
I.J. Intelligent Systems and Applications, 2020, 2, 11-20
Published Online April 2020 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijisa.2020.02.02

This work is open access and licensed under the Creative Commons CC BY 4.0 License. Volume 12 (2020), Issue 2

The Empirical Comparison of the Supervised

Classifiers Performances in Implementing a

Recommender System using Various

Computational Platforms

Ali Mohammad Mohammadi
School of computer science, institute for research in fundamental science (IPM), P.o.Box 19395-5746, Tehran, Iran.

E-mail: mohammadi81ali@gmail.com

Mahmood Fathy
School of computer science, institute for research in fundamental science (IPM), P.o.Box 19395-5746, Tehran, Iran.

E-mail: mahfathy@ipm.ir

Received: 02 August 2019; Revised: 29 August 2019; Accepted: 12 September 2019; Published: 08 April 2020

Abstract—Recommender Systems (RS) help users in

making appropriate decisions. In the area of RS research,

many researchers focused on improving the performances

of the existing methods, but most of them have not

considered the potential of their employed methods in

reaching the ultimate solution. In our view, the Machine

Learning supervised approach as one of the existing

techniques to create an RS can reach higher degrees of

success in this field. Thus, we implemented a

Collaborative Filtering recommender system using

various Machine Learning supervised classifiers to study

their performances. These classifiers implemented not

only on a traditional platform but also on the Apache

Spark platforms. The Caret package is used to implement

the algorithms in the classical computational platform,

and the H2O and Sparklyr are used to run the algorithms

on the Spark Machine. Accordingly, we compared the

performance of our algorithms with each other and with

other algorithms from recent literature. Our experiments

indicate the Caret-based algorithms are significantly

slower than the Sparklyr and H2O based algorithms. Also,

in the Spark platform, the runtime of the Sparklyr-based

algorithm decreases with increasing the cluster size.

However, the H2O-based algorithms run slower with

increasing the cluster size. Moreover, the comparison of

the results of our implemented algorithms with each other

and with other algorithms from recent literature shows

the Bayesian network is the fastest classifier between our

implemented classifiers, and the Gradient Boost Model is

the most accurate algorithm in our research. Therefore,

the supervised approach is better than the other methods

to create a collaborative filtering recommender system.

Index Terms—Distributed Machine learning, Supervised

classifiers comparison, Recommender System, Apache

Spark, Deep Multilayer Perceptron.

I. INTRODUCTION

In the recent decade, the interest in Recommender

Systems (RS) has significantly increased [1]. In this area,

Collaborative Filtering is one of the most effective

techniques [2, 3]. To implement the CF-based

Recommender Systems (CFRS) the Matrix Factorization

(MF), Singular Value Decomposition (SVD), and

neighborhood method have achieved significant

improvements [4, 5]. In the MF approach, the users'

previous interests to the items encoded into a rating

matrix and this matrix indicates the similarities between

the users and items [6, 7]. However, these algorithms

suffer from Sparsity and Cold-start problems [8], and

these problems reduce the accuracy of the algorithms [6].

From the Machine Learning (ML) perspective, the Cold-

start and Sparsity problems [9] have a common root in

the scarcity of the labeled data to train recommender

algorithms [10, 11]. In this regard, we want to compare

the ability of the ML supervised algorithms in creating a

CF-based RS when the related dataset is not big and find

the most appropriate supervised algorithm for this task.

Our work consists of two major parts. First, we train

and test many supervised algorithms on the classical

platform. Next, we do the same experiments on the

parallel processing platform using Apache Spark [12]

technology to study the capabilities of each algorithm in

creating a CFRS using Movielens 100-k dataset [13]. The

employed algorithms are the Decision Tree (DT) [14],

Random Forest (RF) [15], Support Vector Machine [16],

Bayesian Network (SVM) [17], Generalized Linear

Model (GLM) [18], Gradient Boost Model (GBM) [19],

and the Multilayer Perceptron Neural Network (MPNN)

[20]. And, we implement a Deep multilayer Perceptron

Neural Network (DMPNN) [21] on parallel processing

platform to study its capability to classify our structured

dataset.

mailto:mohammadi81ali@gmail.com
mailto:mahfathy@ipm.ir

The Empirical Comparison of the Supervised Classifiers Performances in Implementing a

Recommender System using Various Computational Platforms

12 Volume 12 (2020), Issue 2

Accordingly, we compare the performances of our

supervised algorithms with each other, also with the other

similar works from the literature. The experiments and

studies indicate that when the dataset has a structured

format and the number of its features is not numerous

thus the ML supervised solution and the manual feature

selection is still the best approach to make a CFRS. Also,

when we used Apache Spark platform to increase the

processing speed, on the single node Apache machine,

our supervised algorithms ran significantly faster than the

classical approach, and when we added more computers

to the cluster, the speed of the Sparklyr [22] based

supervised classifiers increased; however, with adding

more nodes to the cluster the training time of the H2O

[23] based algorithms significantly increased.

Amongst all of the employed algorithms in this paper,

our most accurate classifier is the Gradient Boost Model

from the H2O package. Also, most of our algorithms,

specifically our DMPNN, perform better than most of the

algorithms presented in recent literature.

The rest of the article is organized as follows: Section

2 represents the related works. Section 3 introduces the

research questions. Section 4 presents all of the details

about the algorithms and methods. Section 5 describes

the performances of the algorithms. Finally, section 6

discusses the conclusion and future research ideas.

II. RELATED WORK

In this literature review, the focus is on the RS

algorithms which they trained using the Movielens

dataset.

Yuan et al. [24] proposed a recommendation system

called the imputation-based Singular Value

Decomposition to solve the data Sparsity problem. They

used MovieLens 100k in their work. The Root Mean

Square Error (RMSE) [24, 25] for their method is 0.8821

in the best case. Costa et al. [25] claimed that due to the

MovieLens sparsity, single recommender system cannot

perform as well as multiple algorithms using Ensemble

method on this dataset. This experiment revealed that the

joint results of the multiple recommender algorithms are

highly reliable than the single algorithm. Singh et al. [26]

claimed that the user's interest in the specific item can

change over time, and this is one of the essential factors

that affect the accuracies of the algorithms. Thus, to

address this problem, they used the k-means algorithm to

analyze the MovieLens dataset to find the popularities of

the items for the users at a different period of the time.

Al-Bakri et al. [27] proposed a recommendation system

using the K-means algorithm. They preprocess the

Dataset to improve classification accuracy.

Luo et al. [28] developed a method called co-SVD that

reduces the Sparsity problem more than other methods.

This Sparsity reduction increased the accuracy of their

algorithm. Hazrati et al. [29] proposed a model-based

Pair-wise CF approach that uses the Restricted

Boltzmann Machine to find the feature map. Zhang et al.

[30] used a deep neural network to predict the rating

scores on MovieLens dataset to provide a collaborative

filtering recommender system. First, their model uses a

quadric polynomial regression method as a feature

representation. Then, these features are considered as the

input data of their algorithm to predict the rating scores.

The RMSE result for this algorithm is %0.9874. Liu et al.

[31] introduced a method called Deep Retentive learning

to predict demographic information using MovieLens

dataset. They used an automatic feature selection

technique instead of a handcrafted method. Also, they use

deep neural networks to predict the rating data. The

RMSE result for this algorithm is 0.845 %. Lee et al. [32]

proposed a collaborative filtering algorithm based on

Deep Neural Network algorithm. They use normalized

user-rating and item-rating vector as the inputs to the

algorithm, and use batch normalization technique to

tackle the over-fitting problem. They claim that their

methods achieve RMSE of 0.907% on MovieLens-100k,

and 0.848% on MovieLens-1M. Yan et al. [33] used a

Deep auto-encoder and Convolutional text network to

create a recommender system. Their method combines all

of the features from User and Item tables to address the

Sparsity and cold start recommendation problem. They

claim that their algorithm is superior to the many

algorithms introduced in the literature. The RMSE of

their proposed model on the MovieLens-100K dataset is

0.914%, and on the MovieLens-1M is 0.859%. Barbieri

et al. [34] proposed a method to transform a

Collaborative Filtering problem into Supervised Learning

problem. Their Auto-encoder based Collaborative

Filtering System (A-COFILS) achieved a Mean Absolute

Error (MAE) of 0.697% in MovieLens-100k dataset and

MAE of 0.661% for MovieLens-1M. Also, they

compared the RMSE score of the different CF techniques.

Accordingly, the algorithms and their results are as

follows. The RMSE score for A-COFILS is 0.885% and

for the Baseline-COFILS is 0.892%, and the Kernel-

PCA-COFILS obtained the RMSE of 0.898%. Wu et al.

[35] introduced an RS method based on the user-rating

centrality. Their proposed method is trained with

Movielens-100k and they gained the RMSE of 0.8983%.

Yao et al. [36] proposed a user-user neighborhood

approach. Their method addressed the Sparsity problem.

They gained better accuracy by removing the sparse data.

The best RMSE for their algorithm is 0.9440% with a

learning rate of 0.015%. Ma and Gan [37] proposed a

method which predicts the rating data of the films using

Random Forest Regression algorithm and the MAE of

their algorithm is 0.749%. Berg et al. [38] proposed an

Auto-encoder based method that uses Matrix completion

approach to find the best proposal for the users. The

RMSE for their algorithm is 0.909%. Fu et al. [39]

introduced a method using deep learning to provide

recommendations with analyzing the connections

between items and users. They used a feed-forward

network and pre-trained model for prediction. The RMSE

of their algorithm (Multi-views Neural Network) on

MovieLens-1M is 0.830% with the training time of 8

minutes, and RMSE for MovieLens-10M is 0.776% with

2 hours of training time. Gedikli et al. [40] proposed an

RS that called FR-Rec. This algorithm generates the

The Empirical Comparison of the Supervised Classifiers Performances in Implementing a

Recommender System using Various Computational Platforms

Volume 12 (2020), Issue 2 13

predictions simply by looking for frequency of rating in

the usual user-item rating matrix. The RMSE score for

this algorithm on the MovieLens-100k dataset is ~1.06%,

and for the parameterized version of their algorithm is

~0.93%. Richter et al. [41] performed the comparison of

four main open source tools that are used to run the

distributed machine learning algorithms; these tools are

Mahout, MLlib, H2O, and SAMOA and they analyzed

three characteristics of the tools namely availability of

the methods, scalability, and speed. They claimed the

H2O is the best package.

According to the literature, in the last decade, most of

the CFRS algorithms were based on the Matrix

factorization and Singular Value Decomposition, and still

researchers working on these methods to improve the

performances. Two of the most well-known problems in

this approach are the Sparsity and the Cold start problems.

These problems mostly raise due to the nature of the CF

dataset properties. Currently, to solve these problems and

increase the accuracy of the algorithms, many researchers

started to use machine learning classifier. However, there

are the scarce of empirical and comparative research in

the area of the CFRS which widely analyze the

advantages of the supervised classifiers over the

traditional methods.

III. RESEARCH OBJECTIVES

Our main objectives are as follows: (1) the empirical

comparison of the various ML classifiers in classical and

distributed ML platforms (Apache Spark), and comparing

the three different frameworks (Caret, Sparklyr, and the

H2O) to analyze their usefulness to implement these

algorithms. (2) Studying the capability of the DMPNN

algorithm to classify small datasets such as Movielens

100-K. (3) Comparison of the performance of machine

learning supervised classifiers with other algorithms such

as SVD (Matrix Factorization approach) for creating a

CF-based RS.

IV. MATERIAL AND METHODS

A. Supervised Algorithms

All of the algorithms that we used to classify the

dataset are as follows:

Decision Tree and Random Forest [15]: a Decision

Tree algorithm in the learning process splits the input

dataset into the subsets and repeats the process on each

subset using a recursive partitioning technique, and ends

this recursion when splitting no longer adds value to the

predictions. The Random Forest algorithm is an ensemble

classifier that uses many decision trees, and the outputs

are the results of a union of the individual trees.

Support Vector Machine [16]: this algorithm is a

discriminative classifier that performs classification by

finding the hyperplane which tries to maximize the

margin between two classes. Basically, it is a linear

classifier and uses kernel functions to classify the data.

Bayesian Network [17]: this algorithm predicts the

classes based on the probability estimation. This

algorithm uses the Bayesian Inference theory.

Generalized Linear Model [18]: this algorithm is a

flexible generalization of an ordinary linear regression

that allows the response variables that have error

distribution models other than a normal distribution.

Gradient Boost Model [19]: this model is a technique

to solve the regressions and classifications problems. It

builds the ensemble model in a stage-wise fashion using

weak prediction models and produces a better-

generalized model.

Artificial Neural Network [20]: this network is a

computing system inspired by the biological neural

networks, and are composed of a large number of highly

interconnected processing units called neurons that these

neurons are working in unison to solve specific problems.

Deep Artificial Neural Network [21]: this algorithm is

a complex artificial neural network that uses

sophisticated mathematical approaches to solve complex

problems. One of the dependencies of a Deep Algorithm

to achieve better performance is the size of the dataset.

The predictive ability of this algorithm increases when

the training dataset gets bigger.

B. Packages and Libraries

In this research, we used the Caret [42], Sparklyr, and

H2O which are the function libraries to implement ML

algorithms.

The Caret is a functions library for training and

plotting classification and regression models, and it has

several functions to streamline the model building and

evaluation process.

The Sparklyr is a general engine for big data

processing and run R codes on Parallel Processing

approach, and provides a dplyr [43] compatible back-end

[44], and supports connecting to Apache Spark clusters.

The H2O is the scalable platform to implement the

parallel algorithms. Table 1, illustrates the packages and

related algorithms that we used in this research.

C. Preprocessing

In Machine Learning projects to obtain better results

from the applied algorithms, the dataset has to be in a

proper format. Thus, we removed Null values and

performed the numeric transformation (e.g., log scale),

and data normalization. Table 2 indicates a summary of

the User and Rating table before and after normalization.

D. Feature Selection

Feature selection is an important technique used in

data preprocessing. The goal of the feature selection is to

find the most relevant features for the task. We used all

of the relevant features to create a collaborative filter by

predicting the rating. These features are listed below.

rating ~ age + gender + occupation + Action + Adventure

+ Animation + Children + Comedy + Crime +

Documentary + Drama + Fantasy + FilmNoir + Horror +

Musical + Mystery + Romance + SciFi + Thriller + War

+ Western

The Empirical Comparison of the Supervised Classifiers Performances in Implementing a

Recommender System using Various Computational Platforms

14 Volume 12 (2020), Issue 2

Table 1. Supervised algorithms have been employed in this research

Algorithms Caret Sparklyr H2O

Random forest (RF) Yes Yes Yes

Decision Tree (DT) Yes Yes Yes

Support Vector Machine (SVM) Yes - -

Bayesian Network (BN) Yes Yes Yes

Generalized Linear Model (GLM) Yes - Yes

Gradient Boosting Model (GBM) - - Yes

Artificial Neural Network (ANN) Yes Yes Yes

Deep Neural Network (DNN) - - Yes

Table 2. User and Rating table summary of the MovieLens-100k dataset

User Summary Ratings Summary

Users Normalized users Ratings
Normalization

ratings

Min.: 1.0 Min.: 0.0000 Min.: 1.00 Min.: 0.0000

1st Qu.: 254.0 1st Qu.: 0.2576 1st Qu.: 3.00 1st Qu.: 0.5000

Median: 447.0 Median: 0.3485 Median: 4.00 Median: 0.7500

Mean: 462.5 Mean: 0.3935 Mean: 3.53 Mean: 0.6325

3rd Qu.: 682.0 3rd Qu.: 0.5000 3rd Qu.: 4.00 3rd Qu.: 0.7500

Max.: 943.0 Max.: 1.0000 Max.: 5.00 Max.: 1.0000

E. Optimization

We trained all of the algorithms with default

optimization parameters except the GBM and DMPNN.

We choose the GBM due to its prior competence in

classifying our data using default optimization

parameters and the DMPNN to find the best fine-tuning

approach to optimize this neural network to perform the

task.

1. The GBM optimization

For the optimized version of the GBM, the

optimization parameters initialized as follows:

The number of trees is 20. The learning rate is 0.2. The

Max depth of each tree is 10. The stopping round is 2.

Stopping tolerance is 0.01. And the model type is

"gbm_covType2".

2. The DMPNN optimization

The fine-tuning parameters for the DMPNN initialized

as follows:

rate=0.001, rate_annealing=2e-6, momentum_start=0.2,

momentum_stable=0.4, momentum_ramp=1e7, l1=1e-

5,

l2=1e-5, max_w2=20, score_validation_samples=10000,

max_categorical_features = 2147483647,

reproducible = TRUE,

export_weights_and_biases = TRUE,

mini_batch_size = 1, stopping_rounds=2,

input_dropout_ratio= 0.1,

stopping_metric="misclassification",

stopping_tolerance=0.01

For the DMPNN algorithm, not only we apply the

optimization, but we also create many versions of this

network to explore and find the most appropriate

structure for it. These versions are different only in the

size of their hidden layers, the number of the neurons in

each hidden layer, and the type of their activation

functions. Table 9 illustrates the details of each different

version, and Fig. 1 indicates our best model of the

DMPNN.

Fig.1. The structure of our most accurate Deep Multi-Layer Perceptron

Neural Network with only two hidden layers and
Tanh activation function

V. EXPERIMENT ANALYSIS

A. Dataset

We use the MovieLens-100k dataset to train all

algorithms. This dataset includes 100,000 ratings from

943 users with 1682 movies [13].

The Empirical Comparison of the Supervised Classifiers Performances in Implementing a

Recommender System using Various Computational Platforms

Volume 12 (2020), Issue 2 15

B. Hardware platform

The experiments carried out using DELL INSPIRON

Core-i3 as a server (Master) and all of the algorithms

executed from this computer.

C. Metrics

We evaluated the performance of the algorithms using

Accuracy and Root Mean Square Error (RMSE) methods.

The accuracy is the measure of the degree of closeness

of calculated value to its actual value [26]. Accuracy is

defined as:

() ()

() () () ()

#TP #TN
Accuracy

#TP #TN #FP #FN

+
=

+ + +
 (1)

The RMSE is the standard deviation of the prediction

errors [26]. RMSE is defined as:

2

N

i ii 1
P q

RMSE
N

=

 
− 

 
=


 (2)

Here, Pi is predicted and q̂i is actual rating of item i.

and N shows the total number of predicted item. In our

work the ratings more than 3 are considered as a high

rating (recommended items), and lower than 3 as a low

rating (not recommended items).

D. Execution times of the algorithms

We analyzed the run times of the algorithms, and the

following section indicates the results.

1. The Caret-based algorithms

All of the algorithms in this section implemented with

Caret package, and according to the experiments, the

Bayesian network with the training time of 1.2280

seconds is the fastest algorithm in convergence, and the

Decision tree with 0.6360 seconds is the fastest in

prediction time, also the Random Forest with the training

time of 12 hours is the slowest algorithm. Table 3

indicates the training and test time for each algorithm.

2. The Sparklyr-based algorithms

In this section of the experiments, all of the algorithms

are implemented using the Sparklyr package. Also, the

algorithms executed with two different computational

powers. First, we used a single computer to configure it

as a master node of the Spark machine and use it to run

the algorithms. Next, build a cluster of two computers

and trained all of the algorithms again. Accordingly, by

distributing the algorithms on two computers, all of the

algorithms converged faster. Also, between all of the

employed algorithms, the Bayesian network is the fastest

in training time. Moreover, the MLP algorithm is more

expensive in training stage, but its inference time is much

faster than other algorithms. Table 4 indicates more

details about the algorithms in this experiment.

Table 3. The runtime of the algorithms implemented with the Caret package

Hardware Time

Algorithms – Caret

Bayesian Tree
Random

Forest
MLP GLM

SVM

(Radial)

Master node
(4 core)

Total Memory:

0.84 GB

Train
1.22807

seconds

2.546679

minutes

12.80152

hours

1.37019

hours

44.93274

minutes

1.784533

hours

Test
16.96497

seconds

0.6360362

seconds

4.846277

seconds

1.838106

seconds

0.3470201

seconds

4.165922

minutes

Table 4. The runtime of the algorithms implemented with the Sparklyr package

 Hardware Time
Algorithms – Sparlyr

Bayesian Tree Random forest MLP

1
Master, (4 core)
Total memory:

0.84 GB

Train 7.646437 Seconds 25.08443 Seconds 56.68924 Seconds 1.760384 Minutes

Test 0.518029 Seconds 0.4910278 Seconds 0.4690268 Seconds 0.419024 Seconds

2
Master + Workers

(5 core)

Total memory: 1.64 GB

Train 3.922224 Seconds 13.21176 Seconds 49.0358 Seconds 40.04729 Seconds

Test 0.35902 Seconds 0.463026 Seconds 0.4080229 Seconds 0.210012 Seconds

3. The H2O-based algorithms

In this section of the experiments, all of the algorithms

have been implemented using the H2O package, and the

algorithms have been executed using three various sizes

of the Spark cluster.

First, we configured an Apache Spark server using a

single computer and run all of the algorithms in the same

condition.

Next, we built a Spark cluster by adding a few

computers to our Spark server and trained the algorithms

in this cluster.

Again, we extended the cluster size by adding more

computers to the last cluster and trained our algorithms

once more.

Therefore, each algorithm runs three times using three

different cluster sizes. Accordingly, the results of the

algorithms indicate that with increasing the cluster size,

the algorithms run slower. For instance, in the single

node Spark machine, the run time of the Random Forest

is 39 seconds, and with increasing the cluster size, the run

time of the algorithm significantly increased. Table 5

indicates the training and test time of each algorithm and

the details about each cluster.

The Empirical Comparison of the Supervised Classifiers Performances in Implementing a

Recommender System using Various Computational Platforms

16 Volume 12 (2020), Issue 2

Table 5. The runtime of the algorithms implemented with the H2O version: 3.20.0.1

Hardware Time
Algorithms – H2O

Random Forest Bayesian Multi GLM GBM
Optimized

GBM

Deep Learning

c(20,10) tanh

1

Master,

(4 core)
Total memory:

0.84 GB

Train 39.58926 Seconds
2.586148

Seconds

3.003172

Seconds

21.0362

Seconds

15.82291

Seconds
11.59766 Seconds

Test 0.1830111 Seconds
0.1090062

Seconds

0.1440079

Seconds

0.1060061

Seconds

0.025002

Seconds
0.140008 Seconds

2

Master+ Workers,

(5 core)
Total memory: 1.64

GB

Train 5.992343 Minutes
4.965284

Seconds

3.609206

Seconds

1.525754

Minutes

43.29448

Seconds
16.39994 Seconds

Test 0.1700099 Seconds
0.1580091

Seconds

0.2260129

Seconds

0.1340082

Seconds

0.01800084

Seconds
0.155009 Seconds

3

Master+
Workers,

(14 core)

Total memory:
3.03 GB

Train 15.14852 Minutes
3.72882
Seconds

3.811221
Seconds

3.243541
Minutes

1.240903
Minutes

22.283844 Seconds

Test 0.3616018 Seconds
0.3774011
Seconds

0.3260012
Seconds

0.3462
Seconds

0.02200103
Seconds

0.1570021 Seconds

E. Accuracies of the algorithms

1. The accuracy comparison of the Caret-based

algorithms

According to the table 6, between the algorithms that

we implemented using Caret package, the Random forest

with 36.28% is the most accurate algorithm.

2. The accuracy comparison of the Sparklyr-based

algorithms

In this section of our experiments, the Logistic

Regression with accuracy of 35.29% is the most accurate

algorithm, and the Decision Tree with accuracy of 35.11%

is in the second place. Table 7 indicates the accuracy of

the algorithms.

3. The accuracy comparison of the H2O-based

algorithms

Table 8 illustrates the results of the algorithms based

on H2O. According to the results, the accuracy of the

algorithms is close to each other, and the GBM is the

most accurate algorithm between them.

Table 6. The accuracy of the algorithms implemented

with the Caret package

Algorithm Accuracy

Random Forest 0.3612%

Bayesian 0.3075%

Tree 0.3559%

MLP C(20,10) 0.2674%

GLM 0.3550%

SVM 0.3602%

Table 7. The accuracy of the algorithms implemented

with the Sparklyr package

Algorithm Accuracy

Random Forest 0.3494%

Bayesian 0.3492%

Tree 0.3511%

MLP C(20,10) 0.3527%

Table 8. The accuracy and RMSE of the algorithms implemented with the H2O package

Performances
Algorithms

Random

forest
Bayesian Multi GLM GBM

Optimized

GBM

Deep Learning

c(2,10)

Accuracy 0.3617% 0.3047% 0.3422% 0.3694% 0.3804% 0.3401%

MSE 0.5298143 0.588088 0.5586138 0.5404639 0.5278379 0.5534342

RMSE 0.7278834 0.766869 0.7474047 0.7351625 0.7265245 0.7439316

Log loss 1.422561 2.064796 1.448472 1.401826 1.387695 1.449757

Mean per-class Error 0.7171554 0.7636593 0.7903271 0.7348674 0.7067766 0.7786473

Top-5 Hit
Ratios

1th 0.361668 0.304777 0.342218 0.369456 0.380451 0.340136

2th 0.650535 0.576194 0.624214 0.659115 0.664695 0.629503

3th 0.845363 0.792637 0.827121 0.848986 0.858940 0.832493

4th 0.948649 0.920037 0.940652 0.949440 0.952105 0.938736

5th 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000

The Empirical Comparison of the Supervised Classifiers Performances in Implementing a

Recommender System using Various Computational Platforms

Volume 12 (2020), Issue 2 17

Table 9. Details of each version of our Deep Multilayer Perceptron and related RMSE values

N
Model Configuration Evaluation

Hidden Layer Activation Function MSE RMSE

1 c(200, 100, 50, 5) Rectifier 0.5659594 0.7523027

2 c(200, 100, 50, 5) Rectifier Dropout 0.5659634 0.7523054

3 c(200, 100, 50, 5) Tanh 0.5584915 0.7473229

4 c(200, 100, 50, 5) Tanh Dropout 0.5662589 0.7525017

5 c(200, 100, 50, 5) Rectifier 0.5659594 0.7523027

6 c(200, 100, 50, 5) Rectifier Dropout 0.5659634 0.7523054

7 c(200, 100, 50, 5) Tanh 0.5584915 0.7473229

8 c(200, 100, 50, 5) Tanh Dropout 0.5662589 0.7525017

9 c(500,200, 100, 50, 5) Rectifier 0.5705829 0.7553694

10 c(500,200, 100, 50, 5) Rectifier Dropout 0.5659594 0.7523027

11 c(500,200, 100, 50, 5) Tanh 0.5596489 0.7480968

12 c(500,200, 100, 50, 5) Tanh Dropout 0.574533 0.7579795

13 C(200, 100, 50) Tanh 0.556305 0.7458585

14 C(8,2) Tanh 0.5555929 0.7453811

15 C(100,50) Tanh 0.5602152 0.7484752

16 C(20,10) Tanh 0.5534342 0.7439316

17 C(20,10) Rectifier 0.5575525 0.7466944

4. Comparing the different DMPNN models

We build seventeen different versions of the DMPNN

using the H2O package. The differences of these versions

are in the size of the hidden layers and the activation

functions. The 16th row of Table 9 indicates the network

and its related configuration details that gained the best

classification accuracy. This best model trained using two

hidden layers and the Tanh activation function .

5. The optimization results of the GBM and DMPNN

The optimized version of the GBM gained better

accuracy than the entire algorithm in this research and its

RMSE is 0.7265245. Also, the optimized version of the

DMPNN gained the RMSE of 0.7439316. All of the

important details about the optimized version of our

DMPNN are in the 16th row of Table 9, and Fig. 2

indicates its convergence to the optimum point.

Fig.2. This plot is the result of the DMPNN with (20, 10) hidden layer
and Tanh activation function

6. Comparing the packages and the algorithms by their

accuracy and training time

As Table 10 indicates, we compared all of our

algorithms by their accuracy and training time. The

results revealed none of the H2O, Sparklyr, and Caret

packages have an absolute advantage over each other.

According to the accuracy comparison, each one of our

employed packages has some algorithms which are more

accurate than similar algorithms from other packages. For

example, the H2O based Random Forest, as well as the

Caret based Random Forest, is more accurate than the

Sparklyr based Random Forest algorithm, and the

Bayesian algorithm from Sparklyr is more accurate than

the Bayesian algorithms from the other two packages.

Table 10. The accuracy and Training time comparison of the algorithms

Algorithms Accuracy Time

1 Optimized GBM (H2O) 0.3804% 15.82 seconds

2 GBM (H2O) 0.3694% 21.03 seconds

3 Random Forest (H2O) 0.3617% 39.58 seconds

4 Random Forest (Caret) 0.3612% 12.80 hours

5 SVM (Caret) 0.3602% 1.78 hours

6 Tree (Caret) 0.3559% 2.54 minutes

7 GLM (Caret) 0.3550% 44.93 hours

8 MLP (Sparklyr) 0.3527% 56.68 seconds

9 Tree (Sparklyr) 0.3511% 25.08 seconds

10 Random Forest (Sparklyr) 0.3494% 1.76 minutes

11 Bayesian (Sparklyr) 0.3492% 7.64 seconds

12 DMPNN (H2O) 0.3470% 11.59 seconds

13 Multi-GLM (H2O) 0.3422% 3.00 seconds

14 Bayesian (Caret) 0.3075% 1.22 seconds

15 Bayesian (H2O) 0.3047% 2.58 seconds

16 MLP (Caret) 0.2674% 1.37019 hours

The Empirical Comparison of the Supervised Classifiers Performances in Implementing a

Recommender System using Various Computational Platforms

18 Volume 12 (2020), Issue 2

The training time comparison indicates, most of the

Caret based algorithms have the highest execution time.

For instance, the accuracy of the Caret based GLM and

the Random Forest algorithms are 44.93% and 12.80%

hours, respectively. These algorithms are the slowest in

this research. Also, the Bayesian from Caret package (as

only Caret based algorithm which is faster than the H2O

and Sparklyr based algorithms) is the fastest algorithm,

and the Deep-MLP from H2O is faster than the classical

MLP algorithms from Caret and Sparklyr packages.

Regardless of the implemented platforms and packages,

the Bayesian is the fastest algorithm compared to all of

the other algorithms in the comparison table, and the

H2O based GBM is the most accurate algorithm in this

research.

Table 11. The RMSE of our algorithms versus the algorithms from

other research

Algorithm Dataset RMSE

1 Our GBM algorithm Movielens-100K 0.7265

2 Our Deep NN Model Movielens-100K 0.743

3 Deep NN Model [30] Movielens-100K 0.987

4 Deep NN Model [30] Movielens-1M 0.935

5 SVD [30] Movielens-100K 1.103

6 PMF [30] Movielens-100K 1.068

7 MCoC [30] Movielens-100K 1.094

8 DsRec [30] Movielens-100K 0.992

9 PMMMF [30] Movielens-100K 1.029

10 Hern [30] Movielens-100K 1.102

11 SCC [30] Movielens-100K 1.003

12 TyCo [30] Movielens-100K 1.031

13 A-COFILS [4] Movielens-100K 0.885

14 MFRC [5] Movielens-100K 0.898

15 STAR-GCN [46] Movielens-100K 0.879

16 STAR-GCN [46] Movielens-1M 0.844

17 CFSVD-TF [47] Movielens-100K 0.9762

18 NORMA [48] Movielens-10M 0.7641

19 SVD [49] Movielens-100K 2.67776

20 NMF [50] Movielens-100K 0.94

21 ANNInit [51] Movielens-100K ~0.90

22 IAI_All [51] Movielens-100K ~0.90

23 IAI_SimMF [51] Movielens-100K ~0.90

24 IAI_SimMF [51] Movielens-1M ~0.86

25 KNN+CD RS [52] Movielens-706u 0.9050

26 DeepFlexEncoder RS [53] Movielens-100K 0.833

27 trusted k-coRating [54] Movielens-100K 0.97

28 sim k-coRating [54] Movielens-100K 0.97

29 average k-coRating [54] Movielens-100K 0.99

30 random k-coRating [54] Movielens-100K 1.0

31 Trusted k-coRating [54] Movielens-1M 0.92

32 RBM Neural Network [55] Movielens-100K 1.035

7. Comparing our best classifiers with other algorithms

from the literature

As Table 11 indicates, we compared many algorithms

that all of them classified the Movielens dataset to create

a collaborative filtering recommender system. This

comparison table includes the results of our GBM and

DMPNN algorithms and many different algorithms from

recent literature. We use GBM in this table due to its

superiority over other classifiers in our experiments and

use the DMPNN because the deep neural network-based

classifiers are the most popular in recent researches.

Studying the comparative table makes us come to a few

important points as follows:

The GBM is not only the most accurate algorithm in

our experiments, but it also is the best classifier in this

comparison.

Our customized version of the DMPNN is

outperforming the other deep neural networks in this

comparison.

Other methods like SVD algorithms that use matrix

factorization to analyze the rating table of the Movielens

dataset are not as accurate as our supervised algorithms.

Although some of the researchers created hybrid

algorithms to improve the accuracy of rating table

classification, our simple supervised method performs

more accurate than their approach.

VI. DISCUSSION AND CONCLUSION

In this paper, we discussed the effectiveness of the

supervised approach to implementing a collaborative

filtering recommender system in the classical and the

Apache Spark platforms. Also, we fine-tuned a deep

Perceptron neural network model (DMPNN) to study its

ability to classify our data. According to the research

results, the Apache Spark-based distributed algorithms

are significantly better than none-distributed classical

algorithms in terms of accuracy and runtime, and all of

the implemented supervised classifiers including our

deep Perceptron achieved good prediction accuracy than

the other methods such as SVD which uses matrix

factorization technique to create a collaborative filter,

which proves that the applying the machine learning

supervised classifiers to solve the collaborative filtering

problems for implementing a more accurate

recommender system is a successful attempt. In future

work, we will build a hybrid recommender system based

on the Ensemble method using deep Perceptron

algorithm on a parallel processing platform, and explore

the effects of different automatic feature selection

techniques on our learning algorithm.

ACKNOWLEDGMENT

This work was supported by the Iranian institute for

research in fundamental science (IPM).

REFERENCES

[1] T. Mahmood, F. Ricci, “Improving recommender systems

with adaptive conversational strategies.” In Proceedings

of the 20th ACM conference on Hypertext and

hypermedia, ACM, pp. 73-82, 2009.

[2] U. Shardanand, P. Maes, “Social information filtering:

algorithms for automating “word of mouth”.” In Chi, vol.

95, pp. 210-217, 1995.

[3] M. Elahi, F. Ricci, N. Rubens, “A survey of active

learning in collaborative filtering recommender systems.”

Computer Science Review, vol. 20, pp. 29-50, 2016.

The Empirical Comparison of the Supervised Classifiers Performances in Implementing a

Recommender System using Various Computational Platforms

Volume 12 (2020), Issue 2 19

[4] Aggarwal, C. Charu, “An introduction to recommender

systems.” In Recommender systems, Springer, pp. 1-28,

2016.

[5] J. Bobadilla, F. Ortega, A. Hernando, A. Gutiérrez,

“Recommender systems survey.” Knowledge-based

systems, vol. 46, pp. 109-132, 2013.

[6] X. Su, T. M. Khoshgoftaar. “A survey of collaborative

filtering techniques.” Advances in artificial intelligence,

vol. 2009, 2009.

[7] Y. Koren, R. Bell, C. Volinsky, “Matrix factorization

techniques for recommender systems” Computer, vol. 8,

pp. 30-37, 2009.

[8] G. Guo, “Resolving data sparsity and cold start in

recommender systems.” In International Conference on

User Modeling, Adaptation, and Personalization,

Springer, vol. 13, pp. 361-364, 2012.

[9] G. Guo, J. Zhang, D. Thalmann, “Merging trust in

collaborative filtering to alleviate data sparsity and cold

start” Knowledge-Based Systems, vol. 57, pp. 57-68, Feb

2014.

[10] Y. Zhu, J. Lin, S. He, B. Wang, Z. Guan, H. Liu, D. Cai,

“Addressing the item cold-start problem by attribute-

driven active learning.” IEEE Transactions on Knowledge

and Data Engineering, 2019,

https://doi.ieeecomputersociety.org/10.1109/TKDE.2019.

2891530

[11] S. Feng, “Sparsity in Machine Learning: An Information

Selecting Perspective” (2019). Doctoral Dissertations.

1550.

https://scholarworks.umass.edu/dissertations_2/1550

[12] A. Spark, “Apache Spark: Lightning-fast cluster

computing.” URL http://spark. Apache. org. 2016 Jun.

[13] F. Harper, J. Konstan, “The movielens datasets: History

and context.” Acm transactions on interactive intelligent

systems (tiis), vol. 5, no. 4, p. 19, 2016,

https://grouplens.org/datasets/movielens/100k/

[14] J. R. Quinlan, “Decision trees as probabilistic classifiers.”

In Proceedings of the Fourth International Workshop on

Machine Learning, Morgan Kaufmann, pp. 31-37, 1987,

https://doi.org/10.1016/B978-0-934613-41-5.50007-6

[15] A. Jehad, R. Khan, N. Ahmad, I. Maqsood, “Random

forests and decision trees.” International Journal of

Computer Science Issues (IJCSI), vol. 9, no. 5, p. 272,

2012.

[16] B. Schölkopf, A. J. Smola, F. Bach. Learning with kernels:

support vector machines, regularization, optimization,

and beyond. MIT press, 2002.

[17] N. Friedman, D. Geiger, D. Goldszmidt, “Bayesian

network classifiers.” Machine learning. Vol. 29(2-3), pp.

131-63, 1997.

[18] P. McCullagh, Generalized linear models. Routledge,

2019.

[19] A. Natekin, A. Knoll, “Gradient boosting machines, a

tutorial.” Frontiers in neurorobotics, vol. 7, no. 21, 2013.

[20] L. Goodfellow, Y. Bengio, A. Courville, Deep learning.

MIT press, 2016.

[21] L. Goodfellow, Y. Bengio, A. Courville, Deep learning.

MIT press, 2016.

[22] J. Luraschi, K. Ushey, JJ. Allaire, “The Apache Software

Foundation. sparklyr: R Interface to Apache Spark.” R

package (2018).

[23] S. Aiello, E. Eckstrand, A. Fu, M. Landry, P. Aboyoun,

Machine Learning with R and H2O. 2018.

[24] X. Yuan, L. Han, S. Qian, G. Xu, H. Yan, “Singular value

decomposition based recommendation using imputed

data.” Knowledge-Based Systems, vol. 163, pp. 485-94,

2019.

[25] A. Da Costa, M. Manzato, R. Campello, “Boosting

collaborative filtering with an ensemble of co-trained

recommenders.” Expert Systems with Applications, vol. 1,

no. 115, pp.427-41, 2019.

[26] P. Singh, P. Pramanik, N. Debnath, N. Choudhury, “A

Novel Neighborhood Calculation Method by Assessing

Users’ Varying Preferences in Collaborative Filtering.”

Proceedings of 34th International Confer, vol. 58, pp.

345-55, 2019.

[27] N. AL-Bakri, S. Hashim, “Collaborative Filtering

Recommendation Model Based on k-means Clustering.”

Al-Nahrain Journal of Science, vol. 22(1), pp. 74-79,

2019.

[28] L. Luo, H. Xie, Y. Rao, F. Wang, “Personalized

recommendation by matrix co-factorization with tags and

time information.” Expert Systems with Applications, vol.

119, pp. 311-21, 2019.

[29] N. Hazrati, B. Shams, S. Haratizadeh, “Entity

representation for pairwise collaborative ranking using

restricted Boltzmann machine.” Expert Systems with

Applications, vol. 116, pp. 161-71, 2019.

[30] L. Zhang, T. Luo, F. Zhang, Y. Wu. “A recommendation

model based on deep neural network.” IEEE Access, vol.

6, pp. 9454-63, Jan 2018.

[31] Y. Liu, H. Qu, W. Chen, SH. Mahmud, “An Efficient

Deep Learning Model to Infer User Demographic

Information From Ratings.” IEEE Access, vol. 7, pp.

53125-53135, 2019.

[32] H. Lee, J. Lee, “Scalable deep learning-based

recommendation systems.” ICT Express, vol. 5, no. 2, pp.

84-88, 2019.

[33] W. Yan, D. Wang, M. Cao, J. Liu. “Deep Auto Encoder

Model With Convolutional Text Networks for Video

Recommendation.” IEEE Access, vol. 7, pp. 40333-40346,

2019.

[34] J. Barbieri, LG. Alvim, F. Braida, G. Zimbrão,

“Autoencoders and recommender systems: COFILS

approach.” Expert Systems with Applications, vol. 89, pp.

81-90, 2017.

[35] Z. Wu, H. Tian, X. Zhu, S. Wang. “Optimization matrix

factorization recommendation algorithm based on rating

centrality.” In International Conference on Data Mining

and Big Data, pp. 114-125. Springer, Cham, 2018.

[36] X. Yao, B. Tan, C. Hu, W. Li, Z. Xu, Z. Zhang,

“Recommend algorithm combined user-user

neighborhood approach with latent factor model.” In

International Conference on Mechatronics and Intelligent

Robotics, pp. 275-280. Springer, Cham, 2017.

[37] Y. Ma, M. Gan, “A Random Forest Regression-based

Personalized Recommendation Method.” In PACIS, p.

170, 2018.

[38] R. Berg, T. Kipf, M. Welling, “Graph convolutional

matrix completion.” arXiv preprint arXiv:1706.02263

(2017).

[39] M. Fu, H. Qu, Z. Yi, L. Lu, Y. Liu, “A novel deep

learning-based collaborative filtering model for

recommendation system.” IEEE transactions on

cybernetics, vol.49, no. 3, pp. 1084-1096, 2018.

[40] F. Gedikli, F. Bagdat, M. Ge, D. Jannach, “RF-REC: Fast

and accurate computation of recommendations based on

rating frequencies.” In 2011 IEEE 13th Conference on

Commerce and Enterprise Computing, pp. 50-57. IEEE,

2011.

[41] A. Richter, T. Khoshgoftaar, S. Landset, T. Hasanin, “A

multi-dimensional comparison of toolkits for machine

learning with big data.” In 2015 IEEE International

Conference on Information Reuse and Integration, pp. 1-8,

https://grouplens.org/datasets/movielens/100k/

The Empirical Comparison of the Supervised Classifiers Performances in Implementing a

Recommender System using Various Computational Platforms

20 Volume 12 (2020), Issue 2

IEEE, 2015.

[42] M. Kuhn, “The caret package.” R Foundation for

Statistical Computing, Vienna, Austria. URL https://cran.

r-project. org/package= caret. 2012 Nov 26.

[43] H. Wickham, R. Francois, L. Henry, K. Müller, “dplyr: A

Grammar of Data Manipulation.” R package version 0.4.

3. R Found. Stat. Comput., Vienna. https://CRAN. R-

project. org/package= dplyr. 2015 Nov 13.

[44] H. Wickham, R. Francois, L. Henry, K. Müller, “dplyr: A

grammar of data manipulation.” R package version 0.4,

2015;3.

[45] White, Lyndon, Roberto Togneri, Wei Liu, Mohammed

Bennamoun. “Introduction to Neural Networks for

Machine Learning.” In Neural Representations of Natural

Language, pp. 1-21. Springer, Singapore, 2019.

[46] J. Zhang, X. Shi, S. Zhao, I. King, “STAR-GCN: Stacked

and Reconstructed Graph Convolutional Networks for

Recommender Systems.” arXiv preprint

arXiv:1905.13129. 2019 May 27.

[47] J. Wang, P. Han, Y. Miao, F. Zhang, “A Collaborative

Filtering Algorithm Based on SVD and Trust Factor.” In

2019 International Conference on Computer, Network,

Communication and Information Systems (CNCI 2019)

2019 May. Atlantis Press.

[48] D. Li, C. Chen, Z. Gong, T. Lu, S. Chu, N. Gu,

Collaborative Filtering with Noisy Ratings.” In

Proceedings of the 2019 SIAM International Conference

on Data Mining, 2019 May 6 (pp. 747-755). Society for

Industrial and Applied Mathematics.

[49] A. Sahoo, C. Pradhan, B. Mishra, “SVD based Privacy

Preserving Recommendation Model using Optimized

Hybrid Item-based Collaborative Filtering.” In 2019

International Conference on Communication and Signal

Processing (ICCSP) 2019 Apr 4 (pp. 0294-0298). IEEE.

[50] M. Ahamed, S. Afroge, “A Recommender System Based

on Deep Neural Network and Matrix Factorization for

Collaborative Filtering.” In 2019 International

Conference on Electrical, Computer and Communication

Engineering (ECCE) 2019 Feb 7 (pp. 1-5). IEEE.

[51] J. Zhao, X. Geng, J. Zhou, Q. Sun, Y. Xiao, Z. Zhang, Z.

Fu, “Attribute mapping and autoencoder neural network

based matrix factorization initialization for

recommendation systems.” Knowledge-Based Systems,

vol. 166, pp. 132-139, 2019.

[52] H. Zhang, F. Min, Z. Zhang, S. Wang, “Efficient

collaborative filtering recommendations with multi-

channel feature vectors.” International Journal of

Machine Learning and Cybernetics, vol. 10, pp. 1165-72,

2019.

[53] D. Tran, Z. Hussain, W. Zhang, N. Khoa, N. Tran, Q.

Sheng, “Deep Autoencoder for Recommender Systems:

Parameter Influence Analysis.” arXiv preprint

arXiv:1901.00415. 2018 Dec 25.

[54] F. Zhang, V. Lee, R. Jin, S. Garg, K. Choo, M. Maasberg,

L. Dong, C. Cheng, “Privacy-aware smart city: A case

study in collaborative filtering recommender systems.”

Journal of Parallel and Distributed Computing, vol. 127,

pp. 145-59, 2019.

[55] D. Chao, L. Kaili, Z. Jing, J. Xie, Chao, Duan, Lu Kaili,

Zhang Jing, and Jerry Xie. "Collaborative Filtering

Recommendation Algorithm Classification and

Comparative Study." In Proceedings of the 2019 4th

International Conference on Distance Education and

Learning, pp. 106-111. ACM, 2019.

Authors’ Profiles

Ali M. Mohammadi was born in Ardabil,

Iran in 1981. He received the M.Sc. degree

in Artificial Intelligence in 31 Jun 2018. His

research interests are General A.I. and

Machine Learning.

Mahmood Fathy received the B.S. degree

in electronics from Iran University of

Science and Technology, Tehran, Iran, in

1984, the M.S. degree in computer

architecture from Bradford University, West

Yorkshire, U.K., in 1987, and the Ph.D.

degree in image processing computer

architecture from the University of Manchester Institute of

Science and Technology, Manchester, U.K., in 1991. His

research interests are machine learning, deep learning, and

machine vision.

How to cite this paper: Ali Mohammad Mohammadi,

Mahmood Fathy, "The Empirical Comparison of the Supervised

Classifiers Performances in Implementing a Recommender

System using Various Computational Platforms", International

Journal of Intelligent Systems and Applications(IJISA), Vol.12,

No.2, pp.11-20, 2020. DOI: 10.5815/ijisa.2020.02.02

