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Abstract: The k-means is the most well-known algorithm for data clustering in data mining. Its simplicity and speed of 

convergence to local minima are the most important advantages of it, in addition to its linear time complexity. The most 

important open problems in this algorithm are the selection of initial centers and the determination of the exact number 

of clusters in advance. This paper proposes a solution for these two problems together; by adding a preprocess step to 

get the expected number of clusters in data and better initial centers. There are many researches to solve each of these 

problems separately, but there is no research to solve both problems together. The preprocess step requires o(n log n); 

where n is size of the dataset. This preprocess step aims to get initial portioning of data without determining the number 

of clusters in advance, then computes the means of initial clusters. After that we apply k-means on original data using 

the resulting information from the preprocess step to get the final clusters. We use many benchmark datasets to test the 

proposed method. The experimental results show the efficiency of the proposed method.  

 

Index Terms: Data clustering, k in k-means, initial centers in k-means, clustering algorithms. 

 

1.  Introduction 

Data clustering is an important method in data mining to discover latent knowledge from data. It is an 

unsupervised learning method, it aims to group similar data together from the collected data, and the dissimilar data 

objects will be in different groups. Researchers suggested dozen methods to perform this task, these methods may fall 

into four categories; (a) partitioning (b) hierarchical (c) density and (d) grid based methods. Every method has its 

advantages and disadvantages. For example k-means has linear time complexity so it handles large datasets very well, 

but it is suitable only for convex shaped clusters. The most important open issues in k-means are determination the 

value of k (number of clusters in dataset) in advance, and the selection of starting centers. Many papers have been 

proposed to select initial centers, for example you may refer to [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. The other 

type of papers is dedicated to determine the number of clusters in data in advance, for example you may refer to [15, 16, 

17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28]. All these papers are suggested to solve each of these problems separately. 

Till now there is no proposed research to solve both of these problems together. Next section reviews some of the 

proposed researches for these problems.  

This research proposes a method to solve both of these problems together simultaneously. The idea comes from 

merging two clustering algorithms; k-means and DBSCAN “Density-based spatial clustering of applications with noise”. 

In [29] the authors mix between k-means and DBSCAN to improve the execution time of DBSCAN algorithm. Other 

authors use k-means with DBSCAN to solve the problem of clusters with various densities; you may refer to [30]. In 

[31] authors merge between k-means and single link method to overcome the time complexity and the chain effect 

which are the main problems of single link method. The most important features of DBSCAN algorithm are that it does 

not require number of clusters as input parameter from user and handles clusters of diverse shapes and sizes very well. 

The proposed method merges between DBSCAN and k-means to handle these two important issues of k-means; they 

are the expected number of clusters (k) and the selection of initial centers. The suggested method uses DBSCAN to get 

the expected number of clusters, and then computes the mean of each cluster which will be used as initial centers in k-

means algorithm. After that it applies k-means on input dataset to cluster all data objects and produces the final means 

since DBSCAN discards noise objects and outlier. 

This article is arranged as follows; section II reviews some of the earlier works, section III presents the suggested 

method, section IV shows experimental results, and section V concludes the research.   
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2.  Earlier Works 

Most clustering methods depend on some user input parameters; some of them can be estimated easily from data 

and the others cannot be estimated easily. Here we concentrate on convex shaped, compact, well-separated clusters 

since we use the k-means algorithm. K-means is very efficient partitioning method but it suffers from two problems; 

setting the value of k and selecting the initial centers. Many ideas have been proposed to solve each of these problems 

separately. There is no single idea to solve both problems together in the same time. The proposed idea does this task. 

Some papers have been proposed for selecting good initial centers in k-means algorithm [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 

11, 12, 13, 14]. We review some of the recent of them. In [14], authors merge between Genetic algorithm and k-means 

algorithm to find better initial centers, they outline each data point to the average value of its attributes, then arrange the 

points based on their average values and partition the arranged points into k subsets of equal size, then compute the 

mean of points in each subset. This method does not guarantee good initial centers, since the points of inverted attribute 

values will be in the same subset; they have the same average. 

In [13], authors introduce tri-level k-means algorithm that applies k-means on data in three continues levels; in the 

first level it partitions data into k1 clusters, where k1 is less than k. In the second level it applies k-means on large 

clusters according to their sizes and Standard deviation of points in each cluster to get smaller clusters, such that the 

total number of resulting clusters from this level is k. In the last level it applies k-means on all data points using the 

means of clusters resulting from level two. This method introduces a good idea to get better initial centers but the 

problem of setting the value of k is still exist. 

In [11], authors propose a method to select the initial centers. They calculate the range (R) of selected attributes of 

the dataset as in (1) then divide the range by k to get the length of interval as in (2). The center of the first interval will 

be equal to the minimum value of attribute plus half of length of interval as in (3). The center of the other intervals is 

calculated by adding the length of interval to the center of previous interval as in (4) 

 

max( ) min( )R attrib attrib= −                                                                   (1) 

 

R
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k
=                                                                                      (2) 

 

1 min( ) int( )
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c attrib= +                                                                    (3) 

 

1i ic c L−= + , i 2,3,..., k=                                                                  (4) 

 

This method is suitable for single attribute dataset, but for multiple attributes dataset the problem is still exist. 

Using the probability theory there will be kd possible centers, where d is the number of attributes in dataset 

(dimensionality) and k is the required number of clusters. 

In [12], authors use the highest and the lowest weighted mean to find initial centroid. This method is suitable only 

for datasets that contain only two clusters, they do not tell about more than two clusters. 

Some researchers propose methods for finding the suitable value for k in k-means [15, 16, 17, 18, 19, 20, 21, 22, 

23, 24, 25, 26, 27, 28], we review some of them. In [27], the authors introduce a method to detect the value of k, but 

their method assumes all clusters of the same radius and computes all pairwise distances for all data object that require 

o(n2). 

Cluster validity indices are considered a useful tool in finding out number of clusters. Validity indices can work 

only on pre-computed partitions of the dataset. Finding out a number of possible partitions and then validating them -

using a validity measure- is a very time consuming process [24]. 

In [28], authors propose a visual technique to discover tendency for clustering. This method is called VAT “Visual 

Assessment of Tendency for clustering”, this method starts with pairwise dissimilarity matrix and reorders this matrix 

such that accumulating the smaller dissimilarity values around the diagonal in contagious regions, and plots this matrix 

as an image. Each darker block represents cluster, from this image they can visually deduce the possible number of 

clusters in dataset. This method is time consuming. This method has been enhanced in [20] by introducing automatic 

technique for finding out the dark blocks in the VAT image. 

Till now, no research try to solve these two important problems in k-means together, this is our main contribution 

in this paper. Good selection of initial centers leads to get better clusters and decrease number of iterations, set the right 

value for k allow finding the correct clusters. Solving these two problem simultaneously guarantee converging to global 

minima for the objective function (squared error function) used in k-means algorithm which is shown in (5). 
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where oj is the current object, ci is the mean of cluster i. 

3.  Density Partitioning Clustering Algorithm (DPCA) 

This section shows the framework of the proposed method. It merges two well-known clustering methods together; 

they are DBSCAN and k-means algorithm, so this method will be called Density Partitioning Clustering Algorithm 

(DPCA), firstly the main steps of both algorithms are presented. 

 

DBSCAN steps 

Input: Dataset, Eps, MinPts=4 

Output: set of clusters 

 

1. Foreach unclassified object in dataset 

2. Find neighbors of object in Eps radius 

3. If size of neighbor of object ≥ Minpts goto 4 else goto 5 

4. Start new cluster for this object  

 

a. Add all unclassified neighbors to seedlist and assign them to current cluster 

b. While seedlist isn’t empty 

c. Object = top object in seedlist 

d. Find neighbors of object in Eps radius 

e. If size of neighbor of object ≥ Minpts goto f else goto g 

f.       append all unclassified neighbors to seedlist and assign them to current cluster 

g. Remove object from seedlist 

h. End while 

 

5. Next object in dataset 

6. End 

 

All objects satisfying condition in step 3 are called core objects otherwise object may be border or noise object. 

Reader may be referred to [32]. DBSCAN discovers clusters in dataset without specifying their number in advance, so 

this step solves the problem of setting the value of k in k-means algorithm. The proposed method computes the mean of 

each cluster resulting from DBSCAN algorithm, this computation leads to get k means, and these means will be used as 

initial centers for k-means algorithm. Note that there are some objects do not assigned to any cluster. K-means assigns 

them to closest cluster so means need to be updated at least once. The difference between the final means and initial 

means is very small since noise and outlier objects form small percentage of dataset’s size. 

 

k-means steps 

Input: Dataset, k 

Output: k means (one mean for each cluster) 

 

1. Randomly select k initial centers 

2. Assign each object to closest cluster 

3. Compute new means for clusters 

4. Repeat steps 2 and 3 until means unchanged 

 

K-means is very simple, efficiently handle large dataset, and has linear time complexity. 

The proposed framework applies DBSCAN on dataset; the result of this phase is set of clusters. Next step, the 

method finds the mean of all objects in each cluster and counts the means (clusters). In second phase, the framework 

applies k-means on dataset using the computed means as initial centers and the count of clusters as value for k. The 

framework is depicted in Fig.1. 

Selecting the value of Eps from the k-dist plot in DBSCAN is not a problem since the final output will be the 

means of convex shaped clusters, as we know k-means algorithm handle clusters of similar size. The most important 

feature of DBSCAN is that it can handle clusters of varied shapes, and sizes well, so it is very easy for it to discover 

convex shaped clusters of similar sizes. It is easy task to count the resulting clusters from DBSCAN. As soon as getting 

clusters from DBSCAN it is very easy to compute the mean for each cluster, these means will be used as initial centers 
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in k-means algorithm, so we guarantee that no two initial centers belong to the same cluster, since DBSCAN forms 

clusters in dense regions so each initial center for k-means will be a representative for dense region (cluster). Optimal 

selection of initial means leads to very small number of iteration in k-means; which is less than 6 experimentally. Since 

DBSCAN discards noise and outlier objects from the final result, so k-means will assign each object of them (noise and 

outlier) to the closest cluster (mean). We have tested the proposed method on many benchmark datasets and the result 

reveals the efficiency of it. 

 

 

Fig.1. The proposed framework (DPCA) 

4.  Experimental Results 

This section shows some of the results we get from applying the proposed method on some benchmark datasets. 

First a brief description of these datasets is presented. These datasets can be downloaded from 

http://cs.uef.fi/sipu/datasets/ 

 

A sets (A1, A2, A3): These sets contain spherical shaped clusters of the same size, and the number of clusters k 

=20, 35 and 50 respectively, each cluster size is 150 objects; the overlap of clusters is 20%. The sets are subsets of each 

other: A1  A2  A3.   

 

S sets (S1, S2, S3, S4): These sets contain Gaussian clusters with varying overlap that range from 9% to 44%. 

Most of clusters are spherical shaped, but a few of them have been truncated to resemble non-spherical Gaussian 

clusters. The set S4 has the strongest overlap. These datasets have the same size which is 5000 objects and contain the 

same number of clusters which is 15 clusters. 

 

Unbalance: This dataset has 8 clusters in two well separated groups. The first three clusters are of high density and 

each one contains 2000 objects. The other five clusters are sparse and each one contains 100 objects. The two groups 

are well-separated so that using large value for Eps results in correct clusters.  

 

R15 dataset has 15 convex shaped Gaussian clusters, dataset size is 600 objects. 

 

D31 dataset has 31 convex shaped Gaussian clusters, dataset size is 3100 objects. 

Figures 2 to 11 show the k-dist plot used to select Eps for DBSCAN while MinPts is fixed to 4 in Figures labeled 

with a. Figures labeled with b depict the clusters resulting from DBSCAN after computing the mean for each cluster. 

Figures labeled with c show the actual dataset and the initial centers that will be used by k-means. Comparing between 

Figures b and c you find outlier and noise objects are discarded by DBSCAN algorithm, but k-means assigns all objects 

in datasets to the closest cluster. Figures labeled with d graphically show the final means for clusters and the objects 

belonging to each cluster by using different color for each cluster. The black stars represent the means of clusters in 

Figures b, c, and d. 

Fig.2.c shows that clusters are of similar sizes, shapes, and there are overlaps among some clusters. Clusters have 

similar densities and there are some sparse objects on borders of clusters; these objects are discarded by DBSCAN as 

shown in Fig.2.b. The proposed method discovers the right clusters as shown in Fig.2.d. 

Input dataset, Eps, MinPts 

 

Apply DBSCAN algorithm on dataset  

Count the clusters, and compute the 

mean for each cluster 

Apply k-means algorithm on dataset  

Output k means of clusters 
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Fig.2.a. 4-dist plot for A1 

 

 
Fig.2.b. Resulting k, and means from DBSCAN 

 
Fig.2.c. Input to k-means (A1, k, means) 
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Fig.2.d. Resulting from k-means 

Fig.2. The result of applying the DPCA on dataset A1 

Fig.3.c shows that clusters are of similar sizes, shapes, and there are overlaps between clusters. Clusters have 

similar densities and there are some sparse objects on borders of clusters; there are large number of objects have been 

discarded by DBSCAN as shown in Fig.3.b, Since we use small value for Eps as shown in Fig.3.a. The proposed 

method discovers the right clusters as shown in Fig.3.d. Comparing between Fig.3.c and Fig.3.d there is very small 

change between the initial centers and the final ones. 

 

 
Fig.3.a. 4-dist plot for A2 

 
Fig.3.b. Resulting k, and means from DBSCAN
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Fig.3.c. Input to k-means (A2, k, means) 

 
Fig.3.d. Resulting from k-means 

Fig.3. The result of applying the DPCA on dataset A2 

Fig.4.c shows that the size of dataset is increased and the data space becomes more crowded. Clusters have similar 

densities and there are less sparse objects on borders of clusters; there are large number of objects have been discarded 

by DBSCAN as shown in Fig.4.b, Since we use small value for Eps as shown in Fig.4.a. The proposed method 

discovers the right clusters as shown in Fig.4.d. Comparing between Fig.4.c and Fig.4.d there is very small change 

between the initial centers and the final ones. 

 

 
Fig.4.a. 4-dist plot for A3
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Fig.4.b. Resulting k, and means from DBSCAN 

 
Fig.4.c. Input to k-means (A3, k, means) 

 
Fig.4.d. Resulting from k-means 

Fig.4. The result of applying the DPCA on dataset A3 

Fig.5.c shows that dataset contains some elongated clusters and most clusters are of spherical shaped. Clusters 

have similar densities and are well separated; there are large number of objects have been discarded by DBSCAN as 

shown in Fig.5.b, Since we use small value for Eps as shown in Fig.5.a. The proposed method discovers the right 

clusters as shown in Fig.5.d. Comparing between Fig.5.c and Fig.5.d you find that the initial centers and the final ones 

are almost the same. 
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Fig.5.a. 4-dist plot for S1 

 
Fig.5.b. Resulting k, and means from DBSCAN 

 
Fig.5.c. Input to k-means (S1, k, means)
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Fig.5.d. Resulting from k-means 

Fig.5. The result of applying the DPCA on dataset S1 

Fig.6.c shows that dataset contains some elongated clusters and most of clusters are spherical. Clusters have 

similar densities and are not well separated; there are large number of objects have been discarded by DBSCAN as 

shown in Fig.6.b, Since we use small value for Eps as shown in Fig.6.a. The proposed method discovers the right 

clusters as shown in Fig.6.d. Comparing between Fig.6.c and Fig.6.d the initial centers and the final ones are almost the 

same. 

 

 
Fig.6.a. 4-dist plot for S2 

 
Fig.6.b. Resulting k, and means from DBSCAN 
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Fig.6.c. Input to k-means (S2, k, means) 

 
Fig.6.d. Resulting from k-means 

Fig.6. The result of applying the DPCA on dataset S2 

Fig.7.c shows that dataset contains one elongated cluster and the other clusters are spherical. This dataset is 

challenging for applying original k-means only; there are no separations between clusters. There is large overlap 

between clusters; there are large number of objects have been discarded by DBSCAN as shown in Fig.7.b, Since we use 

very small value for Eps as shown in Fig.7.a. The proposed method discovers the right clusters as shown in Fig.7.d. 

Comparing between Fig.7.c and Fig.7.d there is very small change between the initial centers and the final ones. 

 

 
Fig.7.a. 4-dist plot for S3
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Fig.7.b. Resulting k, and means from DBSCAN 

  
Fig.7.c. Input to k-means (S3, k, means) 

 
Fig.7.d. Resulting from k-means 

Fig.7. The result of applying the DPCA on dataset S3 

Fig.8.c shows that dataset contains three elongated clusters and the others are spherical. This dataset is the most 

challenging for applying original k-means only; there are no separations among clusters. All clusters are overlapped 

with each other; about half of objects have been discarded by DBSCAN as shown in Fig.8.b, since we use very small 

value for Eps as shown in Fig.8.a. The proposed method discovers the right clusters as shown in Fig.8.d. Comparing 

between Fig.8.c and Fig.8.d there is very small change between the initial centers and the final ones. 
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Fig.8.a. 4-dist plot for S4 

 
Fig.8.b. Resulting k, and means from DBSCAN 

 
Fig.8.c. Input to k-means (S4, k, means)
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Fig.8.d. Resulting from k-means 

Fig.8. The result of applying the DPCA on dataset S4 

Fig.9.c shows that dataset contains 8 clusters in two levels of density, all clusters are spherical. The clusters are 

well separated. So DBSCAN can discover these clusters using large value for Eps - as shown in Fig.9.a - to discover the 

five low density clusters as shown in Fig.9.b. The proposed method discovers the right clusters as shown in Fig.9.d. 

Comparing between Fig.9.c and Fig.9.d the initial centers and the final ones are almost the same. 

 

 
Fig.9.a. 4-dist plot for unblanced 

 
Fig.9.b. Resulting k, and means from DBSCAN
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Fig.9.c. Input to k-means (unblanced, k, means) 

 
Fig.9.d. Resulting from k-means 

Fig.9. The result of applying the DPCA on dataset unblanced 

Fig.10.c shows that dataset contains separated spherical shaped clusters of the same densities. There are few 

number of objects have been discarded by DBSCAN as shown in Fig.10.b, Since we use appropriate value for Eps as 

shown in Fig.10.a. The proposed method discovers the right clusters as shown in Fig.10.d. Comparing between Fig.10.c 

and Fig.10.d the initial centers and the final ones are almost the same. 

 

 
Fig.10.a. 4-dist plot for R15
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Fig.10.b. Resulting k, and means from DBSCAN 

 
Fig.10.c. Input to k-means (R15, k, means) 

 
Fig.10.d. Resulting from k-means 

Fig.10. The result of applying the DPCA on dataset R15 

Fig.11.c shows that dataset contains spherical shaped clusters that are overlapped. Clusters have similar densities. 

Most sparse objects have been discarded by DBSCAN as shown in Fig.11.b, since we use good value for Eps as shown 

in Fig.11.a. The proposed method discovers the right clusters as shown in Fig.11.d. Comparing between Fig.11.c and 

Fig.11.d the initial centers and the final ones are almost the same. 
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Fig.11.a. 8-dist plot for D31 

 
Fig.11.b. Resulting k, and means from DBSCAN 

 
Fig.11.c. Input to k-means (D31, k, means)
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Fig.11.d. Resulting from k-means 

Fig.11. The result of applying the DPCA on dataset D31 

The following Table 1 shows the actual size of each dataset, and the input value for DBSCAN parameter; you note 

that MinPts = 4 for all datasets except the last one MinPts = 8. The value of Eps we get it from the k-dist plot. K in table 

refers to the discovered number of clusters by DBSCAN and this number is used as a value for k in k-means, and the 

mean value of objects in each cluster is used as initial center for a cluster in k-means, the last column shows that the 

number of iteration in k-means which is very small due to the good selection for the initial centers for clusters. These 

results are great evidence the efficiency of the proposed method for solving the two main problem of k-means algorithm.  

Table 1. Characteristic of Datasets with the Resulting Clusters 

Dataset name size minpts eps k iteration 

Unbk8 6500 4 5000 8 2 

S1 5000 4 9000 15 2 

S2 5000 4 9000 15 2 

S3 5000 4 9000 15 2 

S4 5000 4 9000 15 2 

A1 3000 4 700 20 5 

A2 5250 4 600 35 3 

A3 7500 4 600 50 3 

R15 600 4 0.3 15 3 

D31 3100 8 0.5 31 4 

5.  Conclusion 

K-means is very efficient clustering method for handling large scale dataset; but it is suitable for datasets that 

contain clusters of similar sizes and convex shapes. This algorithm suffers from two main problems affecting the quality 

of its final result; they are the determination of the number of clusters in advance and the selection of initial centers. 

This paper introduces a very simple idea to solve these two problems together. This paper benefits from the properties 

of DBSCAN where it does not require the number of cluster in advance and its ability to handle clusters of varied 

shapes and sizes. While k-means prefers convex shaped clusters of similar sizes, so it is good idea to use the resulting 

clusters from DBSCAN and count them, compute the mean value of objects in each cluster, and then use this 

information in k-means, so the quality of clusters is enhanced, number of iterations is decreased. 

We have tested the proposed method on various datasets, and we get very promised results that prove the superiority 

of it. In future work, we will study to parallelize this method to improve the scalability of the method.   
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