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Abstract: The approaches review of the framework application in identification problems is fulfilled. It is showed that 
this concept can have different interpretations of identification problems. In particular, the framework is understood as a 
frame, structure, system, platform, concept, and basis. Two directions of this concept application are allocated: 1) the 
framework integrating the number of methods, approaches or procedures; b) the mapping describing in the generalized 
view processes and properties in a system. We give the review of approaches that are the basis of the second direction. 
They are based on the analysis of virtual geometric structures. These mappings (frameworks) differ in the theory of 
chaos, accidents, and the qualitative theory of dynamic systems. Introduced mappings (frameworks) are not set a priori, 
and they are determined based of the experimental data processing. The main directions analysis of geometrical frame-
works application is fulfilled in structural identification problems of systems. The review includes following directions: 
i) structural identification of nonlinear systems; ii) an estimation of Lyapunov exponents; iii) structural identifiability of 
nonlinear systems; iv) the system structure choice with lag variables; v) system attractor reconstruction. 
 
Index Terms: Framework, nonlinear dynamic system, phase portrait, structural identification, nonlinearity, structural 
identifiability, synchronizability, lag, Lyapunov exponent. 
 

1.  Introduction 

The framework (FR) concept is applied in control, identification, and the analysis and data processing tasks. FR is 
the synonym of such concepts as a frame, structure, system, the platform, the concept, a basis, and set of approaches. 
The term "framework" is used in two directions in scientific research. The first direction of FR application represents 
the conceptual concept integrating a set of method approaches or procedures. So, FR in [1] is interpreted as the set of 
mathematical and technical procedures and methods for identification of the automobile battery control process. The 
approach to the identification is based on Bayesian framework. In [2] this concept combines the set of identification 
methods based on the calculation of the prediction error. Proposed methods show that such procedures allow obtaining 
estimations in some optimum sense. The key moment in this parametric paradigm is the choice of the sufficient refer-
ence structure. The same paradigm based on the creation of the new concept to system identification is proposed in [3, 
4]. It is based on the compilation of existing approaches. 

The framework can be interpreted as the theoretical model structure for the analysis of a content transmitted to vid-
eo [5]. So, we have the system of some theoretical provisions which are applied for the solution of a specific problem. 
The hybrid system identification scheme (methodology) which is based on the application of continuous optimization is 
proposed in [6]. Other interpretations of the framework concept given in [7, 8, 52]. 

The uniform theoretical concept (framework) for the identification and the control of a nonlinear discrete dynamic 
system is proposed in [9]. It is based on the application of neural networks. The procedure (framework) for identifica-
tion of the functional refusal is proposed in [10]. It is the basis of a new approach for functional refusal risk estimation 
in physical systems. The framework is based on the integration of functionality hierarchical systemic models, and re-
sults of behavioral simulation. Such interpretation of FR is dominating (see for example [11-15]).  

The second interpretation of FR is based on the consideration of some mapping describing in the generalized view 
processes and properties in a system. Bases of such approach are proposed in the qualitative theory of dynamic systems 
[16-18]. Some geometrical structure corresponds to such mapping. This approach is widely applied at chaos research. 
The attractor is the framework in identification problems (see for example [19-21]). The equation structure is specified 
a priori accurate within unknown parameters in these works. Further, the identification problem is solved to obtain a 
required form of the attractor. Other approach is associated to design of a geometrical framework for the system under 
uncertainty and is directed to the solution of the structural identification problem [22, 23]. Further, we will interpret this 
approach as the methodology based on the design and the analysis of the geometrical framework (GF). The main 
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difference between proposed by GF and frameworks in [19-21] consists that mathematical mapping (GF) is not postu-
lated a priori, and is determined on the basis of data processing. The obtained GF is the main object of the analysis. GF 
gave the presentation on behaviour and properties the system. 

Further, we consider main directions of the GF application, generalizing and developing results [22, 23]. They con-
tain the following areas of the identification theory. 

 
I. Structural identification of the nonlinear system. 
II. The estimation of Lyapunov exponents. 
III. Structural identifiability of the nonlinear system. 
IV. The system structure estimation with lag variables. 
V. The system phase portrait reconstruction on the time series. 
 
The article has the following structure. Section III contains the problem statement. The methodology for geomet-

rical frameworks design in identification problems is stated in Section IV. We will show that GF for static and dynamic 
systems differ significantly. The special class of mappings is applied to making decision-making on the linear dynamic 
system structure. The solution of this task is given on the basis of frameworks design for the Lyapunov exponents esti-
mation. The significant geometrical framework obtaining depends on the structural identifiability of the dynamic system. 
The analysis of this problem is presented in Section V. It is showed that the system input should be S-synchronizing for 
the obtaining of significant GF. Reconstruction of the phase portrait or attractor of the system is the identification prob-
lem also. Section VI contains the analysis of identification problems giving the estimation task solution the system 
structure in the phase space. Proposed approaches are based on the application of the Taykens theorem. Difficulties ap-
pearing at the restoration (identification) of the phase portrait are considered. The system structure choice with lag vari-
ables is discussed in Section VII. Two approaches to the choice of the system structure are considered. The first ap-
proach is based on statistical methods application. The second approach is founded on the Lyapunov exponents estima-
tion. The example of the proposed approach implementation is described. The conclusion contains the main inferences 
and results obtained in the work. 

2.  Related Works 

Many papers are devoted to conceptual questions of various approaches creation, methods in identification prob-
lems [1-6, 9]. As a rule, the created theoretical constructions and approaches are the compilation of existing procedures 
and algorithms. They have directed to the accounting of system different features that to give required quality to the 
identification system. Such the approach to the improvement of identification methods is dominating (see for example 
[11-15]). 

The second direction of frameworks use is associated with the analysis of the identification system quality. This di-
rection is based on ideas of dynamic systems (DS) qualitative theory [16-18]. The mathematical mappings describing 
system geometrical images change are applied in this case. As a rule, GF are images of attractors or phase portraits 
which will are formed a priori [19-21]. Attractors recover on the basis of time series and Takens theorem [39] under 
uncertainty. The attractor reconstruction process is very labor-consuming. The problem of identification has specificity. 
Therefore, the direct transfer of DS qualitative theory methods is not applicable here. GF design methods differ from 
the results obtained in [19-21]. The basis of the proposed approach is stated in [23] for the problem solution of static 
systems structural identification. Further, obtained results are generalized on dynamic systems class in [22, 23]. Choice 
of the mapping describing the geometrical framework depends on the examined system class. The GF design methodol-
ogy is proposed in [22, 23].  

The estimation problem of Lyapunov exponents occupies a specific place. GF applied for the LE estimation differs 
from the frameworks used in structural identification problems. The initial data array formation for LE estimation is 
based on the same ideas, as the GF design for the solution of dynamic systems structural identification problem. But in 
this case, the subset of DS free motion trajectories [23] is allocated. The analysis of this subset allows forming the time 
series describing the LE change. Time series is the basis for the design of the mapping describing the LE change dy-
namics in a special structural space [23, 27]. The change calculation of Lyapunov exponents is fulfilled on the standard 
formula [26]. 

GF is the basis for the structural identifiability (SI) estimation of nonlinear systems. The SI estimation is based on 
the analysis of frameworks proposed in [22, 23]. The property of a system S-synchronizability [25] plays the main role 
in the SI analysis. The considered SI concept significantly differs from parametrical identifiability [28-32].  

The system structure estimation problem with the distributed lag is considered in [25, 33-37]. Its decision is based 
on the application of parametric schemes for the system identification with lag variables. Such concept to the parameter 
estimation is based on the available a priori identification. Various statistical hypotheses [33-36] are used in identifica-
tion procedures. The implementation of this approach is very laborious under uncertainty. The approach based on the 
GF analysis is proposed for the system structure estimation with lags. Geometrical frameworks describe the dynamics 
of LE change. The approach develops results [23, 24] on the case of static systems with lags. 
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3.  Problem Statement 

Consider dynamic system 
 

( )
T

X AX y I Bu
y C X

ϕ= + +

=


                                                                         (1) 

 
where u R∈ , y R∈  are the input and the output; m mA R ×∈ , mB R∈ , mI R∈  mC R∈  are matrices of corresponding 
dimensions; ( )yϕ  is a scalar nonlinear function. A  is the Hurwitz matrix. 

ξ  is the linear combination of state variable X . We suppose that ( )yχ ϕ=  belongs to the set 
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1 2
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The system (1) nonlinear part is described by static (algebraic) equations often. Therefore, further, we consider the 

case when ( )yϕ  describe by the algebraic equation. 
Let the informational set be known for the system (1) 

 
[ ]{ }0I ( ), ( ), ,o ku t y t t J t t= ∈ = .                                                               (3) 

 
Problem: evaluate the class of nonlinear function ( )yϕ  in (1) and characteristics the matrix A  on the basis of the 

data processing (3). 

4.  Geometrical Frameworks in Dynamic Systems Structural Identification Problem 

4.1.  eyS -frameworks 

The geometrical framework eyS  design is one of the main stages in the structural identification problem. The 
method for the framework eyS  design is defined by the estimation possibility of system structural parameters. The 
framework eyS  is derivative from a phase portrait S . S  is the starting point for further researches on the formation eyS  
under uncertainty. 

The GF design approach depends on system properties and the considered problem of structure identification. The 
synthesis eyS  method is proposed in [21] and generalized on dynamic systems in [20, 22]. The approach essence con-
sists in the formation of a subset IGF  which allows obtaining a mapping for the design eyS . IGF  is the result of the set 
Io  analysis. IGF  may contain data on the transient process or the steady motion in the system. In the estimation problem 
of the nonlinear dynamic system (1) structure, at first, the set ,I IGF N g=  which contains the information about system 
nonlinear properties is formed.  

The set ,IN g  is identified as follows. Apply to ( )y t  the differentiation operation and designate by the obtained vari-
able as 1x . Determine the model 

 
[ ]1̂ ( ) 1 ( ) ( ) Tl Tx t H u t y t= ,                                                                   (4) 

 
where 1̂

lx  is the estimation of the linear component in 1x  on the time gape \g trJ J J=  corresponding to the steady mo-

tion in the system (1); 3H R∈  is the vector of model (4) parameters; trJ  is the time gap corresponding to transient pro-
cess in the system. Determine by the vector H  having applied a least square method.  

Determine the forecast for the variable 1x  used the model (4) and form the error 1 1ˆ( ) ( ) ( )le t x t x t= − . ( )e t  depends 

on the nonlinearity ( )yϕ  in the system (1). So, we obtain the set { },I ( ), ( )N g gy t e t t J= ∈ . Further, we apply the des-

ignation ( )y t  assuming that ,( ) IN gy t ∈ . 
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Construct the phase portrait S  and GF eyS described by functions { } { }: y y′Γ → , { } { }:ey y eΓ → . eyS  is the basis 
for the further analysis and the identification system design. The framework eyS  should have specified properties [22]. 
Properties of structural identifiability and S -synchronizability [25] are basic. The obtained GF correctness sign is a 
regularity of its presentation and the condition ( ) ee t δ>  for q trt t t∀ ≥ > , where trt  is the end time of the transient pro-
cess, 0eδ >  is some number. The application of the described approach gives how significant eyS , and insignificant 

eyNS frameworks ( ey ey=S NS ). Decision-making on the significance eyS is based on the results obtained in [22]. The 
framework eyNS  is the result of the condition S -synchronizability (SS) non-fulfillment of the system (1). S -
synchronizability of the system (1) (framework eyS ) depends on the fulfillment of the excitation constancy condition for 
the input ( )u t . The significance eyS  estimation algorithm is based on the sector set properties analysis for eyS  [23] if 
the SS-condition of is satisfied.  
 
Definition 1. The framework eyS  is called the regular if the condition S -synchronizability is satisfied for the system (1). 

The example of the regular framework eyS  for the system with a static hysteresis is presented in Fig. 1 [23]. 
If the function ( )yϕ  has the complex law of change, the application of the approach described above can give to 

"false" eyNS -framework. 
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Fig.1. Frameworks S , eyS  for the second order system (1) with static hysteresis 

The example of such framework for the system describing processes in RC-OTA the chaotic oscillator 
 

( )( )
0.1
10 sgn sgn( )
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x

ϕ
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− + =

= − + +

 


                                                              (5) 

 
is shown in Fig. 2. RC-OTA is applied to the design of electronic and control systems [50]. 

The obtaining of the regular framework gives to the application of the hierarchical immersion method [23] in state-
space. This method provides the model (4) structure choice for each layer of hierarchy. The example of the regular 
framework eyS  for the system (5) is shown in Fig. 3. Designations showed in Fig. 3 given in [21 23]. 
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Fig.2. Frameworks S , eyS  for the second order system (5) with dynamic hysteresis 
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Fig.3. Regular structure for the system (5) 
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Fig.4. Framework eyS , phase portrait and z   

Example 1. Consider a mechanical system with Bouc-Wen hysteresis [51]. This has the form 
 

( )1

( , , ) ( ),
( , , ) ( ) (1 ) ( )

( )n n

mx cx F x z t f t y x
F x z t kx t kdz t

z d ax x z sign z x z−

+ + = =
= α + −α

= −β − γ

 

  

                                                         (6) 

 
where 0m >  is weight, 0c >  is damping, ( , , )F x z t  is the restoring force, 0d > , 0n > , 0k > , (0,1)α ∈ , ( )f t  is 
exciting force, , ,a β γ  are some numbers. Denote by the system (1)-(3) as SBW.  

Parameters the SBW-system are equal: d a m= = , 1.5n = , 0.5β = , 1.5α = , 0.6k = , 1m = , 2c = . The excit-
ing force ( ) 2 2sin(0.15 )f t tπ= − . 
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The model (4) has the form: ˆ 0.199 0.471x x f= − + . The application of the proposed method gives eyS -frameworks 

(Fig. 4). Ranges of definition R and F match. Analysis of the eyS -structure shows that the system (6) is nonlinear. 

4.2.  
,sk ρ

S , 
,

i
sk ρ∆

SK -frameworks 

Another class of framework 
,sk ρ

S  is designed on the basis of the system (1) general solution analysis. 
,sk ρ

S  apply to 
the structure choice for the system (1) linear part. This task differs from the problem considered above. Therefore, map-
pings allowing making decisions should have other form [24, 25]. They are based on the analysis of the Lyapunov ex-
ponent dynamics change. Apply the model 

 
ˆˆ ( ) ( )q qX t A W t=   qt J∀ ∈                                                                      (7) 

 
to the particular solution estimation of the system (1) on the output y , where 2 2ˆ

qA R ×∈  is the parameter matrix, 

[ ]TW u u′= , 2ˆ
qX R∈  is the estimation output of the system output and its derivative. The choice of the interval 

qJ J⊂  depends on the system (1) properties. 

Further, we obtain the estimation for the system (1) general solution on the basis ˆ
qX  

 
ˆ ˆ( ) ( ) ( )g qX t X t X t= −   gt J∀ ∈  

 
where ˆ ˆ ˆ( ) [ ( ) ( )]T

g g gX t y t y t=  . This approach can be generalized on the case 2m > . 
Functions 

( )ˆ ˆln ( )g g gy y tρ ρ= =   g gt J J∀ ∈ ⊂  
 

( )ˆ
( , ) g

s

y
k t

t
ρ

ρ =                                                                              (8) 

 
are basis of the mapping describing 

,sk ρ
S where [ ]0 ,gJ t t=  is determined on the basis by the LE theory [26]. ( , )sk t ρ  is 

the basis for the Lyapunov exponent calculation.  
 
Remark 1. The framework 

,sk ρ
S  use simplifies the choice of the upper bound for time at the calculation of LE. 

Perform the analysis of sets  
 

( )( ){ }
( )( ){ }

ˆI , ( ) ,

ˆI , ( ) , ,

s

s

k s g g

g g

k s g g

k t y t t J
J J

k t y t t J

ρ

ρ′

= ∈
⊂

= ∈
                                                        (9) 

 
for the LE determination. 

On sets I
sk , I

sk ′  the framework 
,sk ρ

S described by the function 
,

: I I
s s sk k kρ ′Γ →  is introduced. The framework 

,sk ρ
S  

reflects the change dynamics of indexes depending on LE. Consider also the function describing the first difference 
ˆ( , ( ( ))s gk t y tρ   change 

 

( )( ) ( )( )ˆ ˆ( ) , ( ) , ( )s s g s gk t k t y t k t y tρ τ ρ′∆ = + −                                                     (10) 

 
where 0τ > . 

Form the set ( )( ){ }ˆI , ( ) ,
sk s g gk t y t t Jρ′∆ = ∆ ∈  and introduce the framework 

,sk ρ′∆SK which function 

, ,,
: I I

k s ss k kρ ρρ′∆ ′∆Γ →  corresponds. 
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Consider the framework 
,sk ρ′∆LSK with ( ), ,,

: I I
k s ss k kB

ρ ρρ′∆ ′∆Γ → , where ( ),
I { 1;1}

skB
ρ′∆ ⊂ − . Define by elements of the 

binary set ( ),
I

skB
ρ′∆  as 

 
1, если ( ) 0

( )
1, если ( ) 0

s

s

k t
b t

k t
′∆ ≥

=  ′− ∆ <
 gt J∈ .                                                         (11) 

 
Frameworks 

,
i
sk ρ∆

SK which are based on the change ( )i
sk t∆  ( 1i > ) analysis are formed similarly. ( )i

sk t∆  is deter-

mined by analogy with (10), and i  designates i -th derivative ˆ ( )gy t . 
The application (8)-(11) allows to obtain the LE set and to estimate their type. The generalization of the proposed 

approach on periodic dynamic systems is given in [27]. 

5.  Structural Identifiability of Nonlinear Dynamic System 

In the previous section, it is noted that the nonlinear DS structure estimation depends on the system identifiability. 
Many publications (see for example [28-30]) are devoted to the problem of dynamic systems parametric identifia-

bility. The structural identifiability of nonlinear dynamic systems reduced to the parametrical identifiability on the basis 
of various approximation methods application [29-31]. Modifications of the proposed approaches are considered in case 
when not all system parameters can be identified. 

In [25] structural identifiability is considered in the following aspect: determine by conditions under which the 
nonlinear system structure estimation is possible under uncertainty. The solution to this problem for the system (1) is 
given in [25] when the nonlinear function ( )yϕ  satisfies the condition (2). Decision-making is based on the analysis of 
the framework eyS  which describes the system (1) behavior in the steady state. It is showed that the system should satis-
fy to h -identifiability property. 

Let conditions be satisfied. 
B1. The initial set Io gives to the parametrical identification problem solution of the model (1). It means that the 

input ( )u t  is constantly excited on the interval J . 

B2. The input ( )u t  use gives to the informative framework ( ),Iey N gS . It means that the analysis eyS  gives the es-
timation problem solution of the system (1) nonlinear properties. 
 
Remark 2. Property of the excitation constancy on which the parametric identifiability estimation is based has features 
at the solution of the task h -identifiability problem. 

Let the framework eyS  be closed and the area eyS  is not zero. Designate by height eyS  as ( )eyh S  where the height 

is the distance between two points of opposite sides of the framework eyS . 
 
Statement 1 [23]. Let i) the linear part of the system (1) is stable, and the nonlinearity ( )ϕ ⋅  satisfies the condition (2); ii) 

the input ( )u t  is limited, piecewise continuous and constantly excited; iii) 0Sδ > exists what ( )ey Sh δ≥S . Then the 

framework eyS  is identifiable on the set ,IN g . 
 
Definition 2. The framework eyS  having the specified properties in the statement 1 is h -identified. 

The statement 1 conditions fulfillment can give "insignificant" eyS -framework ( eyNS -framework). Therefore, h -
identifiability is a sufficient, but necessary condition of SI. S-synchronizability ensuring for the system [25] is such 
condition. 

Introduce designations: ( )domy ey=D S  is the domain, ( ) max ( ) min ( )y y y tt
D D y t y t= = −D  is the diameter yD . 

Let ( ) Uu t ∈  is admissible set of inputs for the system (1).  
 
Definition 3 [25]. The input ( ) Uu t ∈  S-synchronizes the system (1) if the framework eyS  domain has the maximum 

diameter yD  on the set { }( ),y t t J∈ . 



Geometrical Framework Application Directions in Identification Systems. Review 

8                                                                                                                                                                         Volume 13 (2021), Issue 2 

Synchronization ( ) Uu t ∈  is understood as the choice of such input ( ) Uhu t ∈  which allows reflecting all features 

eyS  characterizing ( )yϕ . It is possible only in case when ( )u t  ensures max
h

yu
D . Synchronization allows obtaining the 

framework .ey ey≠S NS  Such selection ( ) Uhu t ∈  can be interpreted as the synchronization between the model and the 
system. Therefore, fulfillment of the condition , max

h
h y yu

D=d  ensures the system 
h

hδ -identifiability. 

Let the input ( )hu t  synchronize the set yD . If ( )u t  is S-synchronizing, then we will write ( ) Shu t ∈ . Let's notice 

that the finite set { }( ) Shu t ∈  exists for the system (1). The choice of the optimum input ( )hu t  depends from ,h yd . En-
suring this condition is one of the prerequisites for the system (1) structural identifiability.  

Consider the reference structure ref
eyS . ref

eyS  reflects all properties of the function ( )yϕ . Denote by diameter 

( )ref
y eyD S  as ref

yD . If ( ) Shu t ∈ , that ref
yD  exists for the system (1).  

 
Corollary from definitions 2, 3. If ref

ey ey≅S S  then ref
y y yD D ε− ≤  where 0yε ≥ , ≅  is the sign of proximity. Ele-

ments of a subset SU  have property 
 

( )( )SU( ) ref
y ey u y yD u t D ε∈ − ≤S , 

 
and 
 

( )( )SU\U ,( )y ey u h y yD u t ε∈ − >S d  

 
is the appearance condition eyNS . 

Let eyS  is h -identifiable and 
ey ey

l r
ey F F= ∪S SS , where ,

ey ey

l r
S SF F  are the left and right fragments eyS . Secants for 

,
ey ey

l r
S SF F  are described by equations 

 
r r
S a yγ = , l l

S a yγ =                                                                        (12) 
 

where la , ra  are numbers determined by the least squares method (LSM). 
 
Definition 4. If the framework eyS  is h -identifiable and the condition l r

ha a δ− ≤  is satisfied, the framework eyS  

(the system (1)) is structurally identifiable or 
h

hδ -identifiable. 

Definition 4 shows if the system (1) is 
h

hδ -identifiable, then the structure eyS  have the maximum the area yD  di-
ameter, and the system is S-synchronizable. 

Let the structure S  have m  features. We understand features of the function ( )yϕ  as loss of continuity, inflection 
points or extremes. These features are signs of the function nonlinearity. 
 
Definition 5. If the framework eyS  is 

h
hδ -identifiable, then the model (4) is SM -identifying. 

 
Theorem 1 [22]. Let 1) the input ( )u t  is constantly excited and ensures the system (1) S-synchronization; 2) the phase 
portrait S  of the system (1) contains features; 3) the eyS -framework is 

h
hδ -identifiable and contains fragments corre-

sponding to features of the phase portrait S . Then the model (4) is SM -identifying. 
 
Remark 3. According to results of Section 4, the process design of the model (4) structure can have a hierarchical form. 
It is rightly for nonlinearities, which do not satisfy the condition (2). 

Consider the framework eyS . Designate by the center eyS  on the set { }( )yJ y t=  as сS , and the center of the area 

yD  as 
yDс . 
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Theorem 2 [25]. Let on the set U  of representative inputs ( )u t  of the system (1): i) such 0ε ≥  exists what 

yDс с ε− ≤S ; ii) the condition l r
ha a δ− ≤  is satisfied. Then the system (1) is 

h
hδ -identifiable, and the input 

( ) Shu t ∈ . 

Some subset { }, ( ) U Uh i hu t ⊂ ⊆  ( 1i ≥ ) which elements have the S-synchronizability property exists. Everyone 

, ( )h iu t  correspond to the framework ( ), ,ey i h iuS  with the diameter ,y iD  of the domain ,y iD . As , ( ) Sh iu t ∈ , diameters 

,y iD  will have the feature ,h Σd -optimality.  
Let the hypothetical framework eyS  of the system (1) have the diameter ,h Σd . 

 
Definition 6. The framework ,ey iS  has the feature ,h Σd -optimality on the set Uh  if such 0εΣ >  exists that 

, ,h y iD εΣ Σ− ≤d  1, # Uhi∀ = . 
 
Definition 7. If the subset of inputs { }, ( ) U Uh i hu t = ⊂  ( 1i ≥ ) which elements , ( ) Sh iu t ∈ , and frameworks 

( ), ,ey i h iuS corresponding it having property ,h Σd -optimality, frameworks ( ), ,ey i h iuS  are indiscernible on sets { }, ( )h iu t , 
exists. 

Definitions 6, 7 show that the 
h

hδ -identifiability estimation can be obtained on any input ( ) Uhu t ⊂ . The approach 

to the estimation of the system (1) 
h

hδ -identifiability is proposed in [25]. It is based on the application of an integral 

indicator for the framework eyS  analysis and is based on the development of results obtained in [23].  
 
Example 2. Consider the system (6). The structure eyS  is shown in Fig. 4. The model approximating eyS  has the form 

 
0.033 0.153ey yγ = − , 2 0.983eyr =                                                              (13) 

 
where ˆey eγ =  is the secant framework eyS , 2

eyr  is determination coefficient. 
The structural identifiability of the system follows from theorem 3, 0.002hδ = . BWS -system is S-synchronized, 

and the model (4) for obtaining eyS  is SM -identifying. The centre of the framework eyS  ? .001c =S . Secants (12) 
have the form 

 
2

,

2
,

0.0313 0.146 912,

0.032

 , 0.

 , 0.0,15 926

l
e

r
e

ye l

ye r

y r

y r

γ

γ

− =

− =

=

=
,                                                      (14) 

 
Models (13) structurally coincide with (14). These results confirm the fulfillment of the condition 

 

( )( )SU( ) ref
y ey u y yD u t D ε∈ − ≤S . 

 
Example 2. Consider the system consisting of a nonlinear actuator and an object. The object has dry and quadratic fric-
tion. The actuator described by the nonlinear function with saturation (system STS ) 
 

( )
1 1

1 1 22 2 2

1

0 00 1
,

( )0 1
,

x x
c xx x c u

y x

ϕ ϕ
       

= + +        −−       
=



  

 
where ( ) ( )2

1 2 1 2 2signx c x xϕ = −  is quadratic friction, 2 ( ) sat( )u uϕ =  is dry friction, 1x x=  is the rotation angle of the 

object shaft, u  is excitation current of the actuator winding, y  is output, 1 2c = , 1c = , ( )( ) 3sin 0.1u t tπ= . Set of 

measurements [ ]{ }I ( ), ( ), 0,o ku t y t t t= = , kt < ∞ . 
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The frameworks , eyS S  presented in Fig. 5. Apply the proposed approach to SI estimation and obtain the structural 
identifiability of the system STS . The conclusion about the structure of nonlinearity cannot be base on , eyS S . A nonlin-
ear input complicates the task. Analysis of the structure eyS  shows that the input 2 ( )uϕ  is constant on the interval 

[4;8.5]yJ =  and the constancy excitation condition for input not hold.  
 

0 2 4 6 8 10 12
-1,2

-0,9

-0,6

-0,3

0,0

0,3

0,6

0,9

1,2

y

1,x e

eyS

S

 
Fig.5. Frameworks , eyS S  

Fig. 5 shows that you can set 2ˆ ( ) sat( )u uϕ = . [2;4] [8.5;10]yJ = ∨  is an interval the decision-making about the 
nonlinearity. The application of the model (4) (framework eyS ) is inefficient. Therefore, go to the analysis of 2x  de-
pendence on available variables. 

Coefficients of determination between 2x  and 2 ,x y  are respectively equal 
2 2

2 0.995x xr = , 
2

2 0.916yxr = . We see that 

there is a relationship between 2x  and 2x . Use the hierarchical immersion (HI) method to refine structural relationships. 
HI allows to step by step eliminating relationships in the system STS  and gives the final estimate for nonlinearity. We 
found that the influence degree of the 2 2x x  on system properties is 97%. The framework 

2 2, x xεS  (Fig. 6) confirms the 

properties of the system STS . 
 

2 4 6 8 10 12
-0,6

-0,4

-0,2

0,0

0,2

0,4

2 2x x

ε
2 2, x xεS

 
Fig.6. Framework 

2 2, x xεS  

So, the analysis confirms the possibility of the system STS  structural identification and its identifiability at the in-
terval yJ . The model (4) application depends on the system structure (framework eyS ). The general approach to the 
choice of the model structure not succeeds. The nonlinearity structure depends on the specifics of the system. This con-
clusion illustrates this example. It confirms the versatility and complexity of the considered problem. The system with 
several nonlinearities requires the development of proposed approaches. 
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Example 3. System for generating self-oscillations 
 

1 2

2 2 0 5

3 3 1 1
1 1

2
4 4 2

2 2

5 3 3 4
3 3

,
,

1 1 ( ),

1 ,

1 1 ( ),

y y
y gy k y

y y f y
T T

ky y y
T T

y u f y y
T T

=
 = − +


= − +


 = − +


 = − − +











 

 
where [ ]1 2, Ty y  is state vector of a object; 3 4,y y  are output of gauges; 5y  is the output of a linear transducer amplifier 
with a linear actuator (feedback) (TA); 1 3( ), ( )f f⋅ ⋅  are saturation functions with dead zone; 1 2 3, ,T T T  are time constants 
of elements; 0 2,k k  is gain; 0g > . The function ( )if x  has the form 
 

2,

1, 1, 2,

1, 1,

1, 1,

2,

, ,
2( ), ,

( ) 0, ,
2( ), ,

, ,

i

i i i

i i i

i i

i

c if x d
x d if d x d

f x if d x d
x d if d x

c if x d

 ≥


− < <
= − ≤ ≤
 + − <
 − < −

 

 
where 1;3i = , 2c = , 1,1 0.5d = , 2,1 1.5d = , 1,3 0.25d = , 2,3 1.25d = . 

Difficulties in SI evaluating. 
 
1. The signal 5 ( )y t  presence which is the actuator output of and the object input. R affects all processes in the sys-

tem. 
2. The indirect effect of variables on each other. This is a fundamental feature of systems with multiple nonlineari-

ties. This feature levels the influence of some variables on system properties. Estimation of leveling is not always pos-
sible under uncertainty. 

 
First, build a tree of relationships. The example relationships 1y , 2y  tree with other variables shown in Fig. 7. 

Markers highlight significant relationships that exceed the 80% level. Such the layered tree obtained for the system state 
vector. 
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0,0
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y4
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 y1
 y2

 
Fig.7. Layers graph for 1y  and 2y  
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Apply the approach described in section 4. The analysis showed that the object described by the linear equation 
(variables 1 2,y y ). Variables 1y , 5y  effect on the variable 3y  (the amplifier-gauge 1 output), and variables 2y , 4y , 5y  
effected on variable 3y . The phase portrait the amplifier-gauge 1 showed in Fig. 8. We see that the amplifier-gauge 1 is 
nonlinear. 

 

-2,50 -1,25 0,00 1,25 2,50

-3

-2

-1

0

1

2

3

 
Fig.8. Phase portrait of the first gauge 

Choose the model similar to (4), and variables to estimate the nonlinear function. Analyze the relationships for this 
element and obtain the model 
 

3 5
ˆ 0,778 0,0928y y= − −  , 

3 5

2
, 0.69y yr =  . 

 
Introduce the error 3 3 3

ˆy yε = −   and the framework 
3 1yεS  described by the function 

3 1 1 3:y yεγ ε→  (Fig. 9). 
 

-3 -2 -1 0 1 2 3
-2,5
-2,0
-1,5
-1,0
-0,5
0,0
0,5
1,0
1,5
2,0
2,5

 
Fig.9. 

3 1yεS -framework 

We see that the framework 
3 1yεS  is 

h
hδ -identifiable. Diameters of the framework 

3 1yεS  are almost equal. 
3 1yεS  has a 

dead zone in the range [–0.5; 0.5] and growth in the segment [0.5; 1. 5]. Therefore, the nonlinearity has the form 1( )f x . 
The next element is an amplifier-gauge 3 with the output 4y . Variables 2y  and 3y  influence on 4y . 3y  reflects the 

variable 2y  influence of object. The structural analysis showed that the framework 
3 2y yS   does not contain features, and 

eyS -analog is an insignificant framework. Therefore, amplifier-gauge three does not contain nonlinearities. 
Consider the last element with the output 5y . Variables 3y  and 4y  effect on 5y , and variables 2y , 3y  influence 

on 5y . Applying the model (secant) 5 53 3 53ŷ a y b= +   to the framework 
5 3y yS    and the introduction of the misalignment 

5 5 5
ˆy yε = −   gives the framework 

5 4yεS  that is described by the function 
5 4 4 5:y yεγ ε→  (Fig. 10). Fig. 10 shows the 

phase portrait 
5yS  of this element. 



Geometrical Framework Application Directions in Identification Systems. Review 

Volume 13 (2021), Issue 2                                                                                                                                                                       13 

-6 -4 -2 0 2 4 6
-10

-8
-6
-4
-2
0
2
4
6
8

10

 
Fig.10. Phase portrait 

5yS  and framework 
5 4yεS  

We see (Fig. 10) that 
5 4yεS  is zero in the interval (-0.25; 0.25), then there is a linear growth of 

5 4yεS  by [0.25; 1.25], 

which coincides with 3f . This element is structurally identifiable by 4y . But this element is not identifiable by 3y . 
So, we see that the possibility of structural identifiability of a nonlinear system depends on the interaction of its el-

ements. Just the structural organization of the system determines the ability to solve the structural identifiability prob-
lem. 

6.  System Attractor Reconstruction 

Reconstruction (restoration) of the phase portrait (PP) or a system attractor can be performed on the basis of time 
series analysis. The proof of this approach is given in [33], and the practical application is based on Wolf and Rosen-
stein algorithms [34, 35]. This problem can be interpreted as the system structure restoration task in the phase space. 
Many authors (see e.g. reviews in [36-38]) have studied this problem. Many procedures are heuristic [37]. The phase 
portrait construction depends on the choice of reconstruction optimum parameters. The main parameter is the choice of 
the time delay for new variables obtaining on the basis of the available time series. To solve this problem, various ap-
proaches (see references in [38, 39] are used: the autocorrelation and cross-correlation, the choice of the attractor shape, 
the method about the neighbor, and also the prediction statistics based on various models. Recommendations about the 
choice of the delay value estimation method are not provided. This is explained by the complexity and the variety of 
considered objects. The second problem is concatenated to the quality criteria choice [37] for the estimation of the PP 
reconstruction. Unfortunately, this problem has not obtained the final solution. Some recommendations for solving this 
problem are given in [37]. 

The choice of such structural parameter as the attractor dimension [36, 40, 41] is also an important task. An at-
tempt to resolve the existing problems is made in [38]. In [38], a statistic for the choice of the delay value and the attrac-
tor dimension is proposed. It is shown that these statistics can be applied to the attractor creation for multidimensional 
systems. The problem of constructed attractor further analysis is not completed at this stage. As a rule, the designed 
attractor not always satisfies requirements of the researcher. It is not smooth. Therefore, smoothing various methods [36, 
42] apply to obtain the smooth mapping. 

Identification of the dynamic system was considered in [36, 37] on the basis of the obtained set of state space vari-
ables. This issue is discussed in the review [43] in more detail. Various approximation methods of the desired operator 
describing the system state are applied to the model design. The basis of identification methods is interpolation proce-
dures decomposition of a nonlinear function on the specified basis, the application a spline-functions and neural net-
works, and also many other approaches [43]. 
 
Remark 4. As noted in [37], none of the considered identification methods is efficient. The major role is played by heu-
ristics, the researcher experience and the prior information. This remark is true also for PP restoration methods [36]. As 
a rule, at first the data approximation is performed on the given class of basic functions. Then the phase portrait, topo-
logically the equivalent to an initial system, is under construction. Further, unknown parameters are introduced in the 
obtained model that properties of the obtained mapping to improve. Various heuristics and procedures of additional 
information accounting on a system are applied for this purpose. Obtained models are very unwieldy and inconvenient 
for the application. Therefore, in [36] it is noted that the use of the complex models is not always justified in practical 
applications.
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(a) left hemisphere 

 
(b) right hemisphere 

Fig.11. Attractors of native EEG for the “neuralgia” diagnosis 

 
Example 3. Consider the native analysis process of electroencephalographic data (EEG). Experimental data are repre-
sented by a one-dimensional time series. Construct the phase portrait for the estimation of a patient condition. Apply the Takens 
theorem and the method for finding nearest false neighbors. Time series analysis showed that the time delay τ  varies within cer-
tain limits [1] for different groups of patients. The choice of the phase space dimension is based on the analysis of the attractor cor-
relation dimension D . D changes in the interval [5, 11] for all groups of patients. Apply these methods and get time series for con-
structing attractors that reflect the symmetric leads C3, C4-A2. The abscissa axis of the phase plane contains experimental values 

( )eh t τ− , where eh  is a voltage level of a native EEG; the axis of ordinates reflects the change ( ) ( ) ( )e e eh t h t h tτ τ∆ = + − − . 
Such representation eliminates the delay τ  effect of on attractor properties. Examples of the attractor reconstruction shown for a 
woman in Fig.11. 

7.  System Structure Choice with Lag Variables 

Models with distributed lags (DL) are widely applied in various areas [44-48]. Independent and dependent varia-
bles can have the delay. The distributed lag accounting activates autocorrelation between variables [45] and the parame-
ter identification process complicates. Various schemes of parameters approximation at DL [44, 47] apply to system 
parameters identification. The prior information is considered at the same time. Such an approach reduces the estimated 
parameter number of the system. Parametric schemes minimize the number of unknown parameters. The least-squares 
procedure and its modifications apply to the parameter estimation. Methods of the maximum length lag choice are con-
sidered. Statistics based on the analysis of residuals [45, 48] are the basis of the applied approaches. The Akai criteria 
and Bayes information criteria are used for decision-making on the model structure. The identification of the system 
structure and parameters was not examined under uncertainty.  

Scheme choice of the model parameters approximation is bound with the performance of labour-consuming calcu-
lations under uncertainty. In [49] the approach to the structure DL choice based on the analysis of properties framework 

,
v
k eS  is applied. Therefore, previously considered methods are not applicable for its analysis. The structure estimation of 

the system with DL is based on the analysis by means of secants [38]. 
Further, the estimation method of the DL system structure based on Lyapunov exponent identification is stated. 

This method is the development of the approach described in subsection 4.B. The direct transfer of results [24, 25] on 
the considered system class is impossible since these systems have the specifics. 
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Consider the system 
 

T T
n n n ny A U B X ξ= + +                                                                       (15) 

 
where ny R∈  is output; k

nU R∈  is input vector which elements are limited extremely nondegenerate functions; 

[0, ]Nn J N∈ =  is discrete time, N < ∞ ; m
nX R∈ , ( ), , 1 , 2 ,, , ,

T
n i n n i n i n i n mX X u U u u u− − − = ∈ =    is the vector of dis-

tributed lags on ,i n nu U∈ ; ,k mA R B R∈ ∈  are constant parameter vectors; n Rξ ∈  is external disturbance, | |nξ < ∞  for 
all Nn J∈ . 

Let the informational set Io  for the system (13) containing the information on measured inputs and output on an 
interval NJ  has the form 

 
{ }I , ,o n n NU y n J= ∈ .                                                                      (16) 

 
Problem: estimate the vector nX  dimension based on data (14) analysis. 

 
Remark 5. Here the case of lags availability on the input nU  is considered. If the output ny  contains lags, then the pro-
posed approach allows to estimate the DL structure and in this case. 

Analyze the effect of ,j nu , 1,j k=  on the output ny . Determine by determination coefficient 2
,ju yr  for everyone 

, 1j nu − . Introduce the number 0δ > . Find such j  that 2
,ju yr δ≥  satisfied and designate i j= . So, the element of the 

vector nU  is determined. Form the vector 1m
nU R −∈  which does not contain the element ,i nu , for the lag estimation on 

,i nu  and apply model  
 

ˆ T
n ny B U=                                                                                  (7) 

 
where 1T mB R −∈  is the parameter vector. 

The system (13) is not dynamic in the standard sense. 
 
Assumption 1. Let the system (13) contain the variable ,n j nuπ =  which changes on the dynamic law 

 

1
:

h

n i n i n
i

Sπ π α π κζ−
=

= +∑                                                                    (18) 

 
where iα , κ  are some numbers, h < ∞ , n Rζ ∈  is some limited function for all Nn J∈ .  

Let the system (16) be stable, i.e. 1iα < . 
 
Definition 8. The systems (13) have π -steady state or π -state if such 1j ≥  exists that the variable ,j n nu U∈  satisfies 
the equation (16). 

Select the transient process (the system (16) general solution) for the application of LE to the Sπ -system. Localise 
in (13) a space which the variable ,n j nuπ =  belongs, and π -steady state eliminate on the interval ,\g N NJ J Jπ= , where 
the interval corresponding the π -state in the Sπ -system. 

Consider the set Io  (14). Apply the model (15) on the interval ,NJπ , where ,NJπ  choose so that the coefficient of 

determination was maximal between ˆ
ny  and ˆny . Next, calculate the error ˆ

n n ne y y= −  . Note that the variable ne  con-
tains information about ,j nu . 

Now the analysis reduced to the study of the discrete dynamic system properties with the output ne . We obtain the 
system eSD  that is a prototype of the system (16). 

The problem is reduced to LE estimation on the basis of the set { }I ,e n ge n J= ∈  analysis. It is the close to the at-

tractor reconstruction problem of the dynamic system by the time set Ie . Reconstruction of the phase portrait (attractor) 
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is based on the application of the Takens theorem [33]. F. Takens has proved that the new row ,d ne  based on lagging 
values ne  gives to the PP reconstruction problem solution. The obtained row ,d ne  describes the change the dynamics of 
the derivative variable ne . Many procedures are proposed for choice of the delay interval [36]. It is supposed that trajec-
tories of the dynamic system belong to the smooth manifold. It is necessary to notice that the delay interval choice prob-
lem did not obtain the final solution. Heuristic procedures, algorithms of approximation and smoothing time series are 
often used in practical applications. A priori information is important. After obtaining of the set { },, , 1,n d n ke e n n= , the 

problem solution of the design phase portrait which also is nontrivial [36, 37, 40] is necessary. 
 
Remark 6. Smoothing algorithms are widely used in the attractor reconstruction problem. Smoothing procedures appli-
cation to set Ie  elements at the LE identification for the system (13) can lead to the loss of valuable information. Resid-
ual errors caused by disturbances nξ  in (13) effect on properties of obtained LE estimations.  

Use the formula (8) for the calculation of Lyapunov exponents. Considering remark 6, the detection of LE, but not 
their values we will evaluate.  

Consider analogues of frameworks 
,sk ρ

S , 
,sk ρ′∆SK  and 

,sk ρ′∆LSK  defined at nt nτ= , where τ  is the data measure-
ment interval. Introduce the discrete analogue of the function (11) 

 
,

,

1, 0
1, 0

s n
n

s n

if k
b

if k

′∆ ≥=  ′− ∆ <
.                                                                     (19) 

 
where ( )nb b nτ= , , ( )s n sk k nτ′ ′∆ = ∆ . 
 
Theorem 3 [25]. If the function nb  on the interval *

0 , gt t J  ⊂   ( )*t t≤  changes the sign h  times, that the system (16) 

have the order h . 
In [25] it is shown if the theorem 3 conditions are satisfied, then local minima of the framework 

,sk ρ′∆SK correspond 

to LE estimations of the system (16) in space ( ), ,,s sk kρ ρ′∆ . 
 
Theorem 4. If conditions of the theorem 3 are satisfied and the framework 

,sk ρ′∆SK  described by the function 

, ,,
: I I

k s ss k kρ ρρ′∆ ′∆Γ →  has local minima on the plane ( ), ,,s sk kρ ρ′∆ , then Sπ -system have π -state. 

The proof of the theorem 4 is obvious. The local minima quantity corresponds to the lag structure of the system (13) 
on the variable ,j nu . 

So, we have shown that the discrete informational set Io  modification based on the approach [25] allows extending 
the methodology of geometrical frameworks application to systems with the distributed lags of input variables. 

Consider the identifiability problem of Lyapunov exponents. Let the vector nU  is limited constantly excited 
 

αPE : T
n n kU U Iα≥                                                                        (20) 

 
for some 0α >  and 0n∀ ≥  on the interval NJ , where k k

kI R ×∈  is the unit matrix. 
If (18) is satisfied, then we will write nU α∈PE . As shown in section 5, the fulfilment (18) is sufficient for the Sπ -

system π -state estimation. Parameters of the model (14) are identifiable since ,\n n i nU U u=  and nU α∈PE% , 0α > . 
Sπ -system with π -state corresponds to the system (12). Let the framework 

,sk ρ′∆LSK  and the function nb  which on the 

interval *
0 , gt t J  ⊂   changes the sign h  of times exist. Then the system has h  Lyapunov exponents. Therefore, Sπ -

system is identifiable on the set Sπ
M  LE. So, it is true 

 
Theorem 5. Let: 1) the vector nU  of the system (13) have property nU α∈PE ; 2) the vector 1T mB R −∈  of the model 
(15) is identifiable with nU α∈% PE ; 3) the framework 

,sk ρ′∆LSK  and the function nb  (17) satisfying theorems 3 condi-

tions exist; 4) the Sπ -system (16) have the π -state. Then the dynamic Sπ -system (16) corresponding to the system (13) 
is identifiable on the Lyapunov exponent set. 
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Fig.12. System (13) phase portrait of the with 3k =  and 2h =  
 
Example 4. Consider the system with 3k =  and 2h = , [ ]0,7;3;3,5 TA = , [ ]0,4;0,45 TB = , 1, 1 1, 2,

T
n n nX u u− − =   . 1,nu  

is obtained as the system (16) output with the input nζ , distributed to the normal law with the zero average and final 
dispersion. The set Io  (14) is generated for [1;60]n∈ . The analysis of the set Io  has shown that lags are had by the 

variable 1,nu . Time series { } 1;60n ne
=

, { }, 1;60d n n
e

=
 are formed. Apply the model (15) 

 

[ ] 2, 3,
ˆ 3;3,52 ; 7,35

T
n n ny u u = +  ,                                                              (21) 

 
which is obtained on the basis of LSM for [30;60]n∈ . The determination coefficient of the model (19) is 0.99.  

The system (16) phase portrait and its smoothed analogue (variable ,
sm
d ne ) are shown in Fig.12. 
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Fig.13. Lyapunov exponents estimations 

Fig.12 is shown, processes in the Sπ -system have non-smooth. Results of the lag structure estimation are present-
ed in Fig. 7 where frameworks 

,sk ρ
S  and 

,sk ρ′∆LSK  are shown. Designations in Fig. 13: 1 2,µ µ  are estimations of Lya-

punov exponents, sk  are calculated on the basis of (8) 
 

( )
, ,

n
s e n

e
k

n
ρ
τ

= , 
( ),

, ,d

d n
s e n

e
k

n
ρ

τ
= . 

 
The set Sπ

M  of Lyapunov exponent is showed also in Fig. 13. 

The analysis of results shows that the system (16) describing the change 1,nu  have the order 2. 
 
Example 5. Consider the control system for supplying cars to the Vladivostok transport hub (Russia). Study the case of 
6 cars simultaneous giving from railway tracks on berth tracks. The maximum capacity of the hub is 175 cars. Let 4N  
be the number of cars from the railway; 5N  be the number of cars received on the railway lines of the port. Determine 
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5 4N Nω = − . The variable R reflects the current status of a hub and influences on the process of cars giving. The math-
ematical model for decision-making has the form 

 

( )5, 5, 1 4,
ˆ ˆ , ,n n n nN f N N ω−=                                                                    (22) 

 
where 5,

ˆ
nN  is a model output in an instant n . The model (20) structure is described by an autoregressive equation 

of the first order. Apply the approach stated above and evaluate the effect ω . The system (16) has the first order to ω . 
Apply algorithms from section IV.B and evaluate the autoregression order. The model (20) has the form 

 

5, 5, 1 1 4,
ˆ ˆ1.06 0.13 0,08 4.59n n n nN N Nω− −= − − − .                                                 (23) 

 
The determination coefficient of the model (21) is 0.964. The simulation showed good predictive properties of the 

model (21). 
So, modelling results confirm efficiency of the proposed approach to the lag structure estimation of the system (13). 

8.  Conclusion 

The analysis of the concept “framework” application in identification problems is realized. It is showed that this 
concept is widely used in parametrical estimation problems. Concept “framework” can be interpreted as a frame, a 
structure, the system, a platform, the concept, the basis, the system of approaches. It is showed that framework can be 
used in two directions: i) the conceptual concept integrating the number of methods, approaches or procedures; ii) the 
mapping describing in the generalised form processes and properties in the system. The second direction is closer to 
methods which are applied in the qualitative theory of dynamic systems. In work, this approach is interpreted as the 
methodology based on the analysis of virtual geometrical frameworks. The main difference of geometrical frameworks 
from the approaches applied in the theory of chaos, accidents and so on consists that mathematical mapping (structure) 
is not postulated a priori, and it is determined on the basis of the available experimental data processing. The obtained 
geometrical framework is the analysis main object which allows the make the decision about properties and features of 
the system. The present review contains the analysis of virtual geometrical frameworks application directions in struc-
tural identification systems. There are five areas of the identification theory where this approach is applicable: 

 
1. Structural identification of the nonlinear system. 
2. Lyapunov exponent estimation of the system. 
3. Structural identifiability of the nonlinear system. 
4. The system phase portrait reconstruction on the time series. 
5. The system structure estimation with lag variables. 
 
We show that Lyapunov exponents can be applied to the decision-making on static systems structure with lag vari-

ables. The structural identifiability estimation of the system with lag variables is given. 
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