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Abstract: In recent years, there are great research interests in using the Electroencephalogram (EEG) signals in 

biometrics applications. The strength of EEG signals as a biometric comes from its major fraud prevention capability. 

However, EEG signals are so sensitive, and many factors affect its usage as a biometric; two of these factors are the 

number of channels, and the required time for acquiring the signal; these factors affect the convenience and practicality. 

This study proposes a novel approach for EEG-based biometrics that optimizes the channels of acquiring data to only 

one channel. And the time to only one second. The results are compared against five commonly used classifiers named: 

KNN, Random Forest (RF), Support Vector Machine (SVM), Decision Tables (DT), and Naïve Bayes (NB). We test 

the approach on the public Texas data repository. The results prove the constancy of the approach for the eight minutes. 

The best result of the eyes-closed scenario is Average True Positive Rate (TPR) 99.1% and 98.2% for the eyes-opened. 

And it reaches 100% for multiple subjects.  

 

Index Terms: Biometrics, Electroencephalogram, Hjorth parameters, K-Nearest Neighbor, Naïve Bayes, Random 

Forest, and Support Vector Machine. 

 

 

1.  Introduction 

Using EEG as a biometric has been suggested in many studies [1], and it has achieved high accuracy results in 

most of them. EEG as a biometric has several advantages over the conventional biometrics in that EEG is more secure 

as it is impossible to be imitated or copied for fraud purposes. EEG signals, also, are highly affected by alcohol and 

drugs so the alcoholic and drug abusers will produce unacceptable signals, and thus, it will be useful in many systems 

that need a full concentration from the user such as driving, and military work. Moreover, EEG signals are highly 

affected by stress and mood that makes it difficult to force any person to produce the correct and acceptable signal. EEG 

signals are suitable for both static and continuous authentication (CA) systems. Furthermore, it can be used only by 

living subjects. On the other hand, there exist some constraints of the EEG-based biometrics applications, such as mind-

reading possibility, other constraints concerning the characteristics of the EEG signals; such as weakness, sensitivity 

and difficult to be trained. 

The main stages of any EEG-based biometrics system are scenarios of capturing the signal, Feature extraction and 

classification. Scenarios: according to the published studies, many different scenarios of capturing EEG signals have 

been used in the literature: resting with EC, resting with EO, responding to stimuli [2, 3], performing a set of mental 

tasks (mental computations [4], imagined speech [5], and imagined movement [6]) where some mental tasks are more 

appropriate for EEG-based human recognition than others, and involve a particular movement such as moving a single 

finger [7]. The spatial distribution of the brain activations strongly dependent upon either the person’s mental state or 

the activity performed during the acquisition [8]. For each designed scenario there is an optimal electrode configuration 

based on the number of channels, their positions, and their density. The less time needed for the human test, the more 

positive user experience with the system is achieved [9]. Resting scenario provides the most user-friendly scenario as it 

does not request any instructions to the users only relax. Moreover, it does not require any simulator which reduces the 

cost as well. 

Datasets: despite the EEG-based applications are numerous, but the existence of the public datasets is not sufficient 

for the biometric researches, and many studies had depended on their private or commercial datasets. Some of the 

public EEG datasets that can be used in EEG-based biometric studies are the “Australian EEG” database [10], the “CSU 

EEG” database [11], the “PhysioNet” database [12,13,14,15,16,17], “Deap” database [18], “UCI” database [19], “Texas” 

data repository [20], “Graz” database [21,22], “ATR” database [23], “Keirn & Aunon” database [24], “BNCI Horizon 

2020” database [25]. 

Features: extracting the appropriate features that are stable and achieve a high accuracy is a fundamental and 

essential step in the identification model. Many studies used the Autoregressive (AR) model features [26, 27, 28]. Other 
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studies depended on the statistical features [29]. Recently, authors in [30] extracted features from both spatial and 

temporal domains of the EEG signals using the spatiotemporal features. 

Classification: different classification algorithms were used for EEG recognition systems. Among the most 

commonly used classifiers are SVM classifier [31, 32, 33], Artificial Neural Network (ANN) [34, 35, 36], and KNN [37, 

38, 39, 40]. [37], investigated the robustness of EEG signals to determine its longitudinal stability and effectiveness in 

user identification systems, and implemented the Discrete Wavelet Transform (DWT) signal decomposition technique 

to obtain the Alpha-band waves. In particular, they used two statistical features, Root Mean Square, and Integrated EEG. 

For classification, they also implemented three classification techniques, namely, RF, SVM, and KNN. 10 users were 

tested in 6 different sessions. They used a decision fusion scheme, applying a majority voting to improve the system 

performance. Their approach achieved an average accuracy of 80%. In [38], the purpose of their study was to find the 

best band or the best bands mixture of overt mental stimuli of the EEG signal to identify subjects. They used the DWT 

to extract features that separate Alpha, Beta and Theta bandwidths of the EEG signal. They tested two different 

classifiers named ANN, and KNN. Their classification result of the KNN classifier was 50% for the Alpha band, 40% 

for Beta, and 40% for Theta. C. M. Issac and E. G. M. Kanaga [39] compared classification scores of three classifiers 

called Weighted KNN, Fine Gaussian SVM, and Linear Discriminant Analysis. The results of their research reported 

that the Weighted KNN had improved accuracy and precision value compared with the other two classifiers. The 

accuracy and precision scores of Weighted KNN were 91.7%  and 97.09%  respectively. In addition to that, the 

Weighted KNN had less error rate compared to the other two classifiers. 

Despite the time needed for testing is a critical factor to create a positive user experience, many researchers have 

studied the channel reduction while investigating the optimal time for capturing the EEG signals had not been a focal 

point. In this study, authors have focused on optimizing two important factors that can produce the user’s positive or 

negative experience with the system. These two factors are the number of channels, and the time needed by the user to 

be recognized. 

The rest of this study is organized as follows; Section 2 reviews the closed related work concerning using a single 

EEG channel. Section 3 illustrates the proposed SCOS approach for person identification using a single EEG channel 

for just one-second epoch duration. Experimental results are analyzed in section 4. Finally, the conclusion and future 

work are discussed in section 5. 

2.  Related Work 

Most of the previous studies in EEG biometric have utilized multi-channel data. As single-channel EEG devices 

have become widely available, this encouraged researchers to do more studies in using the single-channel approach. 

With a relaxed EC scenario, 13 subjects were employed for testing the approach in [26]. Comparing the results of three 

different classifiers named ANN, SVM, and LDA. Their best-achieved result was 87% using the AR model with the 

SVM classifier. Comparing to our approach, Zhu Dan et al. [26] have utilized a recording of 6-minutes for each subject 

concentrating on only one factor which is the number of channels. 

J. Chuang et al. [41] studied the usability of different scenarios naming breathing, finger, sport, song, audio, color 

and pass. They found that subjects have different orientations of the tasks based on the difficulty and enjoy the tasks. 

Although their results had achieved 99%, the size of their dataset was only 15 subjects. Comparing to our approach their 

experiments need the user to follow some instructions and perform specific tasks. While the experiments in our 

approach need only relaxation. Also their approach needed 5 seconds recording. 

While, M. T. Curran et al. [42] used the low-cost Neurosky Mindwave Mobile wireless EEG headset, tested 12 

participants who performed five mental tasks naming breath, song, face, listen and cube. The study had indicated that 

ear-EEG showed ability as a practical authentication method science it is integrated into earbuds. Comparing to our 

approach, [42] needs 12 seconds recording of performing specific tasks. 

Furthermore, R. Suppiah and A. P. Vinod [9] studied using EEG data during both closed and open resting 

scenarios, investigating the optimal period needed for identification and verification purposes. They achieved results in 

the range of 97% and99%; the best of their results were acquired using 10-seconds epochs. The proposed approach 

achieved a high accuracy result on a large dataset (to some extent), but their study didn’t measure the effect of time on 

the stability of the achieved results. 

More recently, E. S. Haukipuro et al. [7] explored the effectiveness of three different EEG authentication scenarios, 

which are resting, thinking about an image and moving one finger. They extracted features from Mel-Frequency 

Cepstral Coefficients (MFCC), and frequency power spectrum utilizing a multilayer perceptron classifier. Results for 

their research indicated that EEG data from different tasks contain sufficient information that distinguishes among users 

and hence proper for identification purposes across tasks (to some extent), and vice versa. But the result was 76% for 27 

subjects. 

The previously discussed single-channel studies except for study [9] depended on private small datasets and this is 

because of the rareness of the public large datasets which are appropriate for the EEG-biometrics studies. 
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3.  Proposed Approach 

In this section, a novel approach for EEG-based human recognition is presented. This approach optimizes two 

important factors of EEG-based biometric systems which are (i) length of recording the EEG signals, (ii) number of 

channels. 

3.1.  Preprocessing 

This approach uses all power in EEG signals and therefore all of information that is linked to cognitive brain 

functions and psychological states: Delta, Theta, Alpha, Beta and Gamma. 

For each subject, the data of the Iz channel [9] is extracted, and then these data are segmented to 1-sec epochs 

excluding the first and last epoch of each minute, each minute of data are broken up into 58 epochs of one-second each. 

3.2.  Features extraction  

Although the HjP have been used in many studies for the EEG-classification studies such as human emotion 

recognition [43, 44], effect of emotional assessment [45] and classification of seizure and seizure free [46, 47]. 

According to our knowledge, no studies exist utilizing these parameters in EEG-based biometrics. The HjP (Activity, 

Mobility and Complexity) are quantitative techniques for the EEG trace in the time and frequency domains. 

 

i. Activity is measured by the means of the amplitude variance, which has the required additive characteristic 

that allows the integration of various measurements during epoch to only one figure. 

ii. Mobility represents the relative average slope and it is computed by computing the square root of the ratio of 

first derivative variances to the amplitude.   

iii. Complexity is defined as the ratio of first derivative mobility to mobility.    

 

The parameters can be determined using the following equations: 

 

𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = 𝜎2                                                                                (1) 
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A fusion of the computed 3-HjP and the extracted values of the signal has been applied for each epoch. 

3.3.  Classification 

The KNN classifier is used. KNN is a supervised-instance based learning algorithm. The basic concept of the K-

NN algorithm is to measure the distance between the training and testing features. When the nearest distance of the 

training samples has been found, its class will be predicted for the test class. The distance between two points,   is 

calculated according to the formula [48]: 

 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑋1, 𝑋2) = √∑ (𝑋1𝑖 − 𝑋2𝑖)
2𝑛

𝑖=1                                                             (4) 

 

Where𝑋1𝑖 = (𝑋11, 𝑋12, … … … , 𝑋1𝑛) and 𝑋2𝑖 = (𝑋21, 𝑋22, … … … , 𝑋2𝑛) 

4.  Experimental Results 

This study has used the public Texas data repository [20] that contains data of 22 subjects (denoted as s1-s22), 72 

EEG Channels for a resting scenario, four minutes for eye opened and four minutes for eye closed (recording one 

minute with eyes opened and the next with eye closed). So, in this study, the authors have used minutes 2, 4, 6 and 8 for 

eyes-closed scenario and minutes 1, 3, 5 and 7 for eyes-opened scenario. Only 21 subjects who recorded 4 minutes of 

resting EC have been used, while the subject number 6 only has 2 minutes with eyes closed, so the authors have 

excluded him/her from this study. 

In this study, the authors used the Waikato Environment for Knowledge Analysis 3.8.3 tool (WEKA 3.8.3) [49]. 

And the EEG signals were preprocessed using the Matlab EEGlab-toolbox [50]. Extracting data of the Iz channel, and 
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then the signals were segmented to 1-sec epochs, excluding the first and last epoch of each minute; the result is 4872 

instances for the 21 subjects for each scenario, and 1218 instances for each minute.  Figure 1 shows a sample of the 

extracted epochs. 

 

 

Fig.1. EEG print of channel Iz for one-second epoch 

(a) Subject 3 epoch 1 eyes-opened, (b) Subject 21 epoch 1 eyes-opened, (c) Subject 3 epoch 1 eyes-closed, (d) Subject 21 epoch 1 eyes-closed 

After that, a fusion of the three HjP with the 256-extracted samples for each epoch is applied. All the data were 

shuffled, then it was divided using a ten-fold cross-validation method, this method can guarantee unbiased performance 

measures. 

To validate the performance of the proposed approach, we conducted four experiments: In experiment 1, classifiers 

were employed to the eyes-closed scenario without applying features fusion. In experiment 2, the authors employed the 

classification techniques to the eyes-closed after applying features fusion method. While in experiment 3, the eyes-

opened scenario without applying the features fusion has executed. And finally, in experiment 4 the features fusion on 

the eyes-opened scenario has done. 

The experiments are measured using five evaluators named, True Positive Rate (TPR), False Positive Rate (FPR), 

Precision, Recall and F-measure [51]. 

 

𝑇𝑃𝑅 = 𝑇𝑃 (𝑇𝑃 + 𝐹𝑁)⁄                                                                      (5) 

 

𝐹𝑃𝑅 = 𝐹𝑃 (𝐹𝑃 + 𝑇𝑁)⁄                                                                      (6) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = Confidence =  𝑇𝑃 (𝑇𝑃 + 𝐹𝑃)⁄                                                     (7) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃𝑅 =  𝑇𝑃 (𝑇𝑃 + 𝐹𝑁)⁄                                                  (8) 

 

𝐹_𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)⁄                                        (9) 

 

Where TP is True Positive, FN is False Negative, FP is False Positive and TN is True Negative. 

4.1.  Experiment 1 

In the first experiment, we applied the proposed approach on the eyes-closed scenario without applying the fusion 

of the features. And we performed a comparison among the five tested classifiers as shown in figure 1. 

As can be noticed, the results of RF classifier are the best and the most stable among the tested classifiers, which 

are; 91%, 94.3%, 95.2%, 95.5% for the four minutes respectively. But these results need more improvements to be 

applicable. 
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Fig.2. Classifiers performance for each minute without features fusion 

4.2.  Experiment 2 

This experiment has been performed exactly as experiment1, but to improve the results, the authors proposed a 

features fusion level between the extracted samples of the EEG signal and the calculated HjP. 

The best results are achieved using the KNN classifier as shown in table 1 and the results for the four minutes are 

93.4%, 98.7%, 99.1% and 96% respectively. 

Table 1.classifiers performance in experiment 2 

 
With features-fusion 

Min2 Min4 Min6 Min8 

DT 

TPR 0.873 0.946 0.952 0.955 

FPR 0.006 0.003 0.002 0.002 

Precision 0.885 0.950 0.952 0.957 

Recall 0.873 0.946 0.952 0.955 

F-measure 0.871 0.945 0.951 0.949 

SVM 

TPR 0.883 0.924 0.907 0.907 

FPR 0.006 0.004 0.005 0.005 

Precision 0.903 0.931 0.914 0.912 

Recall 0.883 0.924 0.907 0.907 

F-measure 0.882 0.921 0.906 0.905 

NB 

TPR 0.874 0.928 0.954 0.944 

FPR 0.006 0.004 0.002 0.003 

Precision 0.883 0.928 0.959 0.936 

Recall 0.874 0.928 0954 0.944 

F-measure 0.871 0.926 0953 0.936 

RF 

TP 0.918 0.950 0.954 0.959 

FP 0.004 0.003 0.002 0.002 

Precision 0.920 0.950 0.955 0.957 

Recall 0.918 0.950 0.954 0.959 

F-measure 0.917 0.950 0.953 0.957 

KNN 

TPR 0.934 0.987 0.991 0.960 

FPR 0.003 0.001 0.000 0.002 

Precision 0.935 0.987 0.991 0.960 

Recall 0.934 0.987 0.991 0.960 

F-measure 0.934 0.987 0.991 0.959 

 

The results show that the features fusion has achieved a considerable improvement to the performance of all the 

tested classifiers, for example, the accuracy of SVM at minute 2 is 78% without the features fusion while after the 

features level fusion, the results have achieved 88.3% and also the improvement for all the tested classifiers with 

different rates of improvement. 
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Fig.3. Classifiers performance for each minute with features fusion 

The comparison between the performance of the KNN classifier in the experiment1 and the experiment2 in figure 

4 shows a significant improvement achieved in the experiment2; as the features-fusion improved the results of the KNN 

classifier for the four minutes with 4%, 3.7%, 5.4% and 0.6% respectively. 

 

 

Fig.4. The effect of features fusion on the KNN classifier 

Tables 2,3,4,5 show the confusion matrices by the class of the proposed approach at minutes 2, 4, 6, 8. These 

matrices show that many subjects have been recognized with an accuracy of 100% (such as subjects: f, n, p, s and u) 

where the proposed approach has correctly recognized all the 58 epochs of them through the four minutes. 

Table 2. The confusion matrix at min 2 
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Table 3.The confusion matrix at min 4 

 

Table 4.The confusion matrix at min 6 

 

Table 5. The confusion matrix at min 8 

 

4.3.  Experiment 3 

In this experiment, we applied the proposed approach on the eyes-opened scenario without applying the fusion of 

the features. And we performed a comparison among the five tested classifiers as shown in figure 5. As can be noticed, 

the results of RF classifier are the best and the most stable among the tested classifiers, which are; 92.5%, 93.8%, 

93.5%, 91.8% for the four minutes respectively. But these results also need more improvements to be applicable. 
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Fig.5. Classifiers performance for each minute without features fusion 

4.4.  Experiment 4 

To improve the previous results, the authors proposed a features fusion level between the extracted samples of the 

EEG signal and the calculated HjP. The best results are achieved using the KNN classifier as shown in table 6 and the 

results for the four minutes are 96.8%, 98.2%, 97.7% and 96.6% respectively. 

Table 6. Classifiers performance in experiment 4 

 
With features-fusion 

Min 1 Min 3 Min 5 Min 7 

DT 

TPR 0.937 0.976 0.948 0.942 

FPR 0.003 0.001 0.003 0.003 

Precision 0.941 0.980 0.948 0.943 

Recall 0.937 0.976 0.948 0.942 

F-measure 0.936 0.975 0.948 0.941 

SVM 

TPR 0.929 0.921 0.872 0.851 

FPR 0.004 0.004 0.006 0.007 

Precision 0.933 0.928 0.886 0.856 

Recall 0.929 0.921 0.872 0.851 

F-measure 0.929 0.920 0.867 0.843 

NB 

TPR 0.945 0.979 0.955 0.937 

FPR 0.003 0.001 0.002 0.003 

Precision 0.948 0.980 0.958 0.939 

Recall 0.945 0.979 0.955 0.937 

F-measure 0.945 0.978 0.955 0.936 

RF 

TPR 0.957 0.981 0.968 0.957 

FPR 0.002 0.001 0.002 0.002 

Precision 0.960 0.984 0.969 0.958 

Recall 0.957 0.981 0.968 0.957 

F-measure 0.957 0.981 0.968 0.957 

KNN 

TPR 0.968 0982 0.977 0.966 

FPR 0.002 0.001 0.001 0.002 

Precision 0.968 0.983 0.977 0.967 

Recall 0.968 0.982 0.977 0.966 

F-measure 0.968 0.982 0.977 0.966 

 

The comparison between results in figure 5 and results in figure 6 show that the features fusion has achieved a 

considerable improvement to the performance of all the tested classifiers. 
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Fig.6. Classifiers performance for each minute with features fusion 

And the comparison between the performance of the KNN classifier in experiment 3 and experiment4 in figure 7 

shows a significant improvement achieved in experiment 4; as the features-fusion improved the results of the KNN 

classifier for the four minutes with 3.3%, 3.4%, 3.6% and 4.2% respectively. 

 

 

Fig.7. The effect of features fusion on the KNN classifier 

Tables 7, 8, 9, 10 show the confusion matrices by the class of the proposed approach at minutes 1, 3, 5, 7. These 

matrices show that many subjects have been identified with an accuracy of 100%. Such as subjects: e, i, j, n, p and s. 

Table 7. The confusion matrix at min 1 
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Table 8. The confusion matrix at min 3 

 

Table 9. The confusion matrix at min 5 

 

Table 10. The confusion matrix at min 7 
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5.  Conclusions and Future Work 

This study has focused on developing a new approach to human recognition utilizing EEG signals. The main 

contribution of this study is optimizing the time needed for capturing the signal to one-second only, extracted using only 

single-channel. The uniqueness of our proposed method relies on the features-fusion level between the signal and the 

Hjorth parameters. We emphasized the proposed technique by testing on a public dataset in the two different states of 

resting. We conducted a comparison among five different classifiers’ performance without and with using the proposed 

technique and the results show the improvement in the performance of all the tested classifiers. The results proved the 

proposed approach constancy for all the subjects, achieving TPR of 100% for multiple subjects and average True 

Positive Rate (TPR) 99.1% for eyes-closed scenario and 98.2% for eyes-opened scenario. In the future, large datasets 

will be tested and also data acquired from the wearable EEG devices. 
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