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Abstract—Recommender Systems (RS) help users in 

making appropriate decisions. In the area of RS research, 

many researchers focused on improving the performances 

of the existing methods, but most of them have not 

considered the potential of their employed methods in 

reaching the ultimate solution. In our view, the Machine 

Learning supervised approach as one of the existing 

techniques to create an RS can reach higher degrees of 

success in this field. Thus, we implemented a 

Collaborative Filtering recommender system using 

various Machine Learning supervised classifiers to study 

their performances. These classifiers implemented not 

only on a traditional platform but also on the Apache 

Spark platforms. The Caret package is used to implement 

the algorithms in the classical computational platform, 

and the H2O and Sparklyr are used to run the algorithms 

on the Spark Machine. Accordingly, we compared the 

performance of our algorithms with each other and with 

other algorithms from recent literature. Our experiments 

indicate the Caret-based algorithms are significantly 

slower than the Sparklyr and H2O based algorithms. Also, 

in the Spark platform, the runtime of the Sparklyr-based 

algorithm decreases with increasing the cluster size. 

However, the H2O-based algorithms run slower with 

increasing the cluster size. Moreover, the comparison of 

the results of our implemented algorithms with each other 

and with other algorithms from recent literature shows 

the Bayesian network is the fastest classifier between our 

implemented classifiers, and the Gradient Boost Model is 

the most accurate algorithm in our research. Therefore, 

the supervised approach is better than the other methods 

to create a collaborative filtering recommender system. 

 

Index Terms—Distributed Machine learning, Supervised 

classifiers comparison, Recommender System, Apache 

Spark, Deep Multilayer Perceptron. 

 

I.  INTRODUCTION 

In the recent decade, the interest in Recommender 

Systems (RS) has significantly increased [1]. In this area, 

Collaborative Filtering is one of the most effective 

techniques [2, 3]. To implement the CF-based 

Recommender Systems (CFRS) the Matrix Factorization 

(MF), Singular Value Decomposition (SVD), and 

neighborhood method have achieved significant 

improvements [4, 5]. In the MF approach, the users' 

previous interests to the items encoded into a rating 

matrix and this matrix indicates the similarities between 

the users and items [6, 7]. However, these algorithms 

suffer from Sparsity and Cold-start problems [8], and 

these problems reduce the accuracy of the algorithms [6]. 

From the Machine Learning (ML) perspective, the Cold-

start and Sparsity problems [9] have a common root in 

the scarcity of the labeled data to train recommender 

algorithms [10, 11].  In this regard, we want to compare 

the ability of the ML supervised algorithms in creating a 

CF-based RS when the related dataset is not big and find 

the most appropriate supervised algorithm for this task. 

Our work consists of two major parts. First, we train 

and test many supervised algorithms on the classical 

platform. Next, we do the same experiments on the 

parallel processing platform using Apache Spark [12] 

technology to study the capabilities of each algorithm in 

creating a CFRS using Movielens 100-k dataset [13]. The 

employed algorithms are the Decision Tree (DT) [14], 

Random Forest (RF) [15], Support Vector Machine [16], 

Bayesian Network (SVM) [17], Generalized Linear 

Model (GLM) [18], Gradient Boost Model (GBM) [19], 

and the Multilayer Perceptron Neural Network (MPNN) 

[20]. And, we implement a Deep multilayer Perceptron 

Neural Network (DMPNN) [21] on parallel processing 

platform to study its capability to classify our structured 

dataset.
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Accordingly, we compare the performances of our 

supervised algorithms with each other, also with the other 

similar works from the literature. The experiments and 

studies indicate that when the dataset has a structured 

format and the number of its features is not numerous 

thus the ML supervised solution and the manual feature 

selection is still the best approach to make a CFRS. Also, 

when we used Apache Spark platform to increase the 

processing speed, on the single node Apache machine, 

our supervised algorithms ran significantly faster than the 

classical approach, and when we added more computers 

to the cluster, the speed of the Sparklyr [22] based 

supervised classifiers increased; however, with adding 

more nodes to the cluster the training time of the H2O 

[23] based algorithms significantly increased. 

Amongst all of the employed algorithms in this paper, 

our most accurate classifier is the Gradient Boost Model 

from the H2O package. Also, most of our algorithms, 

specifically our DMPNN, perform better than most of the 

algorithms presented in recent literature.   

The rest of the article is organized as follows: Section 

2 represents the related works. Section 3 introduces the 

research questions. Section 4 presents all of the details 

about the algorithms and methods. Section 5 describes 

the performances of the algorithms. Finally, section 6 

discusses the conclusion and future research ideas. 

 

II.  RELATED WORK 

In this literature review, the focus is on the RS 

algorithms which they trained using the Movielens 

dataset. 

Yuan et al. [24] proposed a recommendation system 

called the imputation-based Singular Value 

Decomposition to solve the data Sparsity problem. They 

used MovieLens 100k in their work. The Root Mean 

Square Error (RMSE) [24, 25] for their method is 0.8821 

in the best case. Costa et al. [25] claimed that due to the 

MovieLens sparsity, single recommender system cannot 

perform as well as multiple algorithms using Ensemble 

method on this dataset. This experiment revealed that the 

joint results of the multiple recommender algorithms are 

highly reliable than the single algorithm. Singh et al. [26] 

claimed that the user's interest in the specific item can 

change over time, and this is one of the essential factors 

that affect the accuracies of the algorithms. Thus, to 

address this problem, they used the k-means algorithm to 

analyze the MovieLens dataset to find the popularities of 

the items for the users at a different period of the time. 

Al-Bakri et al. [27] proposed a recommendation system 

using the K-means algorithm. They preprocess the 

Dataset to improve classification accuracy. 

Luo et al. [28] developed a method called co-SVD that 

reduces the Sparsity problem more than other methods. 

This Sparsity reduction increased the accuracy of their 

algorithm. Hazrati et al. [29] proposed a model-based 

Pair-wise CF approach that uses the Restricted 

Boltzmann Machine to find the feature map. Zhang et al. 

[30] used a deep neural network to predict the rating 

scores on MovieLens dataset to provide a collaborative 

filtering recommender system. First, their model uses a 

quadric polynomial regression method as a feature 

representation. Then, these features are considered as the 

input data of their algorithm to predict the rating scores. 

The RMSE result for this algorithm is %0.9874. Liu et al. 

[31] introduced a method called Deep Retentive learning 

to predict demographic information using MovieLens 

dataset. They used an automatic feature selection 

technique instead of a handcrafted method. Also, they use 

deep neural networks to predict the rating data. The 

RMSE result for this algorithm is 0.845 %. Lee et al. [32] 

proposed a collaborative filtering algorithm based on 

Deep Neural Network algorithm. They use normalized 

user-rating and item-rating vector as the inputs to the 

algorithm, and use batch normalization technique to 

tackle the over-fitting problem. They claim that their 

methods achieve RMSE of 0.907% on MovieLens-100k, 

and 0.848% on MovieLens-1M. Yan et al. [33] used a 

Deep auto-encoder and Convolutional text network to 

create a recommender system. Their method combines all 

of the features from User and Item tables to address the 

Sparsity and cold start recommendation problem. They 

claim that their algorithm is superior to the many 

algorithms introduced in the literature. The RMSE of 

their proposed model on the MovieLens-100K dataset is 

0.914%, and on the MovieLens-1M is 0.859%. Barbieri 

et al. [34] proposed a method to transform a 

Collaborative Filtering problem into Supervised Learning 

problem. Their Auto-encoder based Collaborative 

Filtering System (A-COFILS) achieved a Mean Absolute 

Error (MAE) of 0.697% in MovieLens-100k dataset and 

MAE of 0.661% for MovieLens-1M. Also, they 

compared the RMSE score of the different CF techniques. 

Accordingly, the algorithms and their results are as 

follows. The RMSE score for A-COFILS is 0.885% and 

for the Baseline-COFILS is 0.892%, and the Kernel-

PCA-COFILS obtained the RMSE of 0.898%. Wu et al. 

[35] introduced an RS method based on the user-rating 

centrality. Their proposed method is trained with 

Movielens-100k and they gained the RMSE of 0.8983%. 

Yao et al. [36] proposed a user-user neighborhood 

approach. Their method addressed the Sparsity problem. 

They gained better accuracy by removing the sparse data. 

The best RMSE for their algorithm is 0.9440% with a 

learning rate of 0.015%. Ma and Gan [37] proposed a 

method which predicts the rating data of the films using 

Random Forest Regression algorithm and the MAE of 

their algorithm is 0.749%. Berg et al. [38] proposed an 

Auto-encoder based method that uses Matrix completion 

approach to find the best proposal for the users. The 

RMSE for their algorithm is 0.909%. Fu et al. [39] 

introduced a method using deep learning to provide 

recommendations with analyzing the connections 

between items and users. They used a feed-forward 

network and pre-trained model for prediction. The RMSE 

of their algorithm (Multi-views Neural Network) on 

MovieLens-1M is 0.830% with the training time of 8 

minutes, and RMSE for MovieLens-10M is 0.776% with 

2 hours of training time. Gedikli et al. [40] proposed an 

RS that called FR-Rec. This algorithm generates the 
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predictions simply by looking for frequency of rating in 

the usual user-item rating matrix. The RMSE score for 

this algorithm on the MovieLens-100k dataset is ~1.06%, 

and for the parameterized version of their algorithm is 

~0.93%. Richter et al. [41] performed the comparison of 

four main open source tools that are used to run the 

distributed machine learning algorithms; these tools are 

Mahout, MLlib, H2O, and SAMOA and they analyzed 

three characteristics of the tools namely availability of 

the methods, scalability, and speed. They claimed the 

H2O is the best package. 

According to the literature, in the last decade, most of 

the CFRS algorithms were based on the Matrix 

factorization and Singular Value Decomposition, and still 

researchers working on these methods to improve the 

performances. Two of the most well-known problems in 

this approach are the Sparsity and the Cold start problems. 

These problems mostly raise due to the nature of the CF 

dataset properties. Currently, to solve these problems and 

increase the accuracy of the algorithms, many researchers 

started to use machine learning classifier. However, there 

are the scarce of empirical and comparative research in 

the area of the CFRS which widely analyze the 

advantages of the supervised classifiers over the 

traditional methods. 

 

III.  RESEARCH OBJECTIVES 

Our main objectives are as follows: (1) the empirical 

comparison of the various ML classifiers in classical and 

distributed ML platforms (Apache Spark), and comparing 

the three different frameworks (Caret, Sparklyr, and the 

H2O) to analyze their usefulness to implement these 

algorithms. (2) Studying the capability of the DMPNN 

algorithm to classify small datasets such as Movielens 

100-K. (3) Comparison of the performance of machine 

learning supervised classifiers with other algorithms such 

as SVD (Matrix Factorization approach) for creating a 

CF-based RS. 

 

IV.  MATERIAL AND METHODS 

A.  Supervised Algorithms 

All of the algorithms that we used to classify the 

dataset are as follows: 

Decision Tree and Random Forest [15]: a Decision 

Tree algorithm in the learning process splits the input 

dataset into the subsets and repeats the process on each 

subset using a recursive partitioning technique, and ends 

this recursion when splitting no longer adds value to the 

predictions. The Random Forest algorithm is an ensemble 

classifier that uses many decision trees, and the outputs 

are the results of a union of the individual trees. 

Support Vector Machine [16]: this algorithm is a 

discriminative classifier that performs classification by 

finding the hyperplane which tries to maximize the 

margin between two classes. Basically, it is a linear 

classifier and uses kernel functions to classify the data. 

Bayesian Network [17]: this algorithm predicts the 

classes based on the probability estimation. This 

algorithm uses the Bayesian Inference theory. 

Generalized Linear Model [18]: this algorithm is a 

flexible generalization of an ordinary linear regression 

that allows the response variables that have error 

distribution models other than a normal distribution. 

Gradient Boost Model [19]: this model is a technique 

to solve the regressions and classifications problems. It 

builds the ensemble model in a stage-wise fashion using 

weak prediction models and produces a better-

generalized model. 

Artificial Neural Network [20]: this network is a 

computing system inspired by the biological neural 

networks, and are composed of a large number of highly 

interconnected processing units called neurons that these 

neurons are working in unison to solve specific problems. 

Deep Artificial Neural Network [21]: this algorithm is 

a complex artificial neural network that uses 

sophisticated mathematical approaches to solve complex 

problems. One of the dependencies of a Deep Algorithm 

to achieve better performance is the size of the dataset. 

The predictive ability of this algorithm increases when 

the training dataset gets bigger. 

B.  Packages and Libraries 

In this research, we used the Caret [42], Sparklyr, and 

H2O which are the function libraries to implement ML 

algorithms. 

The Caret is a functions library for training and 

plotting classification and regression models, and it has 

several functions to streamline the model building and 

evaluation process. 

The Sparklyr is a general engine for big data 

processing and run R codes on Parallel Processing 

approach, and provides a dplyr [43] compatible back-end 

[44], and supports connecting to Apache Spark clusters. 

The H2O is the scalable platform to implement the 

parallel algorithms. Table 1, illustrates the packages and 

related algorithms that we used in this research. 

C.  Preprocessing  

In Machine Learning projects to obtain better results 

from the applied algorithms, the dataset has to be in a 

proper format. Thus, we removed Null values and 

performed the numeric transformation (e.g., log scale), 

and data normalization. Table 2 indicates a summary of 

the User and Rating table before and after normalization. 

D.  Feature Selection 

Feature selection is an important technique used in 

data preprocessing. The goal of the feature selection is to 

find the most relevant features for the task. We used all 

of the relevant features to create a collaborative filter by 

predicting the rating. These features are listed below. 

 

rating ~ age + gender + occupation + Action + Adventure 

+ Animation + Children + Comedy + Crime + 

Documentary + Drama + Fantasy + FilmNoir + Horror + 

Musical + Mystery + Romance + SciFi + Thriller + War 

+ Western 
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Table 1. Supervised algorithms have been employed in this research 

Algorithms Caret Sparklyr H2O 

Random forest (RF) Yes Yes Yes 

Decision Tree (DT) Yes Yes Yes 

Support Vector Machine (SVM) Yes - - 

Bayesian Network (BN) Yes Yes Yes 

Generalized Linear Model (GLM) Yes - Yes 

Gradient Boosting Model (GBM) - - Yes 

Artificial Neural Network (ANN) Yes Yes Yes 

Deep Neural Network (DNN) - - Yes 

Table 2. User and Rating table summary of the MovieLens-100k dataset 

User Summary Ratings Summary 

Users  Normalized users  Ratings  
Normalization 

ratings  

Min.:  1.0 Min.: 0.0000 Min.: 1.00 Min.:  0.0000 

1st Qu.: 254.0 1st Qu.: 0.2576 1st Qu.: 3.00 1st Qu.: 0.5000 

Median: 447.0 Median: 0.3485 Median: 4.00 Median: 0.7500 

Mean: 462.5 Mean: 0.3935 Mean: 3.53 Mean: 0.6325 

3rd Qu.: 682.0 3rd Qu.: 0.5000 3rd Qu.: 4.00 3rd Qu.: 0.7500 

Max.: 943.0 Max.: 1.0000 Max.: 5.00 Max.: 1.0000 

 

E.  Optimization 

We trained all of the algorithms with default 

optimization parameters except the GBM and DMPNN. 

We choose the GBM due to its prior competence in 

classifying our data using default optimization 

parameters and the DMPNN to find the best fine-tuning 

approach to optimize this neural network to perform the 

task. 

1.  The GBM optimization 

For the optimized version of the GBM, the 

optimization parameters initialized as follows: 

The number of trees is 20. The learning rate is 0.2. The 

Max depth of each tree is 10. The stopping round is 2. 

Stopping tolerance is 0.01. And the model type is 

"gbm_covType2". 

2.  The DMPNN optimization 

The fine-tuning parameters for the DMPNN initialized 

as follows: 

 

rate=0.001, rate_annealing=2e-6, momentum_start=0.2, 

momentum_stable=0.4,  momentum_ramp=1e7,    l1=1e-

5, 

l2=1e-5, max_w2=20, score_validation_samples=10000, 

max_categorical_features = 2147483647,        

reproducible = TRUE,             

export_weights_and_biases = TRUE,       

mini_batch_size = 1, stopping_rounds=2, 

input_dropout_ratio= 0.1, 

stopping_metric="misclassification", 

stopping_tolerance=0.01 

 

For the DMPNN algorithm, not only we apply the 

optimization, but we also create many versions of this 

network to explore and find the most appropriate 

structure for it. These versions are different only in the 

size of their hidden layers, the number of the neurons in 

each hidden layer, and the type of their activation 

functions. Table 9 illustrates the details of each different 

version, and Fig. 1 indicates our best model of the 

DMPNN. 

 

 

Fig.1. The structure of our most accurate Deep Multi-Layer Perceptron 

Neural Network with only two hidden layers and  
Tanh activation function 

 

V.  EXPERIMENT ANALYSIS 

A.  Dataset 

We use the MovieLens-100k dataset to train all 

algorithms. This dataset includes 100,000 ratings from 

943 users with 1682 movies [13]. 
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B.  Hardware platform 

The experiments carried out using DELL INSPIRON 

Core-i3 as a server (Master) and all of the algorithms 

executed from this computer. 

C.  Metrics 

We evaluated the performance of the algorithms using 

Accuracy and Root Mean Square Error (RMSE) methods.  

The accuracy is the measure of the degree of closeness 

of calculated value to its actual value [26]. Accuracy is 

defined as: 

 

( ) ( )

( ) ( ) ( ) ( )

#TP #TN
Accuracy

#TP #TN #FP #FN

+
=

+ + +
        (1) 

 

The RMSE is the standard deviation of the prediction 

errors [26]. RMSE is defined as: 
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N
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=
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Here, Pi is predicted and q̂i is actual rating of item i. 

and N shows the total number of predicted item. In our 

work the ratings more than 3 are considered as a high 

rating (recommended items), and lower than 3 as a low 

rating (not recommended items).  

D.  Execution times of the algorithms 

We analyzed the run times of the algorithms, and the 

following section indicates the results.  

1.  The Caret-based algorithms 

All of the algorithms in this section implemented with 

Caret package, and according to the experiments, the 

Bayesian network with the training time of 1.2280 

seconds is the fastest algorithm in convergence, and the 

Decision tree with 0.6360 seconds is the fastest in 

prediction time, also the Random Forest with the training 

time of 12 hours is the slowest algorithm. Table 3 

indicates the training and test time for each algorithm. 

2.  The Sparklyr-based algorithms 

In this section of the experiments, all of the algorithms 

are implemented using the Sparklyr package. Also, the 

algorithms executed with two different computational 

powers. First, we used a single computer to configure it 

as a master node of the Spark machine and use it to run 

the algorithms. Next, build a cluster of two computers 

and trained all of the algorithms again. Accordingly, by 

distributing the algorithms on two computers, all of the 

algorithms converged faster. Also, between all of the 

employed algorithms, the Bayesian network is the fastest 

in training time. Moreover, the MLP algorithm is more 

expensive in training stage, but its inference time is much 

faster than other algorithms. Table 4 indicates more 

details about the algorithms in this experiment. 

Table 3. The runtime of the algorithms implemented with the Caret package 

Hardware Time 

Algorithms – Caret 

Bayesian Tree 
Random 

Forest 
MLP GLM 

SVM 

(Radial) 

Master node 
(4 core) 

Total Memory: 

0.84 GB 

Train 
1.22807 

seconds 

2.546679 

minutes 

12.80152 

hours 

1.37019 

hours 

44.93274 

minutes 

1.784533 

hours 

Test 
16.96497 

seconds 

0.6360362 

seconds 

4.846277 

seconds 

1.838106 

seconds 

0.3470201 

seconds 

4.165922 

minutes 

Table 4. The runtime of the algorithms implemented with the Sparklyr package 

 Hardware Time 
Algorithms – Sparlyr 

Bayesian Tree Random forest MLP 

1 
Master, (4 core) 
Total memory: 

0.84 GB 

Train 7.646437 Seconds 25.08443 Seconds 56.68924 Seconds 1.760384 Minutes 

Test 0.518029 Seconds 0.4910278 Seconds 0.4690268 Seconds 0.419024 Seconds 

2 
Master + Workers 

(5 core) 

Total memory: 1.64 GB 

Train 3.922224 Seconds 13.21176 Seconds 49.0358 Seconds 40.04729 Seconds 

Test 0.35902 Seconds 0.463026 Seconds 0.4080229 Seconds 0.210012 Seconds 

 

3.  The H2O-based algorithms 

In this section of the experiments, all of the algorithms 

have been implemented using the H2O package, and the 

algorithms have been executed using three various sizes 

of the Spark cluster. 

First, we configured an Apache Spark server using a 

single computer and run all of the algorithms in the same 

condition.  

Next, we built a Spark cluster by adding a few 

computers to our Spark server and trained the algorithms 

in this cluster. 

 

Again, we extended the cluster size by adding more 

computers to the last cluster and trained our algorithms 

once more.  

Therefore, each algorithm runs three times using three 

different cluster sizes. Accordingly, the results of the 

algorithms indicate that with increasing the cluster size, 

the algorithms run slower. For instance, in the single 

node Spark machine, the run time of the Random Forest 

is 39 seconds, and with increasing the cluster size, the run 

time of the algorithm significantly increased. Table 5 

indicates the training and test time of each algorithm and 

the details about each cluster. 
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Table 5. The runtime of the algorithms implemented with the H2O version: 3.20.0.1 

Hardware Time 
Algorithms – H2O 

Random Forest Bayesian Multi GLM GBM 
Optimized 

GBM 

Deep Learning 

c(20,10) tanh 

1 

Master, 

(4 core) 
Total memory: 

0.84 GB 

Train 39.58926 Seconds 
2.586148 

Seconds 

3.003172 

Seconds 

21.0362 

Seconds 

15.82291 

Seconds 
11.59766 Seconds 

Test 0.1830111 Seconds 
0.1090062 

Seconds 

0.1440079 

Seconds 

0.1060061 

Seconds 

0.025002 

Seconds 
0.140008 Seconds 

2 

Master+ Workers, 

(5 core) 
Total memory: 1.64 

GB 

Train 5.992343 Minutes 
4.965284 

Seconds 

3.609206 

Seconds 

1.525754 

Minutes 

43.29448 

Seconds 
16.39994 Seconds 

Test 0.1700099 Seconds 
0.1580091 

Seconds 

0.2260129 

Seconds 

0.1340082 

Seconds 

0.01800084 

Seconds 
0.155009 Seconds 

3 

Master+ 
Workers, 

(14 core) 

Total memory: 
3.03 GB 

Train 15.14852 Minutes 
3.72882 
Seconds 

3.811221 
Seconds 

3.243541 
Minutes 

1.240903 
Minutes 

22.283844 Seconds 

Test 0.3616018 Seconds 
0.3774011 
Seconds 

0.3260012 
Seconds 

0.3462 
Seconds 

0.02200103 
Seconds 

0.1570021  Seconds 

 

E.  Accuracies of the algorithms 

1.  The accuracy comparison of the Caret-based 

algorithms 

According to the table 6, between the algorithms that 

we implemented using Caret package, the Random forest 

with 36.28% is the most accurate algorithm. 

2.  The accuracy comparison of the Sparklyr-based 

algorithms 

In this section of our experiments, the Logistic 

Regression with accuracy of 35.29% is the most accurate 

algorithm, and the  Decision Tree with accuracy of 35.11% 

is in the second place. Table 7 indicates the accuracy of 

the algorithms. 

3.  The accuracy comparison of the H2O-based 

algorithms 

Table 8 illustrates the results of the algorithms based 

on H2O. According to the results, the accuracy of the 

algorithms is close to each other, and the GBM is the 

most accurate algorithm between them. 

Table 6. The accuracy of the algorithms implemented  

with the Caret package 

Algorithm Accuracy 

Random Forest 0.3612% 

Bayesian 0.3075% 

Tree 0.3559% 

MLP C(20,10) 0.2674% 

GLM 0.3550% 

SVM 0.3602% 

Table 7. The accuracy of the algorithms implemented  

with the Sparklyr package 

Algorithm Accuracy 

Random Forest 0.3494% 

Bayesian 0.3492% 

Tree 0.3511% 

MLP C(20,10) 0.3527% 

 

Table 8. The accuracy and RMSE of the algorithms implemented with the H2O package 

Performances 
Algorithms 

Random 

forest 
Bayesian Multi GLM GBM 

Optimized 

GBM 

Deep Learning 

c(2,10) 

Accuracy 0.3617% 0.3047% 0.3422% 0.3694% 0.3804% 0.3401% 

MSE 0.5298143 0.588088 0.5586138 0.5404639 0.5278379 0.5534342 

RMSE 0.7278834 0.766869 0.7474047 0.7351625 0.7265245 0.7439316 

Log loss 1.422561 2.064796 1.448472 1.401826 1.387695 1.449757 

Mean per-class Error 0.7171554 0.7636593 0.7903271 0.7348674 0.7067766 0.7786473 

Top-5 Hit 
Ratios 

1th 0.361668 0.304777 0.342218 0.369456 0.380451 0.340136 

2th 0.650535 0.576194 0.624214 0.659115 0.664695 0.629503 

3th 0.845363 0.792637 0.827121 0.848986 0.858940 0.832493 

4th 0.948649 0.920037 0.940652 0.949440 0.952105 0.938736 

5th 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 
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Table 9. Details of each version of our Deep Multilayer Perceptron and related RMSE values 

N 
Model Configuration Evaluation 

Hidden Layer Activation Function MSE RMSE 

1 c(200, 100, 50, 5) Rectifier 0.5659594 0.7523027 

2 c(200, 100, 50, 5) Rectifier Dropout 0.5659634 0.7523054 

3 c(200, 100, 50, 5) Tanh 0.5584915 0.7473229 

4 c(200, 100, 50, 5) Tanh Dropout 0.5662589 0.7525017 

5 c(200, 100, 50, 5) Rectifier 0.5659594 0.7523027 

6 c(200, 100, 50, 5) Rectifier Dropout 0.5659634 0.7523054 

7 c(200, 100, 50, 5) Tanh 0.5584915 0.7473229 

8 c(200, 100, 50, 5) Tanh Dropout 0.5662589 0.7525017 

9 c(500,200, 100, 50, 5) Rectifier 0.5705829 0.7553694 

10 c(500,200, 100, 50, 5) Rectifier Dropout 0.5659594 0.7523027 

11 c(500,200, 100, 50, 5) Tanh 0.5596489 0.7480968 

12 c(500,200, 100, 50, 5) Tanh Dropout 0.574533 0.7579795 

13 C(200, 100, 50) Tanh 0.556305 0.7458585 

14 C(8,2) Tanh 0.5555929 0.7453811 

15 C(100,50) Tanh 0.5602152 0.7484752 

16 C(20,10) Tanh 0.5534342 0.7439316 

17 C(20,10) Rectifier 0.5575525 0.7466944 

 

4.  Comparing the different DMPNN models 

We build seventeen different versions of the DMPNN 

using the H2O package. The differences of these versions 

are in the size of the hidden layers and the activation 

functions. The 16th row of Table 9 indicates the network 

and its related configuration details that gained the best 

classification accuracy. This best model trained using two 

hidden layers and the Tanh activation function . 

5.  The optimization results of the GBM and DMPNN 

The optimized version of the GBM gained better 

accuracy than the entire algorithm in this research and its 

RMSE is 0.7265245. Also, the optimized version of the 

DMPNN gained the RMSE of 0.7439316. All of the 

important details about the optimized version of our 

DMPNN are in the 16th row of Table 9, and Fig. 2 

indicates its convergence to the optimum point. 
 

 

Fig.2. This plot is the result of the DMPNN with (20, 10) hidden layer 
and Tanh activation function 

6.  Comparing the packages and the algorithms by their 

accuracy and training time 

As Table 10 indicates, we compared all of our 

algorithms by their accuracy and training time. The 

results revealed none of the H2O, Sparklyr, and Caret 

packages have an absolute advantage over each other. 

According to the accuracy comparison, each one of our 

employed packages has some algorithms which are more 

accurate than similar algorithms from other packages. For 

example, the H2O based Random Forest, as well as the 

Caret based Random Forest, is more accurate than the 

Sparklyr based Random Forest algorithm, and the 

Bayesian algorithm from Sparklyr is more accurate than 

the Bayesian algorithms from the other two packages. 

Table 10. The accuracy and Training time comparison of the algorithms 

Algorithms Accuracy Time 

1 Optimized GBM (H2O) 0.3804% 15.82 seconds 

2 GBM (H2O) 0.3694% 21.03 seconds 

3 Random Forest (H2O) 0.3617% 39.58 seconds 

4 Random Forest (Caret) 0.3612% 12.80 hours 

5 SVM (Caret) 0.3602% 1.78 hours 

6 Tree (Caret) 0.3559% 2.54 minutes 

7 GLM (Caret) 0.3550% 44.93 hours 

8 MLP (Sparklyr) 0.3527% 56.68 seconds 

9 Tree (Sparklyr) 0.3511% 25.08 seconds 

10 Random Forest (Sparklyr) 0.3494% 1.76 minutes 

11 Bayesian (Sparklyr) 0.3492% 7.64 seconds 

12 DMPNN (H2O) 0.3470% 11.59 seconds 

13 Multi-GLM (H2O) 0.3422% 3.00 seconds 

14 Bayesian (Caret) 0.3075% 1.22 seconds 

15 Bayesian (H2O) 0.3047% 2.58 seconds 

16 MLP (Caret) 0.2674% 1.37019 hours 
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The training time comparison indicates, most of the 

Caret based algorithms have the highest execution time. 

For instance, the accuracy of the Caret based GLM and 

the Random Forest algorithms are 44.93% and 12.80% 

hours, respectively. These algorithms are the slowest in 

this research. Also, the Bayesian from Caret package (as 

only Caret based algorithm which is faster than the H2O 

and Sparklyr based algorithms) is the fastest algorithm, 

and the Deep-MLP from H2O is faster than the classical 

MLP algorithms from Caret and Sparklyr packages. 

Regardless of the implemented platforms and packages, 

the Bayesian is the fastest algorithm compared to all of 

the other algorithms in the comparison table, and the 

H2O based GBM is the most accurate algorithm in this 

research. 

Table 11. The RMSE of our algorithms versus the algorithms from 

other research 

Algorithm Dataset RMSE 

1 Our GBM algorithm Movielens-100K 0.7265 

2 Our Deep NN Model Movielens-100K 0.743 

3 Deep NN Model [30] Movielens-100K 0.987 

4 Deep NN Model [30] Movielens-1M 0.935 

5 SVD [30] Movielens-100K 1.103 

6 PMF [30] Movielens-100K 1.068 

7 MCoC [30] Movielens-100K 1.094 

8 DsRec [30] Movielens-100K 0.992 

9 PMMMF [30] Movielens-100K 1.029 

10 Hern [30] Movielens-100K 1.102 

11 SCC [30] Movielens-100K 1.003 

12 TyCo [30] Movielens-100K 1.031 

13 A-COFILS [4] Movielens-100K 0.885 

14 MFRC [5] Movielens-100K 0.898 

15 STAR-GCN [46] Movielens-100K 0.879 

16 STAR-GCN [46] Movielens-1M 0.844 

17 CFSVD-TF [47] Movielens-100K 0.9762 

18 NORMA [48] Movielens-10M 0.7641 

19 SVD [49] Movielens-100K 2.67776 

20 NMF [50] Movielens-100K 0.94 

21 ANNInit [51] Movielens-100K ~0.90 

22 IAI_All [51] Movielens-100K ~0.90 

23 IAI_SimMF [51] Movielens-100K ~0.90 

24 IAI_SimMF [51] Movielens-1M ~0.86 

25 KNN+CD RS [52] Movielens-706u 0.9050 

26 DeepFlexEncoder RS [53] Movielens-100K 0.833 

27 trusted k-coRating [54] Movielens-100K 0.97 

28 sim k-coRating [54] Movielens-100K 0.97 

29 average k-coRating [54] Movielens-100K 0.99 

30 random k-coRating [54] Movielens-100K 1.0 

31 Trusted k-coRating [54] Movielens-1M 0.92 

32 RBM Neural Network [55] Movielens-100K 1.035 

7.  Comparing our best classifiers with other algorithms 

from the literature 

As Table 11 indicates, we compared many algorithms 

that all of them classified the Movielens dataset to create 

a collaborative filtering recommender system. This 

comparison table includes the results of our GBM and 

DMPNN algorithms and many different algorithms from 

recent literature. We use GBM in this table due to its 

superiority over other classifiers in our experiments and 

use the DMPNN because the deep neural network-based 

classifiers are the most popular in recent researches. 

Studying the comparative table makes us come to a few 

important points as follows: 

The GBM is not only the most accurate algorithm in 

our experiments, but it also is the best classifier in this 

comparison.  

Our customized version of the DMPNN is 

outperforming the other deep neural networks in this 

comparison.  

Other methods like SVD algorithms that use matrix 

factorization to analyze the rating table of the Movielens 

dataset are not as accurate as our supervised algorithms.  

Although some of the researchers created hybrid 

algorithms to improve the accuracy of rating table 

classification, our simple supervised method performs 

more accurate than their approach. 

 

VI.  DISCUSSION AND CONCLUSION 

In this paper, we discussed the effectiveness of the 

supervised approach to implementing a collaborative 

filtering recommender system in the classical and the 

Apache Spark platforms. Also, we fine-tuned a deep 

Perceptron neural network model (DMPNN) to study its 

ability to classify our data. According to the research 

results, the Apache Spark-based distributed algorithms 

are significantly better than none-distributed classical 

algorithms in terms of accuracy and runtime, and all of 

the implemented supervised classifiers including our 

deep Perceptron achieved good prediction accuracy than 

the other methods such as SVD which uses matrix 

factorization technique to create a collaborative filter, 

which proves that the applying the machine learning 

supervised classifiers to solve the collaborative filtering 

problems for implementing a more accurate 

recommender system is a successful attempt. In future 

work, we will build a hybrid recommender system based 

on the Ensemble method using deep Perceptron 

algorithm on a parallel processing platform, and explore 

the effects of different automatic feature selection 

techniques on our learning algorithm. 
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