fig. 6. 

 

 

Fig.5. Performance of VGG16 Transfer Learning for each category with Dropout 0.5. 
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Fig.6. Comparison of performance between color feature and TL VGG16 with Dropout 0.5. 

Table 1. Performance of system to the effect of the Dropout value 

Performance 
Dropout 

0.3 0.4 0.5 0.6 0.7 

Accuracy 0.82 0.83 0.90 0.82 0.81 

Precision 0.84 0.84 0.90 0.84 0.83 

Recall 0.83 0.82 0.90 0.83 0.82 

F-Measure 0.83 0.82 0.90 0.82 0.81 

 

On the second architecture, we used the same procedure with the first architecture before with the Batch 

Normalization regularizer as replace the Dropout. Based on the experimental results conducted on the same dataset, we 

found that the proposed performance only reaches an accuracy value of 84%. The average precision values, the average 

recall value, and the average value of the architectural F-Measure proposed using Batch Normalization are 0.84, 0.84, 
and 0.84, respectively. While the performance for each category of fruit maturity dataset is as shown in Table 2. 

Table 2. Performance of each category from transfer learning VGG16 with Batch Normalization 

Fruit Ripeness Precision Recall F-Measure 

Ripe Mango 0,77 0,91 0,83 

Ripe Tomato 0,59 0,62 0,61 

Ripe Orange 0,93 0,88 0,90 

Ripe Apple 0,95 1,00 0,97 

Unripe Mango 1,00 0,71 0,83 

Unripe Tomato 0,57 0,57 0,57 

Unripe Orange 0,94 1,00 0,97 

Unripe Apple 1,00 1,00 1,00 

 

In this study also, testing the use of the Regularizer kernel to reduce overfitting. By using the same steps in 

Dropout and Batch Normalization but replacing the regularizer type with the Regularizer kernel, the test results for each 

fruit maturity type category stated in Table 3. The accuracy value of the proposed architecture with uses Regularizer 

kernel reaches is 78%. The average precision of the proposed architecture using the Regularizer kernel reaches 0.87. 

The average value of recall and F-Measure reached 0.78 and 0.81, respectively. 

Table 3. Performance of each category from transfer learning VGG16 with the Regulazier kernel 

Fruit Ripeness Precision Recall F-Measure 

Ripe Mango 0,92 0,73 0,81 

Ripe Tomato 0,42 1,00 0,60 

Ripe Orange 0,86 0,80 0,83 

Ripe Apple 0,92 0,92 0,92 

Unripe Mango 1,00 0,71 0,83 

Unripe Tomato 1,00 0,07 0,13 

Unripe Orange 0,85 1,00 0,92 

Unripe Apple 1,00 1,00 1,00 
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6.  Discussion 

Based on the experimental results carried out, we compare the performance of the proposed architecture based on 

the average value of accuracy, precision, recall, and F-measure of each type of regularizer. The performance 

comparison between Dropout, Batch Normalization, and Regularizes kernel is as stated in Fig. 7. The best performance 

of the proposed architecture is the transfer learning architecture using Dropout 0.5. The lowest accuracy performance is 
using the Regularizer kernel. However, when compared to its performance with machine learning with the extraction of 

traditional color features showing its performance is still better, namely, its accuracy increases by 10.52%. 

 

 

Fig.7. Comparison of performance of TL VGG16 for each regularizers. 

The second-best performance is to use Batch Normalization that reaches an accuracy value of 84%. When 

compared with the performance in previous studies [13] that uses color feature extraction, architecture with Batch 

Normalization achieved an increase in accuracy of 10.52%. But when compared to the proposed architecture using 

Dropout, using Batch Normalization has poor performance. Based on experimental results carried out on the fruit 

maturity dataset, it concluded that Dropout has better performance than Batch Normalization. It shows that Dropout 

cannot be exchanged with Batch Normalization, as stated in [28]. But to get the best performance from the proposed 

architecture in use Dropout, it is necessary to test various specific Dropout values. Because when compared with other 

Dropout values, regularizes using Batch Normalization can produce better performance also, for example, Dropout 0.7. 
For future research, it is necessary to pay attention to how to determine the value of a Dropout appropriately. How 

to form adaptive regularizes without using manual customization. It is important to dig more into what affects the 

Dropout value for better performance. 

7.  Conclusions 

In this study, researchers have compared the performance of regularizes results to reduce overfitting. Regularizes 

used in the proposed VGG16 transfer learning architecture is Dropout, Batch Normalization, and Regularizes kernel. 
The best accuracy system performance of VGG16 transfer learning architecture with Dropout, Batch Normalization, 

and Regularizer kernel is 0.90, 0.84, and 0.76, respectively. If the accuracy performance of VGG16 transfer learning 

architecture with Dropout, Batch Normalization, and Regularizer kernel is compared to the accuracy performance of 

color feature extraction then the performance of Dropout, Batch Normalization, and Regularizer kernel increases by 

18.42%, 10.52%, and 2.63%, respectively. If we consider the best performance of the precision, recall, and F-measure, 

for the VGG16 transfer learning architecture using Dropout go up the amount 12.50%, 18.42%, and 15.38%, 

respectively. If we look at the performance of the best precision, recall, and F-measure, VGG16 transfer learning 

architecture with Batch Normalization increases respectively by 5.00%, 10.52%, and 7.69%. If we verify at the 
performance of the best precision, recall, and F-measure, VGG16 transfer learning architecture with Regularizer kernel, 

upward by 8.75%, 2.63%, and 3.97%, respectively. 

The experimental results show that the performance of deep learning using transfer learning always results in 

better performance when compared to using machine learning with traditional feature extraction. This study shows the 

effect of regularizer use to reduce overfitting. With transfer learning using regularizer can improve system performance 

in terms of the average value of accuracy, the average value of precision, the average value of recall, and the average 

value of F-Measure on the test data substantially. The results of this experiment also show that regularizer using Batch 

Normalization cannot replace Dropout. Based on experimental results obtained that the best performance on fruit 
ripeness test data using Dropout 0.5. It’s declaring that the best technique to reduce overfitting in transfer learning is 

Dropout. 
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