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Abstract: With the appearance of the COVID-19 pandemic, the practice of e-learning in the cloud makes it possible to: 
avoid the problem of overloading the institutions infrastructure resources, manage a large number of learners and 
improve collaboration and synchronous learning. In this paper, we propose a new e-leaning process management 
approach in cloud named CLP-in-Cloud (for Collaborative Learning Process in Cloud). CLP-in-Cloud is composed of 
two steps: i) design general, configurable and multi-tenant e-Learning Process as a Service (LPaaS) that meets different 
needs of institutions. ii) to fulfill the user needs, developpe a functional and non-functional awareness LPaaS discovery 
module. For functional needs, we adopt the algorithm A* and for non-functional needs we adopt a linear programming 
algorithm. Our developed system allows learners to discover and search their preferred configurable learning process in 
a multi-tenancy Cloud architecture. In order to help to discover interesting process, we come up with a recommendation 
module. Experimentations proved that our system is effective in reducing the execution time and in finding appropriate 
results for the user request. 
 
Index Terms: LPaaS, BPaaS E-learning process, Discovery, QoS, Cloud Computing, Recommender System. 
 

1.  Introduction 

The grow need to e-learning system have been observed during the growing Coronavirus (COVID-19) pandemic 
which has compelled decision education officials across the world to shut down school. Many of the existing Learning 
Management Systems (LMSs:Dokeos, Moodle) and Massive Open Online Courses (Moocs: edx, coursera)  have 
participated  to  facilite the learning [1] in this delicate situation. Although these e-learning system have supported 
learners and institutions to progress well in the field of e-learning and manage the evolution of IT [2], they still suffer 
from several limitations which mainly are: i) collaboration and interaction during the progress of the learning process 
remains limited for learners from the same institution and collaboration between teachers is always absent, ii) lack of 
customization of their learning processes according to user needs, iii) lack of reuse of their learning processes in other 
systems, v) their infrastructure can present scalability issues, iv) the absence of a good learning process management 
knowing that the schools / teachers needs and learners are in galloping evolution.  

This forces each establishment to offer its own learning process which is costly in hardware, software and 
manpower terms. Thus, students and teachers need a more flexible, adaptable and scalable infrastructure. For this Cloud 
Computing can be a promising solution for the e-learning field. Cloud Computing is a model for deploying resources 
and IT capabilities that tend to minimize the implementation and management burden for the user [3,4]. It offers 
infrastructures and software as a service consumed by user on demand via the Internet and pay only it uses. E-learning 
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process can also be deployed in the cloud and delivered as a service. 
Consequently, e-learning process model repositories will be developed allowing new type of services to be 

published by provider and discovered by tenants. Tenants can use some or all of the e-learning processes.  
Using a good learning service discovery system can help learners find the right configuration. In this context, 

several approaches in literature have been proposed for cloud services discovery such as the structural and behavioral 
approaches [5,6,7]. Except that, these discovery approaches are used to measure the correspondence between learning 
activities without regard to it the QoS correspondence which limits the satisfaction of tenants. Similarly, to all other 
services published in cloud, the e-learning process repositories contain the description of learning activities, but also 
non-functional descriptions such as cost, availability, response time, etc. Even if there are works which combine 
structural and non-functional correspondence such as in [8], others use structural indexing [9,10,11] to quickly find the 
user needs with optimal precision. But response time remains an important issue for a user looking for a LPaaS in the 
cloud. All these different approaches of the literature have adopted the learning process configurations discovery in 
several target processes which allows to take a lot of time in the search for a configuration in the cloud. 

In order to overcome these problems related to discovery precision and optimal discovery time, we propose in this 
paper CLP-in-Cloud-Discv system which is the part of our approach called CLP-in-Cloud, which allows learners to 
discover and search their preferred configurable learning process in a multi-tenancy Cloud architecture. CLP-in-Cloud-
Discv system concerns another part of our approach which consists in designing a general, configurable and multi-
tenant LPaaS considered as a target process. This LPaaS has been studied in our previous work [12] which uses BPFM 
(Business Process Feature Model) to design a general, configurable and multi-tenant LPaaS. This in order to manage 
several learning situations and satisfies the different needs of a learner. Moreover, we follow the learning socio-
constructivist approach [13] and e-learning standards such as IMS-LD [14] which cover the different necessary 
elements for e-learning process construction. 

For this, we propose to transform the discovery problem to an oriented graphs correspondence problem. The goal 
is to adapt the non-functional awareness structural matching approach to improve accuracy. We adapt algorithms from 
literature which are A* [15] for the structural matching and linear programming [16] for non-functional matching. In 
order to help to discover interesting process, we come up with the recommendation system. This recommendation 
system is based on the tenant’s profiles, collaborative filtering and the Pearson correlation [17] to minimize the 
discrepancies between the real needs of users and recommendation system predictions.   

We conduct performance evaluations with real-world datasets. We show that the proposed system can not only 
achieve better discovery of a PLaaS efficiency, but also reduce the execution time of the discovery algorithm. 

The rest of the paper is organized as follows.  Section 2 discusses related work. Section 3 presents our approach, 
introduces the proposed recommender system, the structural similarity and weighted matching. In section 4, algorithms 
are tested and evaluation of obtained results is done and section 5 concludes the paper. 

2.  Related Works 

As we mentioned in the introduction, we will focus in this work on the e-learning services discovery from the 
cloud. In this context, several approaches have been proposed to address the problem of process model matching 
[11,18-20]. These works use structural or behavioral approaches and label similarity metrics to measure the similarity 
between process elements, and sophisticated matching algorithms to derive the mapping based on the computed 
similarity. The authors in [10] utilized the idea of similarity propagation to measure the similarity of two process 
models, but the method is restricted to VPML process modeling language and only elementary matches are supported.  

In all these works, the process discovery is carried out by comparing the user's request to each target service, then 
classify the target processes according to their similarity to the request. To avoid browsing the entire process repository, 
some approaches rely on indexing structures [9, 21, 22] to quickly retrieve the processes that are the most likely to be 
similar to a (part of) process query. Ehrig & al. [23] use a combination of structural properties of process models and 
similarity of labels of tasks, based on the distance of words in those labels in terms of whether they are, for example 
synonyms. In [24,25], authors consider the services as black boxes, so the quality requirements are set on the service 
profile. Typically, they specify quality preferences as relational expressions, fuzzy sets, linguistic variables, or utility 
functions. These approaches do not offer preferred constructors to help the user better define and compose their 
preferences.  

In [26], the authors indicate the necessity of more sophisticated and accurate label similarity techniques in order to 
improve the performance of existing matching algorithms. But the authors in [27] propose the contextual similarity 
measure which, in addition to the similarity of activity labels, exploits the similarity of the context surrounding 
activities. They consider two activities to be similar if they are performed in similar environments that are represented 
by the surrounding activity neighbors. In turn, the activity neighbors are similar if their neighbors are similar, etc. In this 
way, the pairwise similarity between all activities is calculated and updated iteratively based on the similarity between 
their neighbors until the similarity scores are stabilized and propagated to the whole graph.  

For more precision in the similarity measurement between a user request and target services, authors in [8] 
presented a process discovery framework that considers both functional and non-functional criteria. We indicate that for 
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functional matching, the authors use the structural approach. In this case, the user's query is expressed as a process 
template with quality annotations expressing the user's preferences and requirements. The proposed approach will 
search for process repositories proposed by BPaaS service providers. Even though the authors use the qualities of 
service in the search for a query, there is no guarantee that the user will find the query he is looking for which causes a 
waste of time.  

To solve the problem of wasted time looking for a user request in process repositories, the authors in [7] propose to 
create a general, configurable and multi-tenant business process which brings together different situations considered as 
a BPaaS in the cloud. Each tenant will seek configuration in this target model. The authors use the structural approach 
to calculate the similarity between the user request and the target process. Despite the fact that the proposed approach 
optimizes, the matching time, but the precision of similarity measurement remains relative since the pairing is based 
only on the functional needs. 

After a detailed study of all these works cited above, we noticed that there are some works that deal with the 
problem of comparing process models like graphs while others remain linked by a specific modeling language. Thus, 
some works studied the problem of discovery of cloud services by focusing on the functional side; they use the 
structural, behavioral or label-based approach. This results from problems with matching accuracy of user satisfaction. 

Other works have made the combination between the two (functional and non-functional). However, the wasting 
time problem of searching for a request in a large number of target processes remains a limit.   

Considering the rapid evolution of the Internet that has resulted in the availability of huge volumes of e-learning 
resources on the Web. However, many learners find it difficult to find appropriate e-learning resources due to 
information overload [28]. In recent years, recommendation systems have attracted attention as a solution to the 
problem of information overload in e-learning environments and to provide relevant recommendations to learners [29]. 
The authors in [30] consider recommendation systems as a technique for processing and evaluating user behavioral data 
in order to offer resources according to user needs. In e-learning systems, it is actually used to suggest resources and 
content relevant to learners. The e-Learning recommendation system is therefore a technique for identifying the 
learner's requirements for providing relevant learning content. Several types of recommendation system used in the 
literature, such as content based, collaborative filtering and hybrid systems. In [28,31], the authors use contextual 
awareness to incorporate contextual information about the learner such as the knowledge level and learning objective in 
order to generate recommendations for the learner. Others as in [29,32], they combine collaborative filtering and 
ontologies to recommend personalized learning resources to learners. The ontology is used to incorporate the 
characteristics of the learner while collaborative filtering predicts assessments and generates recommendations. In [33], 
the authors propose a clustering approach to obtain homogeneous groups of learners and to ensure that the 
recommended elements are all covered and assimilated by the learners. Despite the efforts made in the development of 
recommendation systems for the field of e-learning, they are likely to generate inaccurate recommendations [28,29].  

Table 1 summarizes the existing approaches for process discovery. The criteria we used for comparison are: (i) the 
abstract model with which the technique is designed; (ii) the matching perspective used to manage the processes 
(behavior, structure, label activity); (iii) the type of recommendation. 

Table 1. Comparison of research and discovery approaches 

Reference Abstract model Matching perspective Type of recommender system 

(J. K. Tarus & al, 2017)[28] - - 
Hybrid recommendation 

(context awareness, sequential 
pattern mining,CF algorithms) 

(J. Tarus & al, 2017) [29] - - Collaborative filtering, 
ontology 

(N. Joshi & al, 2019)[30] 
 - - Learners’ information, context 

(J. Mawanel & al, 2018)[33] - - Clustering collaborative 
filtering 

(G. George & al, 2019)[32] - - Ontology 
(J. Gao & al,2009) [10] VPML language Semantic similarity - 
(A. Gater & al,2012) [9] Process graph Behavioral approach - 

(M. Ehrig & al,2007) [23] EPC language Behavioral approach 
Label tasks - 

(N. Assy & al,2018)[27] Process graph Contextual similarity - 
(A. Gater & al,2013) [8] 

(F. Lemos & al,2012) [34] Process graph Structural similarity 
QoS - 

(L. Makni & al, 2015) [52] Process graph Structural similarity 
Semantic similarity - 

(S. Azouzi & al, 2019)[7] Process graph Structural similarity - 
Our approach Process graph Structural similarity Collaborative filtering 
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We can notice from Table 1, that the majority of works use functional correspondence for the discovery of process 
models, and this limits the accuracy and satisfaction of the learners. Only the work of Gater & al,.[8] and F. Lemos & 
al,. [34] combines functional and non-functional co-correspondence. But in these proposed works, the discovery is 
made in a warehouse of process, which gives a waste of time. Thus, we notice that the majority of works use graphs as 
an abstract model except [23] which works on a particular language. 

Some works [29,30,33] use recommendation systems for the discovery of learning resources but this technique is 
sometimes limited in terms of learner satisfaction. 

To solve these problems, we propose our approach dedicates for modeling and discovery of LPaaS considered as a 
BPaaS in cloud. This work is a an extension of a previous work [12] where we proposed a general, configurable and 
multi-tenant LPaaS. In the actual work we focus on the discovery of a request (configuration) in a configurable process.  
For this, we use two types of matching which are complementary: one based on filtering collaborative recommender 
system, and another based on the structural matching approach and weighted matching with the considering a process 
model as an oriented graph. 

3.  Proposed Approach 

Several factors can influence a good e-learning system such as the ability to serve and support multiple users, 
asynchronous and synchronous collaboration between different actors, the possibility of reusing the e-learning process 
in other learning systems and the cost management of used infrastructure. To meet these factors, we propose an 
approach called CLP-in-Cloud. Before going into the details of our approach, we present in the Fig. 1 the architecture 
CLP-in-Cloud. 

As showed in Fig. 1, the proposed system is composed by three main components: user request, LPaaS discovery 
(CLP-in-Cloud_Discv) and e-learning process modeling (CLP-in-Cloud_Conf). The provider of e-learning process can 
be modeling a collaborative and configurable process which deployed in the cloud as a BPaaS service is called LPaaS 
(Learning Process as a Service). To discover a requirement a partial or full LPaaS, tenants which are Institutions / 
teachers can invoke CLP-in-Cloud_Discv module which looks in the registries for configurable e-learning process 
configurations. This discovery module consists of two components: recommender system for activities which constitute 
the configuration of e-learning process and discovery system based on structural similarity and non-functional matching. 
In the following sections we detail these components. Fig. 2 and Fig. 3 respectively represent an example of a user 
request and an excerpt from our proposed target process that will be used throughout this work. 
 

 
Fig.1. Architecture of our CLP-in-Cloud approach 



Collaborative E-Learning Process Discovery in Multi-tenant Cloud 

Volume 13 (2021), Issue 2                                                                                                                                                                       25 

 
Fig.2. Target configurable e-learning process 

 
Fig.3. User request 

3.1.  CLP-in-Cloud_Discv: Recommender system for e-learning process 

A recommender system is a specific form of information filtering aimed at presenting the elements of information 
which are likely to interest the user [30]. Recommender systems are classified according to the technique used in 
recommendation. The main classifications are content-based, collaborative filtering, knowledge-based and hybrid 
filtering [35,36]. In this work, to help the learner find an configuration of learning activities, we proposed to use 
collaborative filtering (CF) since it is widely used by several systems given its advantages, among these systems such as: 
Amazon, Netflix, MovieLens, Jester, Citeseer, Tapestry, Phoaks, etc [29]. 

This CF recommender system offers recommendations based on user profiles. It produces recommendations by 
measuring the similarity between the preferences of a user and those of other users. The method involves making 
automatic predictions about a user's interests by collecting reviews from many users. The idea of this technique is that 
those who have enjoyed from a specific activity in the past will tend to like that specific activity, 
or another very "close" one, again in the future. Another hypothesis of this technique is that the system offers the same 
configuration for two users who have similar profiles. So, each user must provide evaluations of the configuration they 
have already used, in the form of notes, to build their profile. Fig. 4 give an overview of our recommender system. 
 

 
Fig.4. Recommender system for configuration e-learning activities 

Learners' information and preferences are stored in users’ database. Information such as learning preference, and 
the level of education. Whereas more additional information can be incorporated recommendation process to improve 
the learner's personalization recommendations. Un online questionnaire "Index of Learning Styles Questionnaire”1 will 

 
1 https://www.webtools.ncsu.edu/learningstyles/ 
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be used to administer to the learner during the account registration process. When there is a new request requested by a 
user, the CF recommendation system will use the user’s data in computing predictions of ratings as well as generating 
recommendations for the active learner. Once the data has been prepared and preprocessed, the recommendation system 
compute the similarities rate and predictions between the learning activity requested by the user and the existing ones in 
order to generate personalized recommendations for the target learner.  

To determine the similarity between two learning activities i and j, several similarity measures are used such as: 
Pearson correlation (PCC) [17], Cosine Similarity (CS) [49] and Spearman distance (SD) [37]. We have chosen to adopt 
the Pearson correlation since it is a method derived from statistics. It is also widely used in the field of recommendation 
systems to measure the similarity between two user’s preference. Then, the similarity between learning activities i and j 
using Pearson correlation (PCC) is calculated as follows: 

 
( )( ), ,1

( , )
2 2( ) ( ), ,1

m A i A AA iA
Sim i j

m A AA i A iA

ϑ −ϑ ϑ −ϑ∑ =
=

ϑ −ϑ ϑ −ϑ∑ =

                                                                 (1) 

 
Where: m is the number of users who voted for activities, ϑA,i  is the vote of A for the activity i, ϑA,j  is the vote of A 

for activity j and Aϑ  is the average vote of user A. Assuming that the vote value is between 0 and 10 (0 to say that the 
user does not appreciated the activity once and 10 to say that the user appreciated the activity and he is very satisfied). 

For example, let the request of a tenant contain the activity "scripting", let m = 100 and the number of activities is 
identified in Fig.2, Table 2 presents the similarity values between the user request and the existing activities. 

Table 2. Recommendation List for e-learning activities 

Activities Similarity values 
Script 0.9378 

Define course objectivs 0.654 
Consult course objectifs 0.687 

Register 0.543 
Inform 0.002 
Interact 0.145 

Group work 0.014 
Thematic debate 0.154 

 
According to the similarity values obtained, we observe that the "Script" activity is the most similar in terms of 

user votes. Then the system recommends it for the user who makes the request. 

3.2.  CLP-in-Cloud_Discv: structural and non-functional matching 

The e-learning services discovery in cloud is based on matching techniques that operate on configurable process 
models. The process model consists of a set of related activities that are organized using control flow structures. Several 
notations have been developed for multi-tenant configurable business process modeling including BPMN, EPC, BPMT, 
vrBPMN, C-iEPC, C-YAWL, etc. [47]. To abstract as much as possible from any existing notation formalism, we 
represent a process model as a directed graph BP = (N, C, E, Q) called business process graph (BP-graph for short). N is 
a set of activity nodes, C is a set of connectors, E ⊆ N*N is a set of edges and Q is a function which assigns a set of 
quality of service to each pair of nodes (Ni, Nj) (edge of the graph). Q is calculated using the following utility function: 

 
1

nQ a pi i i∑= =                                                                                 (2) 
 

Where ai is a positive value representing an ith quality attribute and pi is a weight of this attribute which is a 
positive real value and not null assigned by the user (who sends the request), to the ith quality attribute such as  

1
1n

ii
p

=
=∑ . 

In our work, a quality attribute noted by ai can be one of the six quality dimensions described by Zheng, in [48] 
such as usability, availability, response and cost.  

A user request is a business process configuration denoted by R = (N, C, E, W) such that N, C, and E are 
previously defined, and W is a preference set of QoS quality defined by the user.  

In Fig we present the functional of CLP-in-Cloud_Discv discovery system. It is composed of user interface, a 
structural similarity correlator and a QoS assessment module. 
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Fig.5. CLP-in-Cloud_Discv system 

The user interface allows users to interact with the system by choosing which learning activities to perform and 
viewing the results in return. Each tenant submits a search query for the LPaaS services they prefer to consume in the 
LPaaS registry. The tenant's request consists of two parts: 

Functional requirements, such as the learning activities identified in Fig. 2. 
Non-functional requirements (quality attribute) to be optimized. 
When tenant’s request is performed, a matching program is run to discover and locate the candidate LPaaS 

configurations. This matching program is carried out in two stages. The first step is to make a structural correspondence 
of the graphs, that is to say a matching to the functional characteristics. In the second step, a correspondence between 
weighted graphs is made. In the following sections we detail these steps.   

A.  LPaaS Structural matching 

When we are looking for a configuration in a configurable business process, it is essential to answer the following 
question: given an activity node in a user request, does this node exist in the target process? Therefore, the central idea 
of our work is to discover the relationship between request process nodes and target process nodes. Then, according to 
the similarity rate (correspondence) nodes, we calculate the intersection between the two business process models 
(request and target). Our method is based on the definition of an interdependent nodes group which represents the 
intersection between two process models, and which represents an equivalent node set linked to each other. We first 
give a definition of these concepts. 
 
Definition 1 (interdependent nodes): Let S= (Ni, Ci, Ei, Qi), (Nj, Cj, Ej, Qj) two processes successively representing the 
user request and the target process. Two nodes are interdependent if and only if they exist exactly in the two processes 
(request and target). In other words, two nodes ni and nj are interdependent in the two processes (Ni, Ci, Ei, Qi), (Nj, Cj, 
Ej,Qj), ni ∈ Ni, nj ∈ Nj, then ni and nj are interdependent noted by ni ~nj, if they satisfy the following condition: 

 
( , , , ) |N C E Q S n N n Nij ij ij ij i ij j ij∀ ∈ ⇔                                                             (3) 

 
In the above formula, n ≺ N means that the node n exists in the nodes set N of the process variant (N, C, E, Q). we 

say that n ≺ N if it satisfies the following condition: 
 

 n' | ( , ')N SimN n n MinSim∃ ∈ ≥                                                                    (4) 
 

In the above formula, SimN (n, n’) means the similarity between the two nodes n and n’. When the similarity value 
reaches a given minimum value, we consider that these two nodes are similar. We fix this value at 0.75 according to 
results proven in the work [6]. 

To measure the similarity between two nodes, it is required they have the same type. As already mentioned above, 
there are two node types: activities and connectors. Given two nodes of two process graphs respectively, how to 
calculate the similarity between the activities (SimA) and the similarity between the connectors (SimC) with the 
assumption that the two nodes in comparison are of the same type. To make the separation between node types, we will 
define the attribute TYPE of node which is an important factor to measure similarity. Thus, type similarity is defined as 
follows: 

 
1 if t  (n ). TYPE = t  (n ). TYPE 1 1 2 2( , )1 2 0 otherwiseSimType n n
  
 =
  

                                              (5) 

 
For the type of similarity SimA, we consider two methods: syntactic and semantic. However, the semantic method 

is not always applicable since there are no complete and free available lexical databases [22]. For this reason, we use in 
this work the syntactic method. For type similarity SimC, we use a contextual similarity, where we do not consider the 
labels of the elements themselves, but the context in which these nodes produce (the input activities and the output 
activities of connectors). All these measures result in a similarity score between 0 and 1, where 0 indicates no similarity 
and 1 indicates identical elements. 
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a.  Syntactic similarity 

To measure the syntactical similarity between two labels of two activities belonging to two different process 
models, we use the String-edit-distance algorithm [38]. The string-edit-distance is the number of operations required to 
get another chain from one chain. These operations include: character deleting, character inserting or character 
substitution. 
 
Definition 2 (syntactic similarity): Let (N1, C1, E1, Q1), (N2, C2, E2, Q2) be two graphs. Let n1 ∈ N1, n2 ∈ N2 be two 
nodes and let l1 (n1), l2 (n2) be the two strings which represent the labels of these two nodes. We can calculate their 
length, denoted by |l1 (n1) |, |l2 (n2) | and their edit distance denoted by ed (l1 (n1), l2 (n2)). We define the syntactic 
similarity of nodes n1 and n2 as follows: 

 
( ( ), ( ))1 1 2 2( , ) 11 2 max( ( ) , ( ) )1 1 2 2

ed l n l n
syn n n

l n l n
= −                                                                 (6) 

 
For example, the syntactic similarity between the ‘script’ node shown in Fig.2 and the ‘scripting’ node shown in 

Fig.3 is: Syn(‘scripting’, ‘script’) =1-3/9 = 0.66, because the edit distance is 3 (‘scripting’ becomes ‘script’ by deleting a 
‘i’ ‘n’ and ‘g’ . To compare node labels, we eliminate special characters.  

For the similarity between two connectors, it is unrealistic to measure them by lexical similarity because they have 
no textual information. Instead, we use a context similarity notion which signifies the correspondence degree of their 
inputs and outputs nodes. 

b.  Connectors similarity 

The connectors describe the control flows between activities and represent logical decision points. They have no 
text information to compare them except the type. Instead, we use the context similarity concept which means the 
similarity degree of their inputs and outputs. As already mentioned above, the connectors are of several types: 
{mandatory, optional, and, or, xor}. A connector can have an input arc and several output arcs, in this case it is called 
split; or several input arcs and one output arc and in this case, it is called join. Each connector has inputs (join) and 
outputs (split). 
 
Definition 3 (Contextual similarity): Let (N1, C1, E1, Q1), (N2, C2, E2, Q2) be two graphs and let n1 ∈ N1 and n2 ∈ N2 be 
two nodes. The contextual similarity between these two nodes is calculated as follows:  

 
( , )1 2

( , ) ( , )( , ) ( , ( , ) ( , )1 2 1 2

max( , ) max( , )1 2 1 2

SimContext n n

opt optin in out outS n n S n nn n M n n n n M n ni j p qi j p qS S
in in out outn n n n

= =

+∑ ∑∈ ∈

+

                                         (7) 

 
Where 1 2( , )opt

SM N N means the optimal node mapping set between sets of nodes N1 and N2 based on the similarity 
function S, which can be defined as follows: 
 
Definition 4 (Optimal node match set):  Let (N1, C1, E1, Q1), (N2, C2, E2, Q2) be two graphs. Let N1 ⊆ N1 and N2 ⊆ N2 
be two sets of nodes. Let S: N1* N2 ↛ [0..1] is the similarity function. An optimal mapping opt

SM : N1 ↛N2 is the 

optimal set of nodes for any other node for a mapping Ms: N1 ↛N2 such as:   
 

'( , ( , ), ,( , ) ( , ) ( , ) ( , ),1 2 1 2 1 1 2 21 2 1 2 1 2 1 2
opt S n n S n n n N n Nn n M N N n n M N NS S

∑ )≥ ∈ ∈∑∈ ∈                                       (8) 

 
Based on the similarity measurement methods mentioned above, we can make a conclusion on how to assess the 

nodes similarity of two different processes according to the type of these nodes: 
 

( , ). ( , )1 2 1 2( , )1 2 ( , ). ( , )1 2 1 2

SimTYPE n n Syn n n
SimN n n SimTYPE n n SimContext n n


=


                                              (9) 

 
Here, we use the current example (Fig.1 and Fig.2) to explain the concepts of interdependent nodes between target 

process and query process. After applying the definitions mentioned above, we find that the following nodes (activities, 
connectors) are interdependent and that they are in the intersection of the two processes. In Table 3, we 
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indicate by 1 the nodes are interdependent and by 0 the nodes that are not interdependent. 
In a first step, we carried out an elementary correspondence between the different node’s types of the two 

processes in question. In the next section we will see how to use these definitions cited above to measure the overall 
similarity of two processes. In the rest of this work, we use Sim (n1, n2) to note the similarity value between two nodes 
of two models. Any of the above symmetric similarity functions (syn or con) can be used for this. 

c.  Similarity between two graphs of process models  

A large number of graphs matching methods have been proposed in recent years [39,40,41]. One of the most 
flexible and error-tolerant methods of graph matching that is applicable to different types of graphs is based on the 
graph-edit-distance. 

The graph-edit-distance between two graphs is the minimum cost of transforming one graph to another. 
Transformations are considered as sequences of elementary transformation operations. Each elementary operation has a 
cost, which is given by a cost function.  

In view of the above, we define the graph-edit-distance as follows: given two graphs, source graph g1 and target 
graph g2. The basic idea of edit-distance calculating between graphs is to transform g1 into g2 using certain edit 
operations. All the possible edit operations are given by insertions, deletions and substitutions of nodes and edges. We 
note the substitution of the two nodes u and ʋ by (u → ʋ), the deletion of a node by (u → ℰ), and the insertion of a node 
by (ℰ → ʋ). For the edges we use a similar notation. A sequence of operations e1, e2 .. ek completely transforming g1 
into g2 is called an edit path between g1 and g2.  

Based on the principle of graph-edit-distance, we will calculate the maximum similarity rate between two process 
model graphs as follows: 
 
Definition 5 (Similarity measure: graph edit similarity): Let P1= (N1, C1, E1, Q1) and P2= (N2, C2, E2, Q2) two graphs. 
Let N1 = N1 Ս E1 nodes of P1 and N2 = N2 Ս E2 nodes of P2 and let Sim be one of the similarity functions mentioned 
above (syn, con). Let M: N1 ↛ N2 be a partial injective mapping that maps functions, events and connectors. Let dom(M) 
= {n1ǀ (n1, n2) ∈ M} be the domain of M and let cod (M)= {n2 ǀ (n1, n2) ∈ M} be the codomain of M. Let n ∈ N1 Ս N2 be 
node, n is substituted if and only if n ∈ dom (M) or n ∈ Cod (M). Let sb be the set of all substituted nodes, Sn is the set 
of all inserted or deleted nodes. Let (n, m) ϵ E1 be an edge, (n, m) is inserted or deleted from P1 if only if there is no 
mapping (n, n ') ϵ M and (m, m') ϵ M and edge (n ', m') ϵ E2. We denote by se the set of all the inserted or deleted edges. 
Furthermore, let 0 ≤ wsb ≤ 1, 0 ≤ wsn ≤ 1 and 0 ≤ wse ≤ 1 be the weights we assign to substituted, inserted or deleted 
nodes and inserted or deleted edges, respectively. The fraction of inserted or deleted nodes, noted fsn, the fraction of 
inserted or deleted edges, noted fse and the average distance of the substituted nodes, noted fsb, are defined as follows: 

 

1 2

sn
fsn

N N
=

+
     

1 2

se
fse

E E
=

+
      

2. 1.0 ( ( , ))( , ) Sim n mn m M
fsb sb

−∑ ∈
=                                (10) 

 
The graph-edit-similarity induced by M mapping is: 

 
. .

1
wsn fsn wse fse wsbfsb

wsn wse wsb
+ +

− + +                                                                       (11) 
 

The similarity of two graphs is the maximum possible similarity induced by a mapping between these graphs. The 
more this degree of similarity tends towards 1, the more the two services are similar, and the more the user is satisfied. 
For example, using the weights wsb = 1.0, wsn = 0.1 and wse = 0.3, let's look for the graph edit similarity induced by 
the matching of the request process nodes (Fig.3) and the target process nodes (Fig.2). We can count substitutions, 
insertions and deletions: in total, there are 15 node substitutions, 27 insertions / deletion of nodes, 15 insertions / 
deletions of edges. This is the maximum possible similarity induced by an M mapping and therefore, it is the graph edit 
similarity between the two graphs of the two proposed process models. We apply formulas (12) and (13) to obtain the 
maximum similarity value induced by the mapping M which is as follows: 

Maximum similarity = 1- 0.31 = 0.69. 
Inspired by the principle of graph distance calculation, we have written a function called Variability-Activity-

Matching (Algorithm 1) which takes into account the different definitions presented above. 
To calculate the edit graph similarity of two process graphs, we need to find the mapping that induces the 

maximum similarity. Then we could build all possible matches and return those with maximum similarity. However, the 
number of possible matches is 2ǀN1ǀ + ǀN2ǀ. The authors in [41] have shown that the problem of finding an optimal 
match in this context is a NP-complete or sometimes NP difficult-problem. To avoid problems associated with the 
completeness of NP, complete algorithms have been proposed for the search for matching that maximizes similarity 
(Formula 14). These algorithms are based on an exhaustive exploration of the search space combined with filtering 
techniques. These algorithms are numerous and are cited in the literature such as Greedy algorithm [15], Beam search 
[42], Hungarian algorithm and VJ method (Volgenant Jonker) [39].  In a previous work [7], we tested the Greedy and 
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A* algorithm [15], the obtained results show the feasibility of the A* algorithm (Algorithm 2) in term of precision of 
obtained results because it is based on a cut-off value: if a similarity between two nodes is less than a minimum 
threshold then it removes these nodes. 
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Table 3. Interdependent nodes of request process and target process 

Request node Target node Type Sim syn Sim context interdependent node 

e-learning-process e-learning-
process root 1 -- 1 

C1 C1 C -- 0.90 1 
C2 C3 C -- 1 1 
C3 C4 C -- 1 1 

Scripting Script A 0.66 -- 1 
Interact Interact A 1 -- 1 
produce Produce A 1 -- 1 

Group works Group Work A 0.90 -- 1 

Theumatic debate Thematic 
Debate A 0.92 -- 1 

Write an individual 
synthesis 

Prepare 
individual 
synthesis 

A 0.76 -- 1 

Write a group 
synthesis 

Write a group 
synthesis A 1 -- 1 

Declare activity Declare activity A 1 -- 1 
Consult activity Consult activity A 1 -- 1 

Evaluate document Consult 
document A 0.62 -- 1 

share Host a webinar A 0 -- 0 
C4 C9 C -- 0.92 1 
C5 C10 C -- 0.55 0 
C6 C12 C -- 0.33 0 
C7 C13 C -- 0.33 0 
C8 C16 C -- 0.31 0 
C9 C19 C -- 0.20 0 
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B.  Weighted graph matching 

The structural matching is not sufficient to find the configuration most suited to the user's needs. For this, a second 
matching based on non-functional attributes (QoS) must be defined. In this case, the user can enrich his query with non-
functional requirements. In order to solve this problem, we have inspired the QoS satisfaction model CLOUDQUAL 
[43] and we apply three correspondence calculation algorithms for weighted graphs which principle is described as 
follows: 

A weighted graph G is an ordered pair (V, W) with V is the set of nodes of the graph and W is the weighting 
function which allows to associate a non-negative real value W (vi, vj) with each pair of nodes (vi, vj) (edge of the 
graph), vi ∈ V, vj ∈ V and vi ≠ vj. The adjacency matrix of a weighted graph G = (V, W) is an AG of dimension n × n. 

 
( , )  

0 si  n
a w si i jij i jA aG ij a onij

 = υ υ ≠ 
  = = =  

                                                             (12) 

 
Let G = (V1, W1), H = (V2, W2) be two weighted graphs with n nodes. The problem of correspondence of a pair of 

weighted graphs (G, H) consists in finding the correspondence, Φ, between V1 = {v1, v2, v3, ..., vn} and V2 = {v1', v2', 
v3', ..., vn'} which minimizes the "difference" between G and H. We use the following formula to measure this 
difference: 

 
2min ( ) ( ( , ) ( ( ), ( )))1 1 21

n nj w wi i j i jj∑φ = υ υ − φ υ φ υ∑= =                                             (13) 

 
For the non-functional correspondence, we tested the linear programming algorithms is proposed to solve the 

problem of mapping a pair of weighted graphs, and we compared it with two reference algorithms of literature which 
are:  

 
• Eigen-decomposition method this method uses an analytic, instead of a combinatorial or iterative, approach to 

the optimum matching problem of such graphs.  
• Polynomials transformation [44]: the fundamental symmetric polynomial method is used to match pairs of 

directed and undirected weighted graphs. More details are given in [45].  

4.  Experimental Setup 

4.1.  Assessment of the recommendation system prediction 

When the recommendation system recommends learning activities for the learner, the latter will assign an 
evaluation according to his/her satisfaction regarding this recommendation. This user rating is used to measure the 
accuracy of the effectiveness of the recommendation system. In this context, two metrics are the most used to calculate 
the difference between the real values given by the user and the similarities predicted by the recommendation system: 

MAE (Mean Absolute Error) [46] which is regularly used to evaluate the accuracy of a prediction, it corresponds 
to the mean absolute error between the actual evaluation and the prediction. The measurement is calculated by the 
following formula: 

 
1

1
nMAE R Ri in

∑= −                                                                          (14) 
 

Where iR  denotes the predicted confidence value, Ri denotes the measured confidence value and n is the number 
of predicted items. 

RMSE (Root Mean Squared Error) [51,53] square the error before summing, this measure is useful when we want 
to give more criticality to large errors. it is expressed as follows: 

 
2( )R Ri iRMSE

n
−

=                                                                         (15) 

 
We suppose that a learner launches the request presented by Fig. 3 which consists of a set of learning activities. 

The recommendation system offers the learning activities that are similar to the user request from the LPaaS process 
deployed in the cloud (Fig. 2). The results returned by the MAE and the RMSE are summarized in the Table 4: 



Collaborative E-Learning Process Discovery in Multi-tenant Cloud 

Volume 13 (2021), Issue 2                                                                                                                                                                       33 

Table 4. Evaluation of e-learning activities recommender system 

Activity User evaluation Similarity MAE RMSE 
Script 0.75 0.937 0.046 0.093 

Define course objectivs 0.54 0.654 0.028 0.057 
Consult course objectifs 0.55 0.687 0.034 0.068 

Register 0.63 0.543 0.021 0.043 
 

By observing the results of Table 4, we note that there is a minimal difference between the prediction of our 
recommendation system (represented by the similarity value) and the evaluation given by the user for a learning activity. 
For the example of the "script" activity, we observe that the difference between the similarity predicted by the 
recommendation system and the rating assigned by the user is almost negligible.  This explains why the use of the 
collaborative filtering, and more precisely the Pearson correlation contributes to better precision. 

It should be mentioned that the recommender system in our work is used to optimize the response time for a user 
request. If the user is not satisfied, then the discovery module based on structural matching and non-functional matching 
is launched to find the appropriate configuration and meets the needs of the user. 

4.2.  Evaluation of structural and non-functional matching 

The input format for the BP-graphs to be matched is the Graph eXchange Language (GXL) standard [29]. We set 
up the evaluation by creating artificial BP-graphs from the BPaaS models depicted in Fig.2 and Fig.3 varying QoS 
values. The users are also offered the possibility to create to design and visualize their BPaaS demands, we built up our 
system on the Business Process Feature Model BPFM. 

Table 4 shows the results of the execution of the A* structural matching algorithm followed by the execution of 
non-functional correspondence algorithms between a pair of weighted graphs Rqst and Trgt representing respectively 
the request process and the target process presented in Fig.2 and Fig.3. When these correspondence methods are 
performed between a pair of weighted graphs, we record four important values: structural similarity, weighted similarity, 
similarity and the running time. The structural similarity value is calculated as mentioned in formula number 13. 

The weighted similarity as defined in the following formula: 
 

 distance
 1

1 1

weighted
Weighted similarity n ma p a pi i j ji j

= −
+∑ ∑= =

                                                          (16)  

 
Where weighted distance is the weighted graph distance obtained by running the three algorithms: eigen 

decomposition, polynomial transformation and linear programming; and 1 1
n ma p a pi i i j jj∑ +∑= =   is the sum of the quality 

attribute values considered in the user's request and target process of all edges (see section 2). The similarity measure is 
defined as follows: 

 
  +  Weighted similaritySimilarity Structural similarity= α × β ×                                                 (17) 

 
Where α and β are the structural similarity and weighted similarity weights, respectively. In our work, we consider 

α=0.5 and β= 0.5. 
We also recorded structural and weighted match times. Here, the execution time is expressed in milliseconds. The 

aim of these experiments is to find out which is the fastest algorithms couple. Rqst is the requested service represented 
by Fig.3, Trgt is the provided configurable service, they are represented by Fig.2. We note in Table 5 the global 
similarity values between the services Rqst and Trgt which are exactly the same using the A* algorithm combined with 
the eigen-decomposition and polynomial-transformation, and linear programming algorithms respectively (0.68), but 
they are slightly lower using the A* algorithm combined with the Linear programming algorithm (0.70).  

To measure the performance of these algorithms, we compare them in runtimes term.  For that, we define the user 
request number to n and the service provided number to 1, but we modify each time the nodes number in the user 
request which varies from 7 to 21 nodes. For this, we have made the sum of the structural runtimes and the weighted 
runtimes of each couple. 

Through Fig.6, we observe the runtime of the algorithm A * for the structural matching combined with the three 
weighted algorithms: eigen decomposition, polynomial transformation and linear programming for three requests from 
three tenants. 
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Table 5. Similarity values and running times performed by the algorithm’s combinations 

Eigen-decomposition 

(Rqst, Trgt) 
Matching values Running times (ms) 

Structural similarity Weighted similarity similarity Structural Weighted 
0.86 0.53 0.68 166 13546 

Polynomial transform 

(Rqst, Trgt) 
Matching values Running times (ms) 

Structural similarity Weighted similarity Similarity Structural Weighted 
0.86 0.53 0.68 166 4935 

Linear programming 

(Rqst, Trgt) 
Matching values Running times (ms) 

Structural similarity Weighted similarity Similarity Structural Weighted 
0.86 0.50 0.70 166 14789 

 
We notice that the execution time of two algorithms "eigen decomposition" and "polynomial transform" are almost 

similar. While the third algorithm "Linear Programming", requires considerable time compared to the other two 
algorithms. This is explained by its complexity which is of the order of O (n6), while the complexity of the other two 
algorithms is of the order of O (n3). 
 

 
Fig.6. Evaluation of the runtime of the 3 weighted correspondence algorithms and the structural correspondence algorithm "A*" with graphs of size n 
= 7, n = 14 and n = 21 

To assess the performance quality of our discovery approach, we created a graph benchmark that contains our 
target process shown in Fig.2 and a set of user query graphs. Then we compare the result of each request to an expert in 
the field (referential). In addition, we used the standard measure “average difference2” which is a parameter used to 
assess the information retrieval quality.  

The average difference is the arithmetic mean of the absolute values of the deviations from the list mean. It is a 
measure of dispersion of the list and can defined in the following formula: 

 

 difference = 
x xi rAverage n

−∑
                                                                  (18) 

 
when xr is the referential value. 

Table 6. Obtained results of A* algorithm combined with eigen decomposition, polynomial transform and linear programming algorithms compared 
by referential 

A* with Reqst 1 Reqst 2 Reqst 3 Reqst 4 Reqst 5 AVD 
Eigen decomposition 0.78 0.39 0.52 0.61 0.62 0.254 
Polynomial transform 0.78 0.40 0.52 0.62 0.64 0.246 
Linear programming 0.86 0.68 0.76 0.70 0.85 0.068 

Referential 0.98 0.76 0.80 0.75 0.90 -- 
 

 
2 https://lexique.netmath.ca/ecart-moyen/ 

https://lexique.netmath.ca/ecart-moyen/
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Table 6 shows the results obtained when combining A* algorithm with the eigen decomposition, polynomial 
transform and linear programming algorithm. These results allow us to compare the qualities of structural and weighted 
correspondence and can further identify which algorithms combination gives the good or bad result. We can see that, 
based on the Table 1 illustration, the similarity values obtained are in the order (A*, eigen decomposition) ≤ (A*, 
polynomial transform) ≤ (A*, linear programming). The values of (A*, eigen decomposition) and (A*, polynomial 
transform) are almost similar and always lower than that of (A*, linear programming). In addition, if we compare the 
average difference of the three algorithms pairs with that of the referential opinion. We note that the value obtained by 
the couple (A*, linear programming) is the closest and this is explained on the one hand by the precision of A* 
algorithm and on the other hand by the precision of the linear programming algorithm and its error tolerance. 

5.  Conclusion 

In this work, we proposed an e-learning discovery system which is the part of our collaborative e-learning 
approach called CLP-in-Cloud. The aim of our approach is to tailor the e-learning process according to the needs of the 
learners. Our strategy for process discovery is based on two techniques: a recommender system for learning activities 
based on collaborative filtering and Pearson correlation. If the user is not satisfied, another technique has been used 
taking into account both functional and non-functional criteria. For this, we consider a process model as an oriented 
graph and we developed an approach for BPaaS discovery based on the structural similarity technique through on 
graph-edit- distance algorithms, namely A*. To distinguish between equivalent functionally candidate services, we use 
the QoS ranking as a weighted treatment of graph matching problems using three computational algorithms, Eigen-
decomposition, polynomial transformation and Linear programming which are references algorithms in the weighted 
graph matching research area. We evaluate our approach by a real-world dataset. The results obtained show the 
accuracy of CF recommender system.  But it given the minimum difference between their prediction and the user 
evaluation. Thus, the structural and weighted matching increases the user satisfaction, and the obtained results show the 
precision of A * combined with linear programming since their results are close to referential. 

Currently, we are working on adopting the technique of machine learning to adapt the learning process that we 
proposed according to the needs and preferences of learners in real time. 
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