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Abstract: Data Encryption is widely utilized for ensuring data privacy, integrity, and confidentiality. Nowadays, a large 
volume of data is uploaded to the cloud, which increases its vulnerability and adds to security breaches. These security 
breaches include circumstances where sensitive information is being exposed to third parties or any access to sensitive 
information by unauthorized personnel. The objective of this research is to propose a method for improving encryption 
by customizing the genetic algorithm (GA) with added steps of encryption. These added steps of encryption include the 
data being processed with local information (chromosome's value calculated with computer-generated random bits 
without human intervention). The improvement in the randomness of the key generated is based on altering the 
population size, number of generations, and mutation rate. The first step of encrypting is to convert sample data into 
binary form. Once the encryption process is complete, this binary result is converted back to get the encrypted data or 
cipher-text. Foremost, the GA operators (population size, number of generations, and mutation rate) are changed to 
determine the optimal values of each operator to bring forth a random key in the minimum possible time, then local 
intelligence is headed in the algorithm to further improve the outcomes. Local Intelligence consists of local information 
and a random bit generated in each iteration. Local Information is the current value of a parent in each iteration at the 
gene level. Both local information and random bit are then applied in a mathematical pattern to generate a randomized 
key. The local intelligence-based algorithm can operate better in terms of time with the same degree of randomness that 
is generated with the conventional GA technique. The result showed that the proposed method is at least 80% more 
efficient in terms of time while generating the secret key with the same randomness level as generated by a 
conventional GA. Therefore, when large data are intended to be encrypted, then using local intelligence can 
demonstrate to be better utilized time.  
 
Index Terms: Genetic Algorithm, Artificial Intelligence, Local System, Encryption Key, Customized Algorithm, Fully 
Homomorphic Encryption. 
 

1.  Introduction 

In the modern world where everyone has access to computers and can generate bulks of data at the click of a 
button and by the usage of applications on mobile phones, the risk of security breaches has also been increased. After 
the invention of cloud computing, most of the data that was previously kept offline is now being uploaded to the cloud 
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[15]. With this technological advancement where we can access the data anywhere anytime, we also need to implement 
security measures to ensure that the data is safe from unauthorized access for misuse. These security measures include 
techniques that involve communication in such a way that it is kept secure from others/unauthorized users. To keep 
communication or data secure, many cryptographic schemes have been and are being developed over the years. The 
main objective of all these encryption schemes is to make it impossible or at least difficult for non-intended 
users/persons to get access to the secured data. Any encryption scheme involves two processes, the first process is 
encoding the original message/data into a coded message or cipher-text using an encryption key, and the second process 
involves decryption/decoding of the cipher-text into the original message/data using the decryption key [8]. 

There are two major types of cryptography: symmetric and asymmetric. Symmetric cryptography uses a method in 
which the same/single key is used for encryption and decryption processes [42], which means that the sender and 
receiver of the message or the creator and user of the data uses the same key for encrypting the data and then decrypting 
it. This type of cryptography has widely been used around the globe in many fields, i-e; ATM encryption, email privacy, 
and Secure Remote Access (SRA), etc. This type of cryptography is used in two modes, Block cipher, and Stream 
cipher. Block cipher algorithms use the data/message in the block form to encrypt and decrypt, they take the data and 
then divide it into different blocks of the same size to perform encryption processes on them. The Stream cipher system 
works on the streams of data. It combines the key with data in bit by bit or character by character mode. The encryption 
key used in this type of symmetric cryptography is relatively long and compared to the block type cipher systems.  

As the algorithms based on symmetric cryptography use the same key for encryption and decryption, therefore 
there is always a need to use only secure key between the two parties. The key management is the only problem that lies 
in this system.  

Asymmetric cryptosystems were introduced as an improvement in Symmetric cryptography. They use different 
keys for encryption and decryption processes. [43].The two keys used seem different but are alike in mathematical 
terms. The key used for data encryption is termed as the public key, and the key used in decrypting the data/message is 
termed as the private key [43]. Asymmetric Cryptosystems are widely used in secure communication and the schemes 
implementing digital signatures. 

Both symmetric and asymmetric types are popular encryption techniques to secure the data and communication. 
Data Encryption Standard (DES) was the first standard to be adopted as a symmetric cryptography standard in 1977 [42] 
till the time it was superseded by Advanced Encryption Standard (AES) [38]. Despite been deprecated, DES is still 
widely used in several applications. DES and AES are the most popular standards among symmetric cryptography. In 
asymmetric cryptography, the most popular and most widely used technique is Rivest, Shamir, and Adleman (RSA) 
Algorithm [41]. 

All these mentioned techniques have been widely used to secure the data in the past decades but due to the 
advancements in technology and the advent of cloud storage, the data is now uploaded to the cloud for the ease of 
access. The problem lies in the need to decryption the data before use. If encrypted data resides on the cloud and that 
data is required for use, the conventional encryption technique would require the user to pass on the secret key to the 
cloud to decrypt that data, thus, that it can be used. 

The passing of secret keys to the cloud and data is decrypted on the cloud; the data is susceptible to be misused by 
anyone who has/may have access to it. This problem makes these conventional techniques insufficient and inefficient 
when it comes to cloud storage [18].  

This disadvantage can be overcome with the use of Fully Homomorphic Encryption (FHE) technique. FHE 
technique allows several calculations on the cipher-text without damaging or even changing the original text itself. For 
secure data processing in the cloud, FHE [18] can be used because this technique supports the execution of several 
operations on encrypted data. While FHE is implemented, if the data needed to be processed or used, it would take the 
arguments for the data and make the search on the encrypted data and generate results in the encrypted form based on 
those arguments. Those encrypted results can then be downloaded and decrypted for use. For data 
encryption/decryption, the FHE technique uses public/private keys just like other encryption techniques. The 
complexity of this encryption key determines the effectiveness/complexity of cipher-text. To make the encryption key 
more random and thus more secure, the genetic algorithm is used [22, 27]. 

Genetic Algorithm (GA) is a search-based algorithm, it is mainly used to solve optimization problems. The genetic 
algorithm is inspired by Darwin’s Theory of Evolution, therefore; they are based on the concepts of population, 
mutation, crossover, etc. The use of genetic algorithms in encryption techniques [19] has greatly increased in the last 
few years because they are secure in their implementation. Genetic algorithms are unique [29] and best suited in this 
problem [28] because using the properties of mutation and crossover, it can generate highly random and complex keys 
to use in encryption technique [24].  

The work of genetic algorithm in cryptography was started in 2005 [36] and it has been worked upon to be used 
with different kinds of data to be encrypted, GA has also been used along with other encryption techniques [11]. The 
work to improve encryption by using GA has been done many times in different encryption techniques but, the work to 
improve the working of GA has quite not been done so far. The main focus of this research is to find the optimum 
values or customization of this algorithm so that the working can be improved. First, the optimum values of GA 
operators are set by experimenting with different combinations, and then local Intelligence is introduced in the 
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algorithm for further improvement. The improvement is based on time and randomness to generate the Encryption key. 
This research contributes towards the optimization of GA operators to find the optimum values for the generation 

of random Key in as little time as possible. We also used the Local Intelligence-based Algorithm to improve the results 
obtained with GA implementation. This study also provides a comprehensive comparison of Conventional GA and 
Local Information based implementation for the generation of a random secret key. 

Section 2 reviews the literature and the background of all the related encryption schemes including Genetic 
Algorithm Inspired Cryptography (GIC), Improved Cryptography Inspired by Genetic Algorithms (ICIGA), Fully 
Homomorphic Encryption (FHE). Section 3 deals with the details and the implementation of the proposed methodology 
to improve conventional GA. Section 4 includes the results generated by the implementation of the proposed algorithm 
and its comparison with the conventional technique. Section 5 contains the summary and future work related to this 
technique. 

2.  Background 

Cryptography is mainly divided into two types, Symmetric Cryptography [42] in which the key used for encryption 
is also used for decryption of data. The second type is Asymmetric Cryptography [41], in which two different keys are 
used for encryption and decryption called public and private keys. Work on symmetrical cryptography has remained 
relatively stationary. However, during the last decade, many approaches symmetric cryptography have been proposed 
that include genetic algorithms. 

2.1.  Genetic Algorithm 

Genetic Algorithm or simply (GA) is a search-based algorithm, it is mainly used to solve optimization problems. 
The genetic algorithms is inspired by nature therefore; they are based on the concepts of population, mutation, and 
crossover. The use of genetic algorithms in encryption techniques is greatly increased in the last few years due to their 
random nature. Genetic algorithms are unique and best suited in our problem because using the properties of mutation 
and crossover, highly random and complex keys can be generated to use in the encryption technique [27]. 

2.2.  Genetic Algorithm Methodology 

This section presents all the steps and methods of using the Genetic Algorithm. The following are the standard 
operators of the genetic algorithm. 

A.  Initial Population 

It can be called the initial input values for the Genetic Algorithm. Different input values are selected for crossover 
and offspring or new solutions are produced from them. 

B.  Fitness Function 

In each iteration, parents are evaluated under specific criteria if they are near to optimum solution or reached the 
solution criteria. This evaluation is called a fitness function. 

C.  Crossover 

In Crossover, small portions of two parents/values are replaced with one another to generate new child/values. 

D.  Mutation 

In Mutation, some uniqueness is introduced by changing bits at random in new values to make them more random. 

E.  Selection 

In the last step, the best value is ‘selected’ as a solution. 
The following figure 1 shows the 1 generation cycle of the genetic algorithm [39]. 
The initial population contains all the sample input or initial values to start the algorithm. In the standard genetic 

algorithm methodology, these initial values are consisting of all the proposed solutions to the problem. 
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Fig.1. Genetic Algorithm Operators as One Complete Cycle 

In the next step, these proposed solutions or initial values are then sorted, filtered, and selected for further 
optimization. Different techniques are used for selection from the initial population that depends on the situation and 
conditions of the problem, this situation or condition of the problem is also defined as the fitness function. This fitness 
function along with the selection method is used to select the values for the next procedure. Different selection methods 
that are used for different problems are as follow [17]. 

 
1) Roulette Wheel Selection 
2) Rank Selection 
3) Steady-State Selection 
4) Tournament Selection 
5) Elitism Selection 
6) Random Selection 
 
The fitness function along with any of the above selection methods is used to sort, filter, and select the values for 

the next procedure called crossover. Each of the above-mentioned selection methods has its implementation and 
benefits, therefore the selection method can have a great effect on the results generated at the end of each cycle. The 
purpose of each selection method can be different based on the problem statement therefore it is crucial to choose the 
best-suited selection method for the problem.  

Different crossover techniques are used to mix or interchange different bits/ values of the parents to develop off-
springs. Different crossover techniques that are used are as follow [12]; 

 
1) Single-point crossover 
2) Two-point and k-point crossover 
3) Uniform crossover 
4) Crossover for ordered lists 
 
Just like the selection methods, all the crossover techniques have different uses and purposes. Using a specific 

crossover technique suited to the problem might have a higher effect as compared to other crossover techniques. 
After the off-springs are generated, these are passed through one more procedure of mutation to generate some 

new values/characteristics to be somewhat different from their parents.  
Different mutation techniques used are as follow [12]; 
 

1) Bit-String Mutation 
2) Flip Bit Mutation 
3) Boundary Mutation 
4) Non-Uniform Mutation 
5) Uniform Mutation 
6) Gaussian Mutation 
7) Shrink Mutation 
 
After the mutation technique is applied, the child is ready for the next cycle as a parent. The fitness value is 

calculated of the new generation and then selection technique is applied for selecting the parents for the next generation 
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until an optimized solution is found. 

2.3.  Genetic Algorithm (GA) in Cryptography 

A symmetric system was developed in 2006, which is a block-based encryption scheme named Improved 
Cryptographic Inspired by Genetic Algorithm (ICIGA) [35]. In this technique, text document/data is first converted into 
binary form and then divided into blocks of the same size. The encryption key is generated as the encryption progresses 
therefore the size of a block and key size must be set to the same size and they can be set as per the user’s interest. This 
ICIGA technique is an improvement of the already proposed technique Genetic Algorithm Inspired Cryptography (GIC) 
by the same authors [36]. 

In 2012, [31] proposed an approach that used GA with a pseudorandom sequence. This technique could easily be 
used in industrial level applications that have a use for e-security image applications for encryption and decryption. 
Several images were encrypted and decrypted with this approach and the experimental results showed real-time data 
protection with a high throughput rate. Many other genetic algorithm techniques have also been used for image 
encryption [23, 30, 32] where different operators of the genetic algorithm were applied on image pixels and a key was 
generated as a result to decrypt the image back to its original form. Genetic algorithm has also been used along with 
other techniques to improve image encryption results [11]. 

The genetic algorithm is also used in network security [1, 13, 21] where the data to be sent through a network is 
converted into binary form and then different GA operators are applied to randomize these bits so that the original data 
can be encrypted. The encryption key is also transmitted at the end of the data stream to the receiver to decrypt the 
binary encrypted data. 

In recent years, many authors have used GA in their encryption techniques to secure plaintext [9, 21]. In this 
technique, the authors have customized the GA and used two different keys entered by the end-user/sender of the 
message. Then those keys are merged, and different GA operators are applied to get the cipher-text. Others have used 
GA to generate a random key using GA and then using that random key to encrypt the data [4]. In the same year, 
another study was performed to use GA operators to generate a randomized key and finding it a better technique as 
compared to other key generation techniques [7]. On the other hand, a technique that uses GA along with Random 
Number System (RNS) for encryption and decryption of data was implemented the same year [5]. Another technique 
that customizes GA along with some arithmetic and logical operators to secure the data has proved to be very effective 
[14]. 

Other than image encryption and text encryption. There are many other fields where GA has been implemented for 
encryption purposes such as cellular automata, non-linear optimization [26], Quadtree Approach [37], and even in 
Correlation Power Analysis (CPA) to find the correct key [10]. It has also been implemented in Decision Tree [3] and 
Wireless Networks to preserve the energy of the nodes [2]. 

GA has also been used in asymmetric cryptographic techniques that use two different keys namely public and 
private keys for encryption and decryption [25, 27]. 

Other than Cryptography, it has also been used in the improvement of path maintaining of mobile robots [6]. 

2.4.  Fully Homomorphic Encryption (FHE) 

In the last few years due to technological advancements, cloud computing has established its worth as a powerful 
computing model with various advantages including cost and accessibility. One of the major points for cloud 
technology to be spreading among most of the businesses these days is its cheap setup cost. Cloud technology comes 
with the benefits of high tech and costly hardware but without the high cost, high maintenance, and complexity. 
However, there are several security issues like the privacy, integrity, and accessibility of the data and these issues have 
to be treated while using the cloud storage. Every company or business has a priority of securing their data privacy. 
Data is uploaded or saved on cloud storage that should be encrypted beforehand [18] consequently privacy can be 
guaranteed. By using conventional encryption schemes like RSA, AES, or DES, data privacy is guaranteed to the user 
while the data is uploaded to the cloud. However, if a user wants some calculation done on that data, there is no way of 
doing it securely because the data has to be decrypted before any calculation can be done on it and this can be a huge 
setback to the security provided by these techniques in this case. 

A solution to this problem was first introduced by [40], these authors first gave the idea of Privacy Homomorphic 
Encryption. Nowadays this concept is used as Fully Homomorphic Encryption or FHE instead of Privacy 
Homomorphic Encryption. 

This scheme of FHE is considered as an algorithm for cryptography that supports arbitrary computations on 
cipher-text without needing to decrypt or reveal it. It was an open problem until [33], Gentry improvised and 
implemented the idea of Private Homomorphism into Fully Homomorphic Encryption. This technique is mostly used by 
different third-party security providers because it can be used for secure searches on huge data i.e.; private information 
retrieval without decryption. 

Craig Gentry was the first person who invented an encryption scheme that was fully homomorphic based on ideal 
lattices [34]. Gentry’s innovation can be summarized into three stages including 
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1) the construction of some-what homomorphic encryption  
2) “squashing” the decryption until it is sufficiently straightforward to be controlled within the capacity of some-

what homomorphic encryption  
3) “Bootstrapping” technique to get the FHE scheme.   
 
Since Gentry distributed the initial FHE system, this innovative discovery became a dynamic research subject and 

there has been a huge interest in this scope. Researchers have tried to change and improve the conventional technique 
by using e.g., integers instead of lattices, or learning with an error. Consequently, the execution of the following 
schemes has been improved. But as a conclusion, FHE still needs improvement in the number of operations performed 
on the encrypted text and its limitations on efficiency, etc [20]. 

3.  Research Methodology 

3.1.  Using a Genetic Algorithm 

This technique uses a random process for the selection of equal-sized blocks of the sample of input text converted 
into binary, this process is called block encryption. This process of the selection/conversion to equal-sized blocks is 
dependent on the selection of secret key length size, therefore the size of the blocks is set according to the size of this 
secret key. The choice of key length size is given to the user who is encrypting the data before starting the encryption 
procedure. The encryption key generation and block encryption are dependent on this choice. If the user doesn’t select 
the key length size then a default key length size is selected, the default key size depends on the parameters.  

After the key length is defined, the plaintext is converted into binary code and divided into two equal parts namely 
the right side and left side. After that, the Encryption Key is generated using the local information-based technique in 
figure 2. The first or the right part is broken further. It is then used along with encryption key and processed under GA 
operators; the final step consists of ciphering this binary form of the text. After all the blocks are encrypted, they are 
combined back together to form the ciphertext. 

This process can be explained in the following points. 
 
1) Sample Data 
2) Encryption Key size. 
3) Setting the Block size according to the Encryption Key size. 
4) Convert Plaintext into Binary. 

 
• Each letter of the plaintext is converted into ASCII values. 
• ASCII values are then converted to the respective Binary values using the Division-remainder technique. 

 
5) Divide Binary code into two equal parts. 
6) Generate Encryption key. 
7) Merge Right part that was generated in step 5 with the generated Encryption key in step 6. 
8) Process the merged result in the previous step under Genetic Algorithm operators. 
9) Merge the result with the left part that was generated in step 5. 
10) The result is ciphertext. 
 
Above mentioned steps can be simplified into the flow diagram given in figure 2; 
Step 6 mentioned in the above methodology that involves the generation of encryption Key has more than one 

implementation. The key generated in that step has the most important role in the whole encryption procedure because it 
is used to encrypt or decrypt the data. Therefore, the study is focused on this step and thus it has different 
implementations. 
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Fig.2. Encryption Methodology using Genetic Algorithm 

The first implementation is based on standard GA operators and the results are kept for the comparison purpose. 
Different operators (number of generations, population size, mutation rate, crossover) of the above implemented 
standard GA in step 6 for the generation of the encryption key, are changed (optimized) to study the impact on its 
randomness and complexity of the generated encryption key. 

By changing the operators means that the values of each operator are changed, and the results obtained are stored 
to review the changes in the randomness of the final key generated and time spent to generate that final key. For 
example; the total population is changed in each test to observe the time taken to generate the final key and its 
randomness and how many generations does it take to generate a highly random key in minimum possible time. Last 
but not least, changes in the mutation rate and different crossover techniques are implemented to observe the changes in 
the results obtained.  

After this implementation and result collection, the second implementation is performed, which is based on the 
proposed technique. The proposed technique is based on the local Intelligence. In this implementation, the operator of 
the crossover and mutation that were used in standard GA implementation is replaced with local Information based 
operators. 

3.2.  Local Information based Key Generation  

After the implementation of the above-mentioned customization and result obtained, some steps of this GA are 
replaced and introduced with some additional steps of local intelligence. Local intelligence consists of two operators 
(best/worst value of chromosome at the gene level and a random bit generated at each iteration). This local intelligence 
is then processed with the previous iteration values of each binary key obtained under a specific mathematical pattern, 
as the goal here is to achieve total randomness while keeping the time factor. This local intelligence is used to get more 
random behaviour as a proposed GA oriented technique. 

Below are the operators of the proposed GA oriented technique; 
 
1) Initial Population 
2) Random Selection 
3) Local Intelligence 



Improving Cloud Data Encryption Using Customized Genetic Algorithm 

Volume 12 (2020), Issue 6                                                                                                                                                                       53 

• Best/worst or random value (depending upon the fitness function) 
• Random bit 

 
4) New Population 
 
Above mentioned steps can be simplified as presented in figure 3; 

 

 
Fig.3. Local Intelligence-based operators 

The implementation of the above technique allows us to test and compare the results obtained with standard GA as 
well as its customized operators. This allows us to better understand the reasons to implement such a technique and its 
effectiveness. 

Algorithm for local intelligence-based methodology can be seen below; 
 
1) Initiate all the K population with binary random strings. 
2) Initiate the velocity of each parent for the initiated population. 
3) Compute fitness of every parent by the given fitness function. 
4) Repeat until the result found or reached the number of iterations. 

 
• Select a parent at random. 
• Generate a random bit. 
• Multiply the random bit with each gene of the selected parent. 
• Update velocity of each gene as below; 

 
Vim(n) = Vim(n) + (Φ + Xim)                                                                  (1) 

 
In the above equation (1), ( )imV n  is the velocity of the thm  gene of the thi  parent in the thn  iteration. imX  is the 

thm  gene of the thi  parent and Φ  is the random number in floating points. 
 

• Convert each gene value into binary. 
• Update population. 

 
5) Stop 
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A flow diagram of the above-mentioned methodology can be seen in figure 4; 
 

 
Fig.4. Local Intelligence-based Algorithm 

The local intelligence part promises to be faster as compared to the standard GA technique and reliable as much. 
The best / worst value step and random bit step fully overtake the crossover and mutation steps of standard GA 
therefore it promises as much randomness as well. 

The new population generated after implementing local intelligence operators are evaluated under fitness function 
and it works just like GA to produce new generations with the benefit of being faster. 

After the above implementation, the results are analyzed and compared for time and complexity. 

4.  Result and Discussion 

4.1. Implementation of Conventional Approach 

The following values/parameters are proposed for the testing of this algorithm. 
 
• Key size: 64 
• Number of generations: 500, 1,000, 2,000, 5,000, 10,000. 
• Population Size: 32, 48, 64, 128 
• Selection type: roulette-wheel, random 
• Crossover type: random, one point, two-point 
• Mutation rate: 0.001, 0.03 
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The execution of this algorithm is done in java. Time varies from iteration to iteration, which depends on the load on 
processor and RAM used in each test, therefore, an average of values is taken for comparison. 

Initially, when the lowest values are used with only 500 generations, 32 population size with 0.001 mutation rate, it 
quickly generates the final key in just a blink of an eye, but the randomness of the key is also compromised because of a 
very low number of generations. As the values of the GA operators are increased, time is taken to generate the final key 
also increases but it ensures high randomness in the final key. As this study is focused to find the threshold point of 
values to generate a highly random key in the lowest possible time, therefore, using a mixture of all the sample values of 
GA operators is necessary to cover all the points from minimum to maximum. 

In the following study, it is observed that the time taken to generate the key with the lowest sample values of GA 
operators is 0.045 milliseconds and the time taken to generate the key with highest values of 64 Population and 10,000 
Number of Generations only took 0.74 milliseconds which is still impressive. All the observed values in this test can be 
seen in the following tables. 

Table 1. Standard Ga Implementation with Population ‘32’ 

 
Number of Generations 

G=500 G=1000 G=2000 G=5000 G=10000 
Population (P) = 32 0.084 0.147 0.27 0.634 1.235 

 
Results of Table 1 are generated with the initial population (P) of ‘32’, the time is taken gradually increases with the 

number of generations (G). As this is the first observation, therefore the results cannot be compared to or analyzed as 
good or average. 

Table 2. Standard GA Implementation with Population ‘48’ 

 
Number of Generations 

G=500 G=1000 G=2000 G=5000 G=10000 
Population (P) = 48 0.117 0.207 0.389 0.934 1.835 

 
In Table 2, the results generated are based on the initial population (P) of ‘48’, as it can be observed that it takes 

about 40% more time to complete the same number of generations when running with ‘48’ initial population as compared 
to the Table 1  with ‘32’ initial population. 

Table 3. Standard GA Implementation with Population ‘64’ 

 
Number of Generations 

G=500 G=1000 G=2000 G=5000 G=10000 
Population (P) = 64 0.147 0.269 0.513 1.239 2.427 

 
The values in Table 3 are a result of implementing the initial population (P) of ‘64’, as it can be observed that the 

time increase is significant for the initial value of generations (G) ‘500’. But it is certainly less significant of about 25% 
as compared to 40% in Table 2.  

Table 4. Standard GA Implementation with Population ‘128’ 

 
Number of Generations 

G=500 G=1000 G=2000 G=5000 G=10000 
Population (P) = 128 0.277 0.524 0.998 2.479 4.891 

 
As we proceed further with the initial population (P) of ‘128’ in Table 4, the population size is doubled as compared 

to population ‘64’ in Table 3, but we also observe that the time taken has been significantly increased from about 75% if 
Table 1 with population size ‘32’ and Table 3 with population size ‘64’ are compared, which is also double the 
population size. The time is increasing from 75% to about 90%. 

4.2.  Implementation of Local Information Approach 

When the above implementation is complete and the results are gathered, the parameters are changed and the local 
intelligence factors are applied instead of crossover and mutation operators of the standard GA to observe the changes in 
the time taken for the algorithm to run and the randomness of the generated encryption keys. The following are the 
values/ parameters of the customized algorithm based on local intelligence. 

 
• Key size: 64 
• Number of generations: 500, 1,000, 2,000, 5,000, 10,000. 
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• Population Size: 32, 48, 64, 128 
• Selection type: roulette-wheel, random 
• Local Intelligence Chromosome value: Best value 
• Local Intelligence Bit type:  Random Bit 
 
Other computer machine parameters are the same as were with conventional GA implementation, the coding and 

execution of the above mentioned can also be observed in Appendix 1. The difference in the generated results can be seen 
in the following Figure 5; 
 

 
Fig.5. Local Information with Population ‘32’ 

Above values can be observed in Table 5 

Table 5. Local Information Implementation with Population ‘32’ 

 
Number of Generations 

G=500 G=1000 G=2000 G=5000 G=10000 
Population (P) = 32 0.045 0.0573 0.0733 0.092 0.15 

 
The values in Table 5 are the result of the initial population (P) of ‘32’ with a gradual increase in the number of 

generations from ‘500’ to ’10,000’. As it can be seen that the initial value of time is just ‘0.045ms’ which is almost half 
the time taken to complete ‘500’ generations as compared to the conventional approach (Table 1) with the same 
parameters, thus the initial observation shows that the customized approach is more than twice as fast with ‘500’ cycles 
in Table 5 as compared to Table 1. 

Now let’s calculate the executed time with the population size ‘48’.The results can be organized in the form of the 
following table.  

Table 6. Local Information Implementation with Population ‘48’ 

 
Number of Generations 

G=500 G=1000 G=2000 G=5000 G=10000 
Population (P) = 48 0.057 0.072 0.104 0.181 0.42 

 
In Table 6, the increase in time taken to complete ‘500’ generations with ‘48’ population is ‘0.057’, which is an 

increase of around 26% time as compared to Table 5. It is a considerable improvement of 14% less time as compared to 
the difference between Table 2 and Table 1. It can also be observed that Table 6 approach with ‘500’ cycles is more than 
100% faster as compared to the approach in Table 2. 

Let’s move forward with the population ‘64’ and observe the executed time. 

Table 7. Local Information Implementation with Population ‘64’ 

 
Number of Generations 

G=500 G=1000 G=2000 G=5000 G=10000 

Population (P) = 64 0.072 0.097 0.153 0.322 0.74 
 
In Table 7, using the initial population of ‘64’ takes ‘0.072’ seconds to complete ‘500’ iterations, which is also about 

26% as compared to Table 6. It is also to be observed that the increase in time is very uniform as compared to the 
difference between Table 2 and Table 3 which provided 40% and 25% time difference respectively which is very 
irregular. The approach in Table 7 with ‘500’ cycles also proves to be about 100% faster as compared to Table 3 with the 
same parameters. 
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Now let’s try the population size ‘128’ and see what difference does it make in regards to time executed. 

Table 8. Local Information Implementation with Population ‘128’ 

 
Number of Generations 

G=500 G=1000 G=2000 G=5000 G=10000 
Population (P) = 128 0.137 0.262 0.592 1.012 1.5 

 
In Table 8, the initial Population (P) is ‘128’ with ‘500’ generations, and time increase can be observed to be about 

90%. The time increase is understandable because of the 100% increase in the initial population from ‘64’ to ‘128’. But it 
is to be observed that the approach in Table 8 is twice as fast as compared to the approach in Table 4 with the same 
parameters. 

4.3.  Discussion 

When the standard algorithm was implemented by [15] it took 3.5760 milliseconds to generate the randomized key 
with the same values. The only major difference in these two studies is that of the customization of GA and its operators. 
The customization of GA operators alone can show to be effective but when coined with local intelligence it is observed 
that the best results can be obtained. 

The time complexity and randomness by using customized GA is really impressive as compared to the standard GA 
implementation. Even if used on a low-end computer, it is effective because the time difference is marginal in the case of 
customized GA oriented technique. The implementation summary of the customized GA and its comparison with 
(Alkharji & Liu, 2017) is provided in Table 9; 

Table 9. Running time of GA by (Alkharji & Liu, 2017) 

 
Number of Generations 

G=500 G=1000 G=2000 G=5000 G=10000 

Population Size 
K=32 0.1560 0.2030 0.3440 0.7500 1.4389 
K=48 0.187 0.2960 0.5160 1.1720 2.3130 
K=64 0.2500 0.4370 0.7650 1.8280 3.5760 

 
It can be observed in Table 9 that the population size ‘32’ takes ‘0.1560’ seconds to complete ‘500’ cycles which is 

the lowest time with minimum parameters, and it takes ‘3.5760’ seconds to complete ’10,000’ cycles with ‘64’ initial 
population size which is the highest time with maximum parameters provided. When it is calculated, we can find that the 
time difference from minimum parameter values to maximum parameter values is ‘3.42’ seconds, which converts to 
about ‘22’ times the initial time. 

Table 10. Running time of Operator Customized Conventional GA 

 
Number of Generations 

G=500 G=1000 G=2000 G=5000 G=10000 

Population Size 
K=32 0.084 0.147 0.27 0.634 1.235 
K=48 0.117 0.207 0.389 0.934 1.835 
K=64 0.147 0.269 0.513 1.239 2.427 

 
It can be observed in Table 10 that the population size ‘32’ takes ‘0.084’ seconds to complete ‘500’ cycles which is 

the lowest time with minimum parameters, and it takes ‘2.427’ seconds to complete ’10,000’ cycles with ‘64’ initial 
population size which is the highest time with maximum parameters provided. 

Table 11. Running time of Local Information based Approach 

 
Number of Generations 

G=500 G=1000 G=2000 G=5000 G=10000 

Population Size 
K=32 0.045 0.0573 0.0733 0.092 0.15 
K=48 0.057 0.072 0.104 0.181 0.42 
K=64 0.072 0.097 0.153 0.322 0.74 

 
In Table 11, It can be observed that the population size ‘32’ takes ‘0.045’ seconds to complete ‘500’ cycles which is 

the lowest time with minimum parameters, and it takes ‘0.74’ seconds to complete ’10,000’ cycles with ‘64’ initial 
population size which is the highest time with maximum parameters provided. When these values are compared with 
Table 9 and Table 10, we can easily observe that these values supersede greatly the time difference and time taken to 
complete any given number of cycles with any given population size. 
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4.4.  Time Complexity  

The time is taken to generate the final encryption key as can be observed below, increases as the number of 
generations and the population size increases, but it is still under a second. When the minimum values are used, the 
difference in time is negligible for different population sizes. As the number of generations increases, the time difference 
in different studied population sizes can be observed to increase rapidly. 

 

 
Fig 6. Time Complexity of Local Information based Approach 

Figure 6 shows that even after 10,000 generations and initial population size of 64, it still can generate the non-
repeating and highly random key in under a second and these are not even the threshold values because these are the 
highest values used in the study.   

Therefore, even the highest values used in the study involving local intelligence-based implementation are sufficient 
enough to generate completely random and time-efficient keys as compared to the other implementations in the study. 

4.5.  Degree of Randomness 

The degree of randomness is calculated to find the uniqueness and correlation of the final generated keys with 
previously generated final keys. In each test, it takes 10,000 iterations to complete and generate a final key and the value 
is converted into decimal and stored. Later on, all the stored values are compared and observed the correlation with all the 
other generated keys and to find any sequence to the generated key.  

Table 12. Degree of Randomness for Customized Algorithm 

742 972 912 976 806 779 469 997 488 467 
671 326 903 186 809 901 114 179 94 215 
992 801 859 855 195 841 451 785 684 207 
542 332 191 597 247 301 931 539 551 753 
225 90 228 190 668 624 786 425 754 725 
694 401 481 212 394 810 678 364 459 279 
795 357 781 115 996 890 126 275 563 293 
174 626 143 333 675 534 595 1014 540 103 

 
Test results in Table 12 have been performed on a key length of 10 x 10 to keep it simple to observe the results but 

the actual key length size is 64 x 64 and it will be even less susceptible to be cracked because it has been found in the 
sample key length of 10 x 10, that the final keys generated are random and unique. The correlation of the final key is '0' 
with every previously generated key. This means that every final key recorded is uniquely different than any other keys 
already generated and there is no sequence to these generated keys and can be seen in Table 12. 

5.  Conclusion and Future Recommendations 

The implementation of the conventional technique of GA is very effective with respect to time, complexity, and 
randomness that compared to other encryption techniques [15] as mentioned in table 9. When the operators of this 
conventional technique are customized, it can produce impressive improvements concerning time, which can be 
observed from table 1 to table 4. The difference in both operator's customized GA implementation and the conventional 
GA implementation can be observed that we compared to table 9 with table 10. 

It can be observed in table 9 that it can take up to '0.1560 ms' to complete '500' generations with '32' initial 
population but table 10 showed that with the same parameter values, it takes only '0.084 ms' to complete. The 
improvement in time is more than 80% for the initial parameter values implemented with operator customized GA. For 
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the highest parameter values, it can be observed that in table 9 the conventional GA takes '3.576 ms' to complete 
'10,000' generations with '64' initial population. Now , table 10 shows that with the same parameters of the initial 
population of '64' and '10,000' generations, it only takes '2.427 ms' which is more than 30% time improvement as 
compared to the conventional implementation. The above comparison is only for the conventional GA and its 
improvement by customizing its operators. Now let's observe the results with local intelligence-based Implementation. 
In table 11 the implementation shows that the minimum parameters of the initial population of '32' with generation '500' 
result take '0.045 ms', which is almost half the time taken as compared to the operator customized GA or improved GA 
implementation in table 10. The highest values of the initial population of '64' with generation '10,000' takes '0.74 ms' 
which is more than 200% time improvement as compared to the improved GA implementation table 10. That means the 
local information-based approach proves to be 2 times faster as compared to the conventional GA approach. 

After observing the above comparisons, we can conclude that every result with local intelligence-based 
implementation is improved and better concerning time as compared to all the previous implementations. 

Using the genetic algorithm for generating a random encryption key has been very effective for the past decade but 
the full potential in this regard has not been reached. This study provides insights on how to customize this algorithm 
for gaining maximum potential and best results in the sense of randomness concerning time. It has proven to be very 
effective to customize this algorithm to get the best results out of this algorithm. 

This algorithm has a lot of potential for use in the encryption systems. Many have done some exceptional work in 
implementing a genetic algorithm in different encryption schemes in the last decade and it shows very good results as it 
is. But, as the volume of data has also been increased and is increasing because of the advent of cloud storage, therefore; 
there the work must be done to increase its efficiency in any or all regards of time, complexity or randomness, etc. The 
one implementation that was focused in this research is to improve its performance with respect to time without 
affecting the randomness. Some more studies are also needed to increase the randomness even more or increase the 
complexity of this algorithm. So, much work can be done to further improve this algorithm and use it with any 
encryption schemes. 

Appendix A 

 public static final int size = 32; 
 public static final int keySize = 64; 
 public static final int loopSize = 500; 
 public static boolean check = true; 
 public static Individual[] indv; 
 public static tempIndividual[] previousIndv; 
 public static tempIndividual[] tempIndv; 

     public static Population myPop; 
 public static Individual indvidual; 
 public static int[] randInt = new int[5]; 
  
 private byte[] genes = new byte[size]; 
  

public static void main(String[] args) { 
 //==================== 
 //Calculate start time of the loop 
 long startTime = System.nanoTime(); 
         
 myPop = new Population(size); 
  
 indv = new Individual[size]; 
 previousIndv = new tempIndividual[size]; 
 tempIndv = new tempIndividual[size]; 
 for(int j = 0; j < size; j++) 
 { 
   Individual in = new Individual(); 
   in.generateIndividual(); 
   indv[j] = in; 
 } 
 for(int k = 0;k < 2; k++) 
 { 
  randInt[k] = 222; 
 } 
 saveTempIndv();  
 for (int i = 0; i < loopSize; i++) 
 { 
  if(check) 
  { 
   updateVelocity3(); 
   previousIndv = myPop.tempIndv; 
  } 
  else 
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  { 
   updateVelocity3(); 
   previousIndv = myPop.tempIndv; 
  } 
  updateParticle(); 
 } 
 convert2binaryv2(); 

 //Calculate end time of the loop 
 long endTime = System.nanoTime(); 

 long totalTime = endTime-startTime; 
 double tSeconds = ((double) totalTime)/ 1E9; 
  
 //Display Algorithm End Summary 
 System.out.print("Key Size: "); 
 System.out.println(keySize); 
 System.out.print("Population Size: "); 
 System.out.println(size); 
 System.out.print("Number of Generations: "); 
 System.out.println(loopSize); 
 System.out.print("Time taken: "); 
 System.out.println(tSeconds); 

Appendix B 

public static void updateVelocity3() 
{ 
 for(int i = 0; i < 2; i++) 
 { 
  Random rand = new Random();  
  int randValue = rand.nextInt(size); 
  if( i == 1) 
  { 
   while(randValue == randInt[0]) 
   { 
   randValue = rand.nextInt(size); 
   } 
  } 
  randInt[i] = randValue;   
  for(int j = 0; j < keySize; j++) 
  { 
   float fi = (float) Math.random(); 
   float cross = fi; 
   float getvelocity = 
myPop.velocities[randValue].getvel(j) + cross; 

 myPop.velocities[randValue].setvel(j, 
getvelocity); 
}  

 } 
  check = false; 
} 
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Appendix C 

public static void updateParticle() 
{ 
 float result = 0; 
 for (int i = 0; i < 2; i++) 
 { 
 int randValue = randInt[i]; 
 for (int j = 0; j < keySize; j++) 
 { 
 result = myPop 
  .velocities[randValue] 
  .getvel(j) +    
  previousIndv[randValue] 
  .getGene(j); 
  myPop 
  .tempIndv[randValue] 
  .setGene(j, result); 
 } 
 } 
} 
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