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Abstract—The aim of this paper is solving optimal 

control problems governed by non-local diffusion 

equations via a mesh-less method. The diffusion equation 

and in particular, the heat conduction equation is 

essential in sciences. This equation appears in many 

fields, such as engineering, electrostatic, and 

mathematics. For solving the mentioned optimal control 

problems, the method is established upon expanding of 

variables by the basis of Bezier functions. We apply, for 

the first time, the Bernstein approximation in solving an 

optimal control problem governed by the diffusion 

equation. A direct algorithm is given for solving this 

problem. Bernstein polynomials expand the trajectories 

and control functions with unknown control points. Then 

the optimal control problem is converted to a 

mathematical programming problem. By solving the 

mathematical programming problem, the approximated 

solution of trajectories and control are driven. The 

convergence of the method in approximating of the 

optimal control problem is proved. Some numerical 

examples for demonstrating the effectiveness of the 

method are included. 

 

Index Terms—Optimal control, diffusion equation,  

Bezier function, Bernstein polynomial. 

 

I.  INTRODUCTION 

Heat conduction equation is a famous partial 

differential equation in sciences. The classical parabolic 

heat conduction equation is shown as follows: 

 

=
w

w h
t




+ 


               (1) 

 

where ( , )w x t  shows the temperature in the position x   

and time ,t   is a constant coefficient, ( , )h x t is a 

given continuous and well-behaved function, and   

denotes the Laplace operator. The study concerning the 

heat conduction equation is returned to Fourier’s studies 

about heat conduction. In the last decades, the 

investigation of the unsteady heat conduction equation is 

increased. Initially, Morse and Feshbach [1] and then 

Maxwell [2] formulated some of the unsteady heat 

conduction equations. In 1959, Carslaw and Jaeger [3] 

and in 1969, Rotem and Neilson [4] considered the 

repercussion of heat conduction equations. In 1971, 

Tamir and Taitel improved work’s Rotem; see [5]. In 

1972, Taitel presented a solution for a thing with a thin 

layer by parabolic, hyperbolic, and discrete heat 

conduction equations (see[6]). By using his work and 

other scientists, the application of heat conduction 

equation in the analysis of phenomena and physical 

processes such as industrial process, long cylinder, and 

plan wall was incremented. In the recent decade, wise 

methods for solving this problem have increased. Pavlov 

and Kudoyarova [7] solved this problem with the Spline 

method. Al-Khaled [8] used the Fourier regularization 

method. In many books and articles for solving the heat 

conduction equation, the finite element method was used 

(see[9,10,11]); many authors solved this problem by the 

Meshless method (see[12,13] and references therein). 

In recent years, Bezier functions have attracted the 

attention of researchers. These functions are suitable 

tools for solving partial differential equations (PDEs) as 

a meshless method, and also these tools have excellent 

properties such as a straightforward definition, quick in 

determination and execution in the computer, continuity 

property interpolation end-points and symmetry property. 

Bezier functions were applied for solving Fredholm 

integral equations (see[14,15,16]), Volterra integral 

equations [17], and Volterra–Fredholm–Hammerstein 

integral equations [18]. Zheng et al. [19] and Safaie and 
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Farahi [20] introduced the Bernstein–Bezier form for 

solving ordinary differential equations and they used an 

objective function based on the Bezier control points. In 

this paper, we consider optimal control problems 

governed by the nonlocal diffusion equation using 

Bernstein polynomials. To obtain the optimal pair of 

trajectory and control functions, we use the operational 

matrices of derivative and integral and then solve the 

optimal control problem by converting PDE constraints 

to an algebraic system. 

The remainder of this paper is planned as follows: 

Section 2 introduces some essential properties of 

Bernstein and Bezier functions. In Section 3, we consider 

the one-dimensional diffusion equation with initial and 

boundary conditions and then, by using Bezier function, 

convert this one-dimensional diffusion equation to a 

mathematical optimization problem. In Section 4, we 

convert this problem to a quadratic programming 

problem with linear constraints and also remind four 

issues for solving the problem. In Section 5, we give the 

convergence analysis of the present method. In Section 6, 

three numerical examples are solved, which show the 

efficiency and reliability of our method. A conclusion is 

given in section 7. 

 

II.  PRELIMINARIES 

Bezier curves have more interesting properties than the 

cubic or B-splines. For example, in the cubic spline, if 

we change only two interpolating points, then we need to 

redetermine the cubic spline function, but in Bezier 

functions, one can find a new Bezier function from the 

old one. Bezier functions are used in computer-aided 

design (CAD) (see[21]), computer graphics to draw 

shapes, solving the various control problems such as 

switching control systems (see[22]), and many different 

applications (see[23,24,25,26,27,28,29]). 

This section consists of some basic definitions and 

properties of Bezier functions. 

 

Definition 2.1 The Bernstein polynomials of degree n  

over the interval [0,1]  are defined as follows: 

 

( ) = (1 )n i n i

i

n
B t t t

i

− 
− 

 
 

 

for = 0,1,2, ,i n  where 
!

= .
!( )!

n n

i i n i

 
 

− 
 

If one uses the binomial expansion for (1 )n it −− , then 
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          (2) 

 

Definition 2.2 Define a Bernstein vector ( )n t  as 

 

0 1( ) = ( ) ( ) ( ) ;
T

n n n

n nt B t B t B t     

then the Bezier polynomial of degree n  over the 

interval [0,1]  is defined as follows: 

 

( ) = ( )n nP t C t               (3) 

 

where 

 

 0 1= nC c c c              (4)
 

 

is the vector of constant coefficients that we recall its 

entry as control points. Thus ( )3  and ( )4  implies that 

 

=0

( ) = ( ).
n

n

n i i

i

P t c B t  

 

Lemma 2.3 By using (2), we define ( ) = ( )n n nt T t   

where ( ) = 1
T

n

nT t t t    and 
1= n

n +  is an 

( 1) ( 1)n n+  +  upper triangular matrix that can be 

expressed by 

 

1

1, 1

( 1) !
,

= ( )!( )! !

0, >
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n

i j

n
i j

n j j i i

i j
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for , = 0,1, , .i j n  

Proof. See [30]. 

 

Lemma 2.4 Suppose that 2= [0,1]H L  and that 

0 1{ ( ), ( ), , ( )}n n n

nB t B t B t H , and let 

0 1= { ( ), ( ), , ( )}.n n n

nY Span B t B t B t Y  is a 

finite-dimensional subspace of the complete space 
2[0,1]L , and  it is a complete basis for the Hilbert space 

.H  

Proof. See[31]. 

 

Definition 2.5 Let = ( , . )X X P P  be a normed space 

and let Y  be a subspace of X . Given a point ,x X  

a point y Y  is called a best approximation to x  out 

of Y  if y  has the minimum distance from .x  The 

problem of determining such a point is called the best 

approximation problem. 

 

Ramark 2.6 If 2( ) [0,1]f t L  and

0 1= { ( ), ( ), , ( )}n n n

nY Span B t B t B t , then the best 

approximation of order n  of the function ( )f t  in 

[0,1]  is unique and is given by ( )nP t  where 

 

( ) ( ) = ( ),n nf t P t C t;  

 

and C  is completely dependent on ( )f t . In fact C  

can be obtained by 
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1= ( ), ( )nC f t t Q −   

 

where 

 
1

0

0 1

( ), ( ) = ( ) ( )

= ( ), ( ) ( ), ( ) ( ), ( ) ,

T
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n n n

n

f t t f t t dt

f t B t f t B t f t B t
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       


 

 

and the entries of the ( 1) ( 1)n n+  +  matrix Q  are 

defined as follows: 

 
1

0

1

0

1

0

= ( ), ( ) = ( ) ( )

= ( ( ))( ( ))
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T
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T
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       (5) 

 

where 
nG  is the following ( 1) ( 1)n n+  +  Hilbert 

matrix [31,32]: 

 

1 1 1
1

2 3 1

1 1 1 1

= .2 3 4 2

1 1 1 1
.
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Theorem 2.7 Let ( ) [0,1];mf t C  that is f  and all its 

derivatives up to order m are continuous and 

differentiable on [0,1]  and let 

0 1= { ( ), ( ), , ( )}.n n n

nY Span B t B t B t  If ( )nP t  is the best 

approximation of f  out of Y , then the mean error 

bound is 

 

2

2
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( )! 2 1
n

M
f t P t
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+
P P

 
 

where [0,1]
( )= | ( ) |t
mM max f t . 

Proof. We consider the Taylor polynomials 
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which we know that there exists [0,1]ò  such that 
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!

m
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Since ( )nP t  is the best approximation of f , so we 

have 
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where 0 0= {1 , }S max t t− . 

 

Theorem 2.8 Suppose that ( ) [0,1];mf t C  then for 

each k N , k m , and k n , there exists an 
 

( 1) ( 1)n n+  +  matrix 
B

n
D  such that 

 

( )( ) ( )( ) ( ) = ( )
k

k k

n B n
n

f t P t C D t;        (6) 

 

where =B n
n

D  V , with 

 

1, 1

, = 1,
=

0 ,
i j

i i j

otherwise
+ +

+
 


 

 

for = 0, ,i n  and = 0, , 1j n−  and V  can be 

expressed by 

 
1
,= , =1,2, ,k n k k n −V  

 

where 1
,n k −  is thk  row of 

1

n −
. 

Proof. See [33]. 

 

Theorem 2.9  Let 
B

n
P be an ( 1) ( 1)n n+  + matrix; 

then 

 

0
( ) = ( )

x

n B
n

t dt P x              (7) 

 

where 

 

= ,B
n

P W S  

 

and W  is defined as: 

 

 1 2 1
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T
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such that 
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The ( 1) ( 1)n n+  +  matrix   is defined as 

 

( 1) ( 1)

1 0 0 0

1
0 0 0

2
= ,

1
0 0 0

1 n nn +  +

 
 
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 
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 
 
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and the matrix S  is defined by 

 

1 1 1

2 3 1=
T

n

− − −

+
  S W W W R  

 

where R  is 

 

1 0 1
=

2 1 2 1 2 12 2
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T
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nQ

n n nn

n n n

−

      
      

      
 + + ++      
      

+ + +       

R  

 

and the elements of Q  are defined as 

 

( 1)( 1) = , , = 0,1, , .
2

(2 1)

i j

n n

i j
Q i j n

n
n
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+ +
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 
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The matrix 
nBP  is called the operational matrix of 

integration. 

Proof. See [34]. 

 

Now assume that ( , )w x t  is a function in a 

two-dimensional defined space on [0,1] [0,1],  and 

suppose that ( )n x  and ( )n t  are Bernstien vectors of 

degree n  over the interval [0,1];  then we can 

approximate ( , )w x t  as follows: 

 

=0 =0

( , ) ( ) ( ) = ( ) ( )
n n

n n T

ij i j n w n

i j

w x t m B x B t x M t ;  

 

where 

 

11 12 1 1 1

21 2 1

1 1

11 12 1 1 1

=

n n

n

w

n n n

n n n n n n

m m m m

m m

M

m m
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 
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     (8) 

 

and , , = 0,1,2, , ,ijm i j n  are constant numbers which 

are called control points. We describe later how one can 

find these control points. 

 

III.  PROBLEM STATEMENT 

Now, due to (1), we consider the one-dimensional 

diffusion equation:  

 

( , ) ( , ) = ( , ), ( , ) (0,1) (0,1)t xxw x t w x t h x t x t−     (9) 

 

with the initial and boundary conditions as follows: 

 

( ,0) = ( ), [0,1]w x f x x          (10) 

 

(0, ) = ( ), [0,1]w t g t t           (11) 

 

and the nonlocal boundary condition  

 
1

0
( , ) = ( )w x t dx u t             (12) 

 

where ( , ), ( )h x t f x  and ( ),g t  for [0,1]x  and 

[0,1],t  are given continuous and well-behaved 

functions. The parameter   is a given constant number. 

We are going to find the control function ( )u t  such 

that 

 

( ,1) = ( )w x F x              (13) 

 

where ( )F x
 

is a given continuous function for 

[0,1].x  

The control function ( )u t  will be termed admissible 

if it is a measurable function on [0,1]  and the solution 

of the partial differential equation (9) satisfies the initial 

and boundary conditions (10)-(12) and also the terminal 

condition (13) holds. 

The classical optimal control problem consists of 

finding an admissible control ( )u t  which minimizes the 

functional  

 
1

2

0
( ) = ( ) .J u u t dt P P           (14) 

 

Non-local diffusion equation (9)-(11) arises in many 

scientific and engineering applications such as 

atmospheric pollution controls [35]. Efficient methods to 

solve diffusion equations are important in successful 

applications of these kind of problems. There are some 

methods in solving such problems (see[36] and reference 

therein). The present paper extends for the first time, the 

using of Bernstein’s approximation in solving non-local 

diffusion optimal control problems. 

To solve the optimal control problem (9)-(14), by 

using Bezier functions, one may convert the optimal 

control problem to a mathematical programming problem 

subject to algebraic equations. 

According to the previous section, we assume that



A Novel Method to Solve a Class of Non-local Diffusion Optimal Control Problems by using Bernstein Polynomials 

Volume 12 (2020), Issue 3                                                                                                        39 

( , ) ( ) ( )T

n w nw x t x M t ;          (15) 

 

and that  

 

=0

( ) ( ) = ( )
n

n

i i u n

i

u t u B t M t;         (16) 

 

where 

 

 1 2 3 1=u nM u u u u +          (17) 

 

where ijm ’s and ku ’s, , , = 1, , 1,i j k n +  are control 

points that need to be found. By applying (15) and (16), 

one can easily find that  

 

( ,0) ( ) (0),

(0, ) (0) ( ),

( ,1) ( ) (1),

T

n w n

T

n w n

T

n w n

w x x M

w t M t

w x x M

 

 

 

;

;

;

 

1

0

( , ) ( ) ( ),

( , ) ( ) ( ),

( , ) ( ) ( ),

( , ) (1) ( ).

T

t n w B n
n

T T

x n B w n
n

T T T

xx n B B w n
n n

T

B n w n
n

w x t x M D t

w x t x D M t

w x t x D D M t

w x t dx P M t

 

 

 
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;

;

;

;

 

 

We recall that the matrix 
B

n
D  is defined in (6), and 

for 
1

0
( , )w x t dx , we use (7).  

Similarly for J , we have  

 
1 1

2

0 0
( ) = ( ) ( ) ( )

=

T T

u n n u

T T

u n n n u

J u u t dt M t t M dt

M G M

 

 

   P P ;
  (18) 

 

where nG  is given in (5).  

Now the optimal control problem (9)-(13) with cost 

functional (14) can be approximated by the following 

optimization problem:  

 

= T T

u n n n uminimize J M G M        (19) 

 

such that 

 

2( ) ( ) ( ) ( ) = ( , ),

( ) (0) = ( ),

(0) ( ) = ( ),

(1) ( ) ( ) = 0,

( ) (1) = ( )

TT T

n w B n n B w n
n n

T

n w n

T

n w n

T T

n B w n u n
n

T

n w n

x M D t x D M t h x t

x M f x

M t g t

P M t M t

x M F x

   

 

 
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 

−

−

 (20) 

 

where , [0,1]x t  and the matrix 
( 1) ( 1)

w
n n

M
+  +

 and 

vector uM  of order 1n +  are unknowns. By solving 

the problem (19)-(20) one can find the matrix wM  and 

the vector uM . Thus by (15) and (16), it is possible to 

find the best approximation of functions ( , )w x t  and 

( )u t , respectively. In the next section, we precisely 

describe how one can solve the optimization problem 

(19)-(20). 

 

IV.  SOLVING OPTIMIZATION PROBLEM 

Let , .r s +Z  Choose ix ’s ( = 0, , )i r and jt ’s 

( = 0, , )j s  nodes on the interval [0,1].  Using these 

nodes in conditions (20), that convert these constraints 

into a algebraic system with ( 1) ( 1)s r+  +  linear 

equations and ( 1) ( 1) ( 1)n n n+  + + +  unknowns as:  

 

=ij ijA bM  

 

where by (8) and (17), 

 

0 1 ( 1)= ,
T

T T T T

w w w n wn uM M M M M−
  M  

 

and 

 

= [ ( , ) ( ) ( ) 0 ( )] ,T
ij i j i j ib h x t f x g t F x  

 

and ijA  is a 5 ( 1)( 2)n n + +  matrix defined by 

discrete equations (20) for every {0, , }i r  and 

{0, , }.j s  

Now we solve a quadratic programming problem to 

find M  (in other words, wM and uM ):  

The algorithm of this method is as follows: 

INPUT: ,n  r and .s  
 

➢ Calculate nD  and ,
nBP  operational matrices of 

derivative and integral. 

➢ Set wM  and ,uM  control points matrix and 

vector for ( , )w x t  and ( ),u t  respectively. 

➢ For 0i =  to r  and 0j =  to s  do: Compute 

ijA  and ,ijb  for the linear constraints of 

problem. 

➢ Solve the following quadratic programming 

problem to find wM  and uM . 

 

= T T

u n n n uminimize J M G M 
 

 

Such that = , = 0,1, , , = 0,1, , .ij ijA b i r j sM  

OUTPUT: ( , ) ( ) ( ), ( ) ( )T

n w n u nw x t x M t u t M t  ; ; , 

and cost function .J   
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By using different optimization tools, this optimization 

problem can be solved by many useful computational 

softwares such as MATLAB. We need to remind   

 

• 0 0= = 0x t and = = 1r sx t .  

• Generally ix ’s ( = 1, , 1)i r −  and jt ’s  

( = 1, , 1)i s −  are not equal in lengths.  

• If the solution is undesired, then we may increase r  

or s  (the number of nodes) or n  (the degree of Bezier 

function).  

• The ( 1) ( 1)n n+  +  matrix 
T

n n nG   is symmetric 

positive definite.  

 

V.  CONVERGENCE ANALYSIS 

In this section, we provide a theoretical analysis about 

the convergence of above method. Without loss of 

generality, for the functional J  in ( )14 , consider 

2( ) = ( ) ( )Tu t u t u tP P . Also for simplicity, consider = 1 . 

Summing two relations (9) and (12), we have 

 
1

0
( , ) ( , ) ( , ) ( ) = ( , ).t xxw x t w x t w x t dx u t h x t− + −  

 

We prove the convergence by the degree raising of the 

Bezier functions approximation when the 

control-point-method is applied to the following optimal 

control problem: 

 
1

0
= ( ) ( )Tminimize J u t u t dt        (21) 

 

subject to  

 

1

0

( ( , ), ( , ), ( , ), ( )) = ( , )

( , ) ( , ) ( ) = ( , )

t xx t

xx

L w x t w x t w x t u t w x t

w x t w x t dx u t h x t− + −
   (22) 

 

where ( ,0) = ( ),w x f x (0, ) = ( )w t g t , and

( ,1) = ( )w x F x . 

 

Definition 5.1 Let = [0,1] [0,1]   and let 

2= { ( ) ( ) | 0 ,0 } ( )n m

i jB x B t i n j m L     P  be the 

set of Bernstein polynomial products when 

, N {0}n m  . We define nmB  as = { }.nm SpanB P   

 

Theorem 5.2 Let nmP  be the best approximation of 

2 ( )f L   in nmB . If  

 
2( ) = | ( , ) ( , ) | ,nm nms f f x t P x t d


−   

 

then  

 

( , ) ( , )

( ) = 0.lim nm
n m

s f
→  

 

Proof. See [37].  

 

Theorem 5.3 Under the stated assumptions Theorem 5.2, 

the approximate solutions = ( ) ( )T

nm m w nB x M t   and 

= ( )n u nu M t , convergence, respectively, to the exact 

solutions 
*( , )w x t  and 

* ( )u t  in the optimal control 

problem (22)-(23) when ( , ) ( , )n m →   .  

Proof. Let > 0ò  and let ( , ) [0,1] [0,1]x t   . By using 

Theorem 5.2, we can easily find the Bernstein functions 

1 1
n mP  and 

1
nw  such that and 

*

1 1

*

1

( , ) ( , ) ,
24

( ) ( ) .
24

n m

n

w x t P x t

u t w t

− 

− 

ò

ò

P P

P P

 

By assuming 1n  and 1m  sufficiently large, it is easy 

to find that 

 

1 1

1 1

1 1

( ) ( ,0) ,
24

( ) (0, ) ,
24

( ) ( ,1) .
24

n m

n m

n m

f x P x

g t P t

F x P x

− 

− 

− 

ò

ò

ò

P P

P P

P P

         (23) 

 

But perhaps 
1 1

( , )n mP x t  and 
1
( )nw t  do not satisfy 

precisely in the initial and boundary conditions. So we 

define 
1 1

( , )n mB x t  as follows: 

 

1 1 1 1
( , ) = ( , ) ( ) ( ) ( )n m n mB x t P x t xt x x x t  + + +  

 

such that this new function satisfies the initial and 

boundary conditions, that is, 

 

1 1

1 1

1 1

( ,0) = ( ),

(0, ) = ( ),

( ,1) = ( ).

n m

n m

n m

B x f x

B t g t

B x F x

 

 

According to (23), we have  

 

1 1

1 1

1 1

( ) ( ,0) = ( ) (0) ,
24

( ) (0, ) = ( ) ,
24

( ) ( ,1) = ( ) ( ) (1) .
24

n m

n m

n m

f x P x x x

g t P t t

F x P x x x x x

 



  

− + 

− 

− + + 

ò

ò

ò

P P P P

P P P P

P P P P

 

 

Since 

( ) (0) ( ) (0) ,
24

( ) ( ) (1) ( ) ( ) (1) ,
24

x x x x

x x x x x x x x

   

     

−  + 

− +  + + 

ò

ò

P P P P P P

P P P P P P
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and ( )
24

t 
ò

P P  for all [0,1]t , we have 

 

( ) (0) = ,
24 24 24 12

x x  +  +
蝌 蝌

P P P P  

 

also 

 

( ) ( ) (1)
24

( ) (1) = .
24 24 24 24 8

x x x x

x x

  

 

 + +

 + +  + +

ò

蝌 蝌 ?

P P P P

P P P P

 

 

Hence  

 
*

1 1

*

1 1

*

1 1

( , ) ( , )

= ( , ) ( ) ( ) ( ) ( , )

( , ) ( , ) ( ) ( ) ( )

7
= < .

24 8 12 24 24 3

n m

n m

n m

B x t w x t

P x t xt x x x t w x t

P x t w x t t x x x x t

  

  

−

+ + + −

 − + + +

 + + +
蝌 蝌 蝌

P P

P P

P P P PP P P P P P
 

 

Consequently,  

 
*

1
1 1 1 1

( , ) = ( ) ( ) ( , )T

n m n mB x t x M t w x t  ;  

 

and  

 
*

'1 1

2
2 2

( , )( , )
( ) ( ) ( ) ( ),

n m T

n m

P x tw x t
x x t x M t

t t
   


+ +

 
; ;  

 
2

2 *

1 1

2 2

3
3 3

1
*

4
40

*

5
5

( , )( , )
( ) 2 ( )

2 ( ) ( ) ( ) ( ),

( , ) ( ),

( ) ( ).

n m

T

n m

m

m

P x tw x t
xt x t x

x x

x x x x M t

w x t dx M t

u t M t

 

   






 + +

 

 + +



;

;

;

;

 

 

By Theorem 5.2, one can increase 

1 1 2 2 3 3 4, , , , , ,n m n m n m m , and 5m  such that  

 
*

2
2 2

2 *

32 3 3

1
*

4
40

*

5
5

( , )
( ) ( ) ,

24

( , )
( ) ( ) ,

24

( , ) ( ) ,
24

( ) ( ) .
24

T

n m

T

n m

m

m

w x t
x M t

t

w x t
x M t

x

w x t dx M t

u t M t

 

 






− 




− 



− 

− 



ò

ò

ò

ò

P P

P P

P P

P P

 

 

Thus for every 1 2 3= { , , }n N max n n n  and

1 2 3 4 5= { , , , , }m M max m m m m m , we define  

2 3 4 5

( ( , ), ( , ), ( , ), ( ))

= ( ) ( ) ( ) ( ) ( ) ( ).

nm nm nm n
t xx

T T

n m n m m m

L B x t B x t B x t t

x M t x M t M t M t



     − + −
 

 

Also (22) implies 

 

 

 

Thus ( , )nmB x t  and ( )n t  that approximately satisfy 

the diffusion equation (9) with initial and boundary 

conditions (10)-(13) tend to 
*( , )w x t  and 

* ( )u t   

respectively, as n  and m  tend to infinity.  

 

Theorem 5.4 Suppose that U  is a set of all admissible 

controls ( )u t  for the optimal control problem (21)-(22), 

that n  is the minimum of the functional J  on (19), 

and that   is the minimum of the functional J  on 

U.. Then n →  as n  tends to infinity. 

 

Proof. Let > 0ò  and let *u U  such that 
*( ) <J u  +ò . Since J  is continuous, if 

*| |< ,u u −   

then 
*| ( ) ( ) |<J u J u− ? . By using Theorem 2.7 for a 

sufficiently large value of ,n  there exists ( )n t  such 

that 
*| |<n u − , then 

 
* *

* *

=| ( ) ( ) ( ) |

| ( ) ( ) | | ( ) | 2

n n

n

J J u J u

J J u J u

  

 

 − +

 − +  + ò
 

 

where = ( )n nJ u . Becauseò is arbitrary, this completes 

the proof.  
 

VI.  NUMERICAL EXAMPLES 

In this section, to validate the accuracy of the 

presented method, three examples are considered. These 

test examples are solved by using powerful MATLAB 

2017a software on an Intel Core i5-4200U. 

 

Example 1 

Consider the following optimal control problem (see 

[38]) 
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1
2

0
( ) = ( )minimize J u u t dt P P  

 

such that 

 

( , ) ( , ) = 0, ( , ) (0,1) (0,1),

(0, ) = ( ),

(1, ) = 0, ( ,0) = ( )

t xx

x

x

w x t w x t x t

w t u t

w t w x cos x

−  

 

 

where the function .P P indicates the Euclidean norm. 

We are going to find the admissible control function  

(.)u  such that the solution of the above partial 

differential equation corresponding to the given 

boundary conditions satisfies the following terminal 

condition:  

 
2( ,1) = ( )exp( ),w x cos x −  

 

The exact solution is ( ) = 0u t  and 

2( , ) = ( )exp( )w x t cos x t − . By using the Bezier 

function, we expect  

 

( ) = ( ) 0u nu t M t ;  
 

and  

 
2( , ) = ( ) ( ) ( )exp( ).T

n w nw x t x M t cos x t   −;  

 

For = 8,n  the control is found as  

 
9 8 8 8

0 1

7 8 7 8

2 3

7 8 7 8

4 5

7 8 8 8 9 8

6 7 8

( ) 6.0695 10 ( ) 3.6448 10 ( )

1.1633 10 ( ) 2.2266 10 ( )

2.7047 10 ( ) 2.1110 10 ( )

1.0286 10 ( ) 2.8404 10 ( ) 3.2833 10 ( ),

u t B t B t

B t B t

B t B t

B t B t B t

− −

− −

− −

− − −

 − 

+  − 

+  − 

+  −  + 

;

 
 

and the terminal condition is found as  

 
5 8 4 8

0 1

3 8 3 8

2 3

9 8 3 8

4 5

3 8 4 8 5 8

6 7 8

( ,1) 5.1723 10 ( ) 4.1379 10 ( )

1.1929 10 ( ) 1.3657 10 ( )

9.8504 10 ( ) 1.3657 10 ( )

1.1929 10 ( ) 4.1379 10 ( ) 5.1723 10 ( ),

w x B x B x

B x B x

B x B x

B x B x B x

− −

− −

− −

− − −

 + 

+  + 

−  − 

−  −  − 

;

 

 

and 

 
19

9.6549 10 .J
−

=   

 

The absolute error of the exact solution and 

approximate solution given for different values of the 

degree of Bezier polynomials are shown in Table 1. The 

numerical results in this table show that the present 

method is convergence. To illustrate this aim, we define 

 

{0, , }

= | ( ,1) ( ,1) |maxn i i
i r

e w x w x


−  

 

where ( ,1)w x  indicates the approximate solution of the 

diffusion equation at the final time = 1t . 

Table 1. The absolute error in Example 1. 

Degree of Bezier polynomial ( )n  Absolute error ( )ne  

10 122.1866 10−  

11 152.6110 10−  

13 172.1460 10−  

15 171.9590 10−  

16 171.3922 10−  

 

Fig.1 and Fig.2 show the approximated graphs of 

control and terminal condition ( ,1)w x . 

 

 

Fig.1. The graph of approximated control 

 

Fig.2. The graphs of approximated and exact terminal  

trajectory ( ,1)w x  

Example 2 

In the second example, we consider the 

one-dimensional diffusion equation (9)-(13), where (see 

[39]): 

 

2 2

( , ) = 0, ( ) = ( ),
2

( ) = exp( ), ( ) = ( )exp( ).
4 2 4

x
h x t f x cos

x
g t t F x cos



  
− −

 

 



A Novel Method to Solve a Class of Non-local Diffusion Optimal Control Problems by using Bernstein Polynomials 

Volume 12 (2020), Issue 3                                                                                                        43 

Now we need to find (.)u  and minimize the 

functional  

 
1

2

0
( ) = ( ) .J u u t dt P P  

 

By using the Bernstein polynomial of degree 8 , the 

control function is found as  

 
8 8 8

0 1 2

8 8 8 8

3 4 5 6

8 8

7 8

( ) 0.6366 ( ) 2.5370 ( ) 5.8914 ( )

8.7804 ( ) 8.7012 ( ) 5.7216 ( ) 2.3956 ( )

0.5706 ( ) 0.0540 ( ),

u t B t B t B t

B t B t B t B t

B t B t

− +

− + − +

− +

;

 

 

and the trajectory ( ,1)w x  is found as:  

 
2 8 2 8

0 1

2 8 2 8

2 3

2 8 2 8

4 5

2 8 2 8

6 7

( ,1) 8.4805 10 ( ) 8.4805 10 ( )

8.1068 10 ( ) 7.3595 10 ( )

6.2693 10 ( ) 4.8976 10 ( )

3.3303 10 ( ) 1.6651 10 ( ).

w x B x B x

B x B x

B x B x

B x B x

− −

− −

− −

− −

 + 

+  + 

+  + 

+  + 

;

 

 

The cost function J  is 

 
3= 5.0070 10 .J −  

 

Table 2. The absolute error in Example 2. 

Degree of Bezier polynomial ( )n  Absolute error ( )ne  

8 106.9440 10−  

9 112.2657 10−  

10 138.1517 10−  

11 132.3004 10−  

12 145.7024 10−  

 

Fig.3 and Fig.4 show the approximated graphs of 

control and terminal condition ( ,1)w x . 

 

 

Fig.3. The graph of approximated control 

 

 

Fig.4. The graphs of approximated and exact terminal  
trajectory ( ,1)w x  

Example 3 

In this example, we consider the one-dimensional 

diffusion equation (9)-(13) where (see [40]): 

 
2 2

2

( , ) = ( 2) , ( ) = ,

( ) = 0, ( ) = .

th x t x e f x x

g t F x x e

−
 

 

Now we must find (.)u  and minimize the functional  

 
1

2

0
( ) = ( ) .J u u t dt P P  

 

The exact solution is ( ) =
3

te
u t  and 2( , ) = tw x t x e . 

For = 8n  the control of this problem is found as  

 
8 8 8

0 1 2

8 8 8

3 4 5

8 8 8

6 7 8

( ) 0.3333 ( ) 0.7468 ( ) 0.1095 ( )

0.0346 ( ) 0.1195 ( ) 0.1189 ( )

0.1559 ( ) 0.3836 ( ) 0.9061 ( ),

u t B t B t B t

B t B t B t

B t B t B t

− −

− + +

− − +

;

 

 

and the terminal condition is approximated by  

 
8 8

2 3

8 8 8

4 5 6

8 8

7 8

( ,1) 2.7183 ( ) 16.3097 ( )

40.7742 ( ) 54.3656 ( ) 40.7742 ( )

16.3097 ( ) 2.7183 ( ),

w x B x B x

B x B x B x

B x B x

+

+ + +

+ +

;

 

 

and 3= 10.1825 10J − . 

Fig.5 and Fig.6 show the approximated graphs of 

control and terminal condition ( ,1)w x .  

 

 

Fig.5. The graph of approximated control
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Fig.6. The graphs of approximated and exact terminal  
trajectory ( ,1)w x  

 

VII.  CONCLUSION 

In this paper, we introduced a new set of functions that 

are called Bezier functions for solving optimal control 

problems governed by a nonlocal diffusion equation with 

given boundary and terminal conditions. The method is 

general and easy to implement by using operational 

matrices. Operational matrices, together with the 

collocation method, were used to approximate solution of 

this kind problems. The convergence of the method was 

proved. Some numerical examples were given to 

illustrate that this method is efficient. 
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