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Abstract—Speed control for an I.M is a few what 
complex strategies; the complexity is regularly increasing 
in line with the required system achievement. The main 
forms of control strategies are scalar, direct torque, 
adaptive, sensorless, and vector or Field Oriented Control 
(FOC). The FOC method is the most efficient technique 
in which machine parameters: Rotor flux, unit vector, and 
electromagnetic torque, usually are estimated by means 
of using Digital Signal Processing (DSP). The Artificial 
Neural Network (ANN) becomes an effective tool for 
controlling nonlinear device in present time. This paper 
proposes the using of ANN instead of DSP to estimate 
the machine parameters in order to reduce the hardware 
complexity and the Electromagnetic Interference (EMI) 
impact. Also, it presents the PI-NN controller which is 
based totally on ANN. The systems simulations for both 
DSP and ANN are depicted. The performance of the 
ANN-based system gives excellent results: overshot less 
than 0.5%, rise time 0.514 s, steady state error less than 
0.2%, settling time 0.7 s. in conjunction with that of DSP-
based performance: overshot about 2%, rise time 0.64 s, 
steady state error less than 0.4%, settling time 0.75 s. 
 
Index Terms—Field oriented control, neural control, 
intelligent estimator, vector control of I.M. 
 

I.  INTRODUCTION 

Variable Voltage Variable Frequency (VVVF) 
controllers of an induction motor are by a long way the 
most famous technique, because of its simplicity, and 
these forms of machines are widely used in many 
applications. Usually, the Volt/Hz is managed via D.C-
A.C pulse width modulation inverter to maintain the air-
gap flux at its rated value and approximately constant, 
this form of manage known as "scalar control". In spite of 
scalar manipulate is really simple, but the inherent 
coupling effect for both torque and flux are capabilities of 
voltage or current and frequency (i.e. throughout Volt/Hz 
variation each torque and flux be various too), which 
gives sluggish performance and it may be unstable 
because of excessive order system effect [1]. 

The vector or field-oriented controller presents a 
perfect solution of this problem, which invented at the 
1970s, the demonstration that; an induction motor can be 
treated likes separately excited D.C. motor, delivered a 
renaissance within the high performance of A.C. Drives, 
vector controller is likewise known as decoupling, 
orthogonal, or trans-vector manage. The principle of this 
technique is to rotate the direct axis continually with the 
identical direction of the rotor pole axis, or with the aid of 
aligned the rotor flux vector (𝜓𝜓𝑟𝑟����) at the d-axis. This may 
be executed with the aid of estimating the exact unit 
vector (cos𝜃𝜃𝑒𝑒  and sin𝜃𝜃𝑒𝑒 ). In this way, it's required to 
estimate the flux vector (𝜓𝜓𝑟𝑟����) and the unit vector by using 
complicated digital signal processing (DSP) and 
microcontroller analysis [1,2].  

Recently, the Artificial Neural Intelligence (ANI) has 
penetrated widely in engineering sciences and their 
applications, which appears very promising and effective 
tool with advanced features. In the literature, there are 
great efforts to implement intelligent neural networks in 
the estimator domain to reduce complexity and improve 
performance. But we don’t find in the literature any 
attempts to combine between the use of neural networks 
in both of the controller and the estimator.  

In this paper, the features of the ANN are exploited to 
estimate the flux vector (𝜓𝜓𝑟𝑟���� ), unit vector (cos𝜃𝜃𝑒𝑒  and 
sin𝜃𝜃𝑒𝑒), and the electromagnetic torque Te instead of using 
the complicated microprocessor DSP systems. As well as, 
implement the artificial neural controller instead of 
conventional Proportional Integral (PI) controller. 
Therefore, the main contribution to this paper is 
concentrated in combining between the artificial neural 
controller rather than the traditional PI control in addition 
to the neural estimator, which was not previously used or 
proposed in the literature. 

The related works and recent contributions of this area 
are presented briefly in the next section to realize the 
significant of this work. The mathematical representation 
of the induction motor and the concepts of vector control 
theory are illustrated in the later sections. Next, the 
implementation of the proposed neural estimator and 
controller and simulation results are presented in the rest 
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of this paper. 
 

II.  RELATED WORKS SURVEY 

In the last decade, as mentioned before, efforts have 
been made and are still being made to use intelligent 
systems such as fuzzy, neural, neurofuzzy ...etc., alone or 
combined with optimization methods, of representing the 
estimator in the vector and field oriented control systems, 
because of their great impact in reducing the complexity 
of the system and improve performance significantly. The 
most important contributions in this area can be summed 
up briefly in the following: 

Y. Song, et al, 2010 [3], proposed a novel linearization 
and decoupling method by using artificial neural network 
(ANN) to overcome the effect of parameters  variation 
during operation of induction motor, the decoupling and 
linearization implemented by field oriented control and 
analytical inverse control is presented. The results show 
that the proposed scheme has excellent dynamic and 
static control performance. 

Peter Girovský, et al, 2010 [4], deal with a problem of 
speed estimation in a shaft sensorless field oriented 
control structure with induction motor that is based on 
neural modeling approach. Two different neural 
estimators were developed; one for observing the 
magnetic flux and the other one for observing motor 
angular speed.  

Fabio Lima, et al, 2010 [5], proposed the development 
of an adaptive neurofuzzy inference system (ANFIS) 
angular rotor speed estimator applied to a FOC sensorless 
drive. Simulations to evaluate the performance of the 
estimator considering the volts per hertz and vector drive 
system were realized using the Matlab/Simulink. 

Chitra Venugopal, 2010 [6], presented a novel 
Adaptive Neural Fuzzy Inference System (ANFIS) based 
matrix converter for speed control of induction motor. 
The reference voltage is used to generate the duty cycle 
for matrix converter switches. The matrix converter is 
designed using Venturini algorithm and results are shown 
under different switching frequencies. 

Arif Iqbal and M. Rizwan Khan, 2010 [7], presented a 
new model reference adaptive system (MRAS) speed 
observer for high-performance field oriented control 
induction motor drives using neural networks.  
Performance analysis of speed estimator with the change 
in motor parameters especially resistances of stator and 
rotor is presented. The estimator was designed and 
simulated in Matlab/Simulink. Simulation result shows a 
good performance of speed estimator especially under 
fault condition. 

Md. Abdur Rafiq, et al, 2012 [8], proposed an 
Artificial Neural Network (ANN) as a speed tracker for 
induction motor drive. The effectiveness of the controller 
is tested for the tracking property using different types of 
reference speed. A sensorless scheme is proposed to 
overcome the disadvantages of rotor position sensors.  
Results show that the proposed controller provides 
accurate speed tracking characteristics. 

Shoeb Hussain and Mohammad Abid Bazaz, 2014 [9], 

implemented an Artificial Neural-Fuzzy Inference 
System (ANFIS) for vector controlled induction motor. 
The efficiency of the system is also improved using an 
optimization algorithm wherein the rotor flux weakening 
is done as the system stability is reached. Simulation of a 
5 Hp, 460 V, 50 Hz induction motor is presented and 
speed tracking is achieved under different operating 
conditions. 

Hao Zhang, et al, 2014 [10], presented a new rotor flux 
estimation algorithm using neural network for induction 
motors, based on the left-inversion method. Using the 
fifth order model of the three-phase induction machines 
in a stationary two axes reference frame, a rotor flux 
“assumed inherent sensor” is constructed and its left-
invertible is validated.  The performance of the proposed 
algorithm is tested through simulation, proving the driven 
system has good behavior both in transient and steady-
state operating conditions. 

F. Lftisi, et al, 2016 [11], presented an intelligent 
indirect field oriented control (IFOC) technique for 
saturated induction motor (IM) drives in order to achieve 
high dynamic performance and wide operating range. A 
novel neural network map (NNM) is developed to find 
input weights of the neurons; without the need for any 
recurrent training process. A relative comparison between 
the PI controller and the proposed NNM based ANN 
controller indicates that the ANN mapping controller 
yields superior performance. 

Md. Rifat Hazari, et al, 2016 [12], presented the ANN 
based speed control scheme of IM with considering Core 
Loss (CL) and Stray Load Loss (SLL). Simulation 
analyses are performed for both transient and steady state 
conditions. The results show the overshoot can be 
minimized by using the proposed control scheme. The 
simulations have been carried out by using 
Matlab/Simulink environment. 

Son T. Nguyen, et al, 2017 [13], presented a method of 
the online speed estimation for three-phase induction 
motor in indirect field oriented control scheme 
accompanying an artificial neural network. The 
simulation results obtained using Matlab/ Simulink show 
that the estimated motor speed tracks the actual speed 
with very small error.  

Ramin Nahavandi, et al, 2018 [14], proposed a robust 
modified FOC scheme based on artificial neural network 
(ANN) for speed control of IM, with regard to improve 
the system performance as well as ensure the stability, 
robustness and fast dynamic response. The estimation 
based on ANN to compensate for uncertain parameters in 
the motor’s dynamic model. Moreover, this estimation 
leads to lack use of flux and speed sensor, therefore, the 
method is cost effective The results show that the 
performance of system is independent of system 
uncertainty of parameters and variation load and presents 
the faster dynamic behavior. 

 

III.  MATHEMATICAL REPRESENTATION OF THE I.M. 

The mathematical modeling of the induction motor can 
appear as a transformer with rotating secondary winding, 
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wherein the coupling parameters among the stator and 
rotor stages exchange constantly with the change of rotor 
position [1,2]. The motor model can be described by 
means of differential equations with time various mutual 
inductances, but such version has a tendency to be very 
complex.  

Therefore, axis transformation is carried out to transfer 
the 3-phase parameters (flux, voltage, and current) to 
two–axis framework referred to as the dq-axis stationary 
framework or park transformation. Park transformation is 
implemented to refer the stator variables to a 
synchronously rotating reference frame fixed in the rotor, 
in which all parameters will appear as DC quantities. 
 

 
Fig.1. The equivalent circuit of the 3-phase I.M. 

The per-phase equivalent circuit of a three-phase 
induction motor is shown in Fig.1. From which the 
subsequent equations may be written [1]: 

● Stator equations:  

 
𝑉𝑉𝑞𝑞𝑞𝑞𝑒𝑒 = 𝑅𝑅𝑠𝑠𝑖𝑖𝑞𝑞𝑞𝑞𝑒𝑒 + 𝑑𝑑𝛹𝛹𝑞𝑞𝑞𝑞

𝑑𝑑𝑑𝑑  +𝑤𝑤𝑒𝑒𝛹𝛹𝑑𝑑𝑑𝑑                      (1) 
 

𝑉𝑉𝑞𝑞𝑞𝑞𝑒𝑒 = 𝑅𝑅𝑠𝑠𝑖𝑖𝑞𝑞𝑞𝑞𝑒𝑒 + 𝑑𝑑𝛹𝛹𝑞𝑞𝑞𝑞
𝑑𝑑𝑑𝑑 −𝑤𝑤𝑒𝑒𝛹𝛹𝑑𝑑𝑑𝑑                      (2) 

 

● Rotor equations: 

 
𝑉𝑉𝑞𝑞𝑞𝑞𝑒𝑒 = 𝑅𝑅𝑟𝑟𝑖𝑖𝑞𝑞𝑞𝑞𝑒𝑒 + 𝑑𝑑𝛹𝛹𝑞𝑞𝑞𝑞

𝑑𝑑𝑑𝑑  +(𝑤𝑤𝑒𝑒−𝑤𝑤𝑟𝑟)𝛹𝛹𝑑𝑑𝑑𝑑                (3) 
 

𝑉𝑉𝑑𝑑𝑑𝑑𝑒𝑒 = 𝑅𝑅𝑟𝑟𝑖𝑖𝑑𝑑𝑑𝑑𝑒𝑒 + 𝑑𝑑𝛹𝛹𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 −(𝑤𝑤𝑒𝑒−𝑤𝑤𝑟𝑟)𝛹𝛹𝑞𝑞𝑞𝑞                (4) 

 
Where: the superscript notation "e" referred to the 
synchronously rotating reference frame parameters. As 
known in the squirrel cage type induction motor Vqdr=0, 
then the previous equation can be rewritten: 
 

𝑑𝑑𝛹𝛹𝑞𝑞𝑞𝑞
𝑑𝑑𝑑𝑑 = 𝑉𝑉𝑞𝑞𝑞𝑞𝑒𝑒 − 𝑅𝑅𝑠𝑠𝑖𝑖𝑞𝑞𝑞𝑞𝑒𝑒 − 𝑤𝑤𝑒𝑒𝛹𝛹𝑑𝑑𝑑𝑑                 (5) 

 
𝑑𝑑𝛹𝛹𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 𝑉𝑉𝑑𝑑𝑑𝑑𝑒𝑒 − 𝑅𝑅𝑠𝑠𝑖𝑖𝑑𝑑𝑑𝑑𝑒𝑒 +𝑤𝑤𝑒𝑒𝛹𝛹𝑞𝑞𝑞𝑞                 (6) 

 
𝑑𝑑𝛹𝛹𝑞𝑞𝑞𝑞
𝑑𝑑𝑑𝑑 = −𝑅𝑅𝑟𝑟𝑖𝑖𝑞𝑞𝑞𝑞𝑒𝑒 − (𝑤𝑤𝑒𝑒−𝑤𝑤𝑟𝑟)𝛹𝛹𝑑𝑑𝑑𝑑                 (7) 

𝑑𝑑𝛹𝛹𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = −𝑅𝑅𝑟𝑟𝑖𝑖𝑑𝑑𝑑𝑑𝑒𝑒 + (𝑤𝑤𝑒𝑒−𝑤𝑤𝑟𝑟)𝛹𝛹𝑞𝑞𝑞𝑞                  (8) 

 
The produced torque through the interplay of airgap 

flux and rotor current may be discovered as: 
 

𝑇𝑇𝑒𝑒 = (3/2)(𝑝𝑝/2)𝛹𝛹𝑚𝑚�����⃑  𝑋𝑋 𝐼𝐼𝑟𝑟��⃑                       (9) 
 

By resolving the variables into de-qe components: 
 

𝑇𝑇𝑒𝑒 = (3/2)(𝑝𝑝/2)�𝛹𝛹𝑑𝑑𝑖𝑖𝑞𝑞𝑞𝑞𝑒𝑒 − 𝛹𝛹𝑞𝑞𝑖𝑖𝑑𝑑𝑑𝑑𝑒𝑒 �            (10) 
 

The rotor dynamic equation: 
 

𝑇𝑇𝑒𝑒 = 𝑇𝑇𝐿𝐿 + �2𝑃𝑃�𝐽𝐽
𝑑𝑑𝑤𝑤𝑟𝑟
𝑑𝑑𝑑𝑑                        (11) 

 
Where: 𝜔𝜔r = is the angular speed; P= poles number; J= 

moment inertia; TL= applied torque.  
The current of the stator may be determined with the 

aid of: 
 

𝑖𝑖𝑑𝑑𝑑𝑑𝑒𝑒 = 𝛹𝛹𝑑𝑑𝑑𝑑−𝛹𝛹𝑞𝑞𝑞𝑞
𝐿𝐿𝑠𝑠

                           (12) 
 

𝑖𝑖𝑞𝑞𝑞𝑞𝑒𝑒 = 𝛹𝛹𝑞𝑞𝑞𝑞−𝛹𝛹𝑑𝑑𝑑𝑑
𝐿𝐿𝑠𝑠

                          (13) 
 

The airgap flux:  
 

𝛹𝛹𝑞𝑞𝑞𝑞 = 𝐿𝐿𝑚𝑚1
𝐿𝐿𝑠𝑠
𝛹𝛹𝑞𝑞𝑞𝑞 + 𝐿𝐿𝑚𝑚1

𝐿𝐿𝑟𝑟
𝛹𝛹𝑞𝑞𝑞𝑞                 (14) 

 
𝛹𝛹𝑑𝑑𝑑𝑑 = 𝐿𝐿𝑚𝑚1

𝐿𝐿𝑠𝑠
𝛹𝛹𝑑𝑑𝑑𝑑 + 𝐿𝐿𝑚𝑚1

𝐿𝐿𝑟𝑟
𝛹𝛹𝑑𝑑𝑑𝑑                (15) 

 
Where:   

 
𝐿𝐿𝑚𝑚1 = 1

� 1
𝐿𝐿𝑚𝑚

+ 1
𝐿𝐿𝑠𝑠
+ 1
𝐿𝐿𝑟𝑟
�
                       (16) 

 

IV.  VECTOR CONTROL TECHNIQUE 

Vector or Field-Oriented Control permits a squirrel-
cage I.M. to drives with superior dynamic performance. It 
modulates the dynamic construction of an A.C machine 
into that of separately excited D.C machine [15]. In D.C 
machine, the magnetic flux is proportional to the 
excitation current, if the magnetic assumed to be fixing 
and unbiased of armature current, the armature current 
affords direct torque control, then: 

 
𝑇𝑇𝑒𝑒 ∝  𝐼𝐼𝑓𝑓 ∗  𝐼𝐼𝑎𝑎                               (17) 

 
The FOC approach decouples the two additives of 

stator current; one imparting the airgap flux, and the other 
developing the torque. These current components provide 
impartial manage of flux and torque and the feature is 
linear [2,15]. These components are transferred again to 
the stator framework prior than feeding returned to the 
rotor. These two components are d-axis 𝑖𝑖𝑑𝑑𝑑𝑑𝑠𝑠  analogues to 
field current If, and q-axis 𝑖𝑖𝑞𝑞𝑞𝑞𝑠𝑠  is analogues to armature 
current Ia of the separately excited D.C motor. This 
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strategy may be carried out by means of aligning the rotor 
field vector alongside the d-axis of the stationary 
framework as shown with the aid of the phasor diagram 
in Fig.2.  

The basics of vector manage implementation may be 
depicted by the block diagram in Fig.3, wherein the 
motor version is represented in a synchronously rotating 
reference frame. The voltage-fed inverter produces three-
phase voltages ( 𝑣𝑣𝑎𝑎 ,𝑣𝑣𝑏𝑏 ,𝑣𝑣𝑐𝑐 ) in line with the reference 
command voltages ( 𝑣𝑣𝑎𝑎∗ ,𝑣𝑣𝑏𝑏∗ ,𝑣𝑣𝑐𝑐∗ ). The flux and torque 
components of stator current (𝑖𝑖𝑑𝑑𝑑𝑑𝑠𝑠

∗ ) and (𝑖𝑖𝑞𝑞𝑞𝑞𝑠𝑠
∗) is used as a 

control references to the machine, which can be inversely 
transformed to 3-phase reference currents ( 𝑖𝑖𝑎𝑎∗ , 𝑖𝑖𝑏𝑏∗ , 𝑖𝑖𝑐𝑐∗), and 
then transferred to three phases voltage command 
( 𝑣𝑣𝑎𝑎∗ ,𝑣𝑣𝑏𝑏∗ ,𝑣𝑣𝑐𝑐∗ ) through (PI) controller [16]. The vector 
manage can be carried out by using either direct or 
indirect techniques, these methods are specific basically 
by how the unit vector (cos𝜃𝜃𝑒𝑒 and sin𝜃𝜃𝑒𝑒) is evaluated. 
 
                                                qe 

 
                       𝛹𝛹𝑞𝑞𝑞𝑞������⃑ = 0    iqs 

 
                                                       qs 
 
                        𝜃𝜃𝑒𝑒      ids 
 

             -iqs                            𝛹𝛹𝑑𝑑𝑑𝑑�������⃑ = 𝛹𝛹𝑟𝑟����⃑  
                                      de  
                                              𝜔𝜔𝑒𝑒  
                         ds  

 

 
Fig.2. Concept of rotor flux orientation 

 

Voltage 
Fed 

Inverter 

        𝛹𝛹𝑟𝑟     Flux command  
 
𝛹𝛹𝑟𝑟∗           ids

*                                                  𝑖𝑖𝑎𝑎,𝑏𝑏,𝑐𝑐
∗  

                      PI 
                                                  de-qe                          2𝜑𝜑                              
                                               to ds-qs                        to 3𝜑𝜑 
 

                      PI                    Transform                 Transform 

𝜔𝜔𝑟𝑟∗             iqs
*  

          Torque  
   𝜔𝜔𝑟𝑟    command 
                 cos𝜽𝜽𝒆𝒆        sin𝜽𝜽𝒆𝒆 
 

                           DSP    
        𝛹𝛹𝑟𝑟               Estimator       current feedback 
 

                                                                           I.M 
                                         𝜔𝜔𝑟𝑟  

 

 
Fig.3. Block diagram of field oriented vector control 

 

V.  FIELD VECTOR ESTIMATING 

There are typically two strategies of flux estimating; 

voltage and current templates. The voltage model has 
strong overall performance in high-speed applications but 
no longer in low speeds. Whilst, the current model has a 
universal overall performance in both low and high 
speeds [1]. The current version relies upon on the rotor 
equations within the axes stationary frame ds-qs, the 
superscript "s" noted to stationary framework quantities: 

 
𝑅𝑅𝑟𝑟𝑖𝑖𝑞𝑞𝑞𝑞𝑠𝑠 + 𝑑𝑑𝛹𝛹𝑞𝑞𝑞𝑞

𝑠𝑠

𝑑𝑑𝑑𝑑 − 𝑤𝑤𝑟𝑟𝛹𝛹𝑑𝑑𝑑𝑑𝑠𝑠 = 0              (18) 
 

𝑅𝑅𝑟𝑟𝑖𝑖𝑑𝑑𝑑𝑑𝑠𝑠 + 𝑑𝑑𝛹𝛹𝑑𝑑𝑑𝑑
𝑠𝑠

𝑑𝑑𝑑𝑑 +𝑤𝑤𝑟𝑟𝛹𝛹𝑞𝑞𝑞𝑞𝑠𝑠 = 0              (19) 
 

Adding (𝐿𝐿𝑚𝑚𝑅𝑅𝑟𝑟 𝐿𝐿𝑟𝑟)⁄ 𝑖𝑖𝑑𝑑𝑑𝑑𝑠𝑠  and (𝐿𝐿𝑚𝑚𝑅𝑅𝑟𝑟 𝐿𝐿𝑟𝑟)⁄ 𝑖𝑖𝑞𝑞𝑞𝑞𝑠𝑠  and 
simplifying: 

 
𝛹𝛹𝑞𝑞𝑞𝑞𝑠𝑠 =  ∫[ 𝐿𝐿𝐿𝐿

𝑇𝑇𝑇𝑇
 𝑖𝑖𝑞𝑞𝑞𝑞𝑠𝑠 + 𝜔𝜔𝑟𝑟 𝛹𝛹𝑑𝑑𝑑𝑑𝑠𝑠 − 𝛹𝛹𝑞𝑞𝑞𝑞𝑠𝑠

𝑇𝑇𝑇𝑇
 ]           (20) 

 
𝛹𝛹𝑑𝑑𝑑𝑑𝑠𝑠 =  ∫[ 𝐿𝐿𝐿𝐿

𝑇𝑇𝑇𝑇
 𝑖𝑖𝑑𝑑𝑑𝑑𝑠𝑠 − 𝜔𝜔𝑟𝑟 𝛹𝛹𝑞𝑞𝑞𝑞𝑠𝑠 −

𝛹𝛹𝑑𝑑𝑑𝑑
𝑠𝑠

𝑇𝑇𝑇𝑇
 ]          (21) 

 
The rotor flux is represented in (20 & 21) as a function 

of stator currents and speed. Therefore, understanding 
these alerts, the rotor flux and corresponding unit vector 
(cos 𝜃𝜃𝑒𝑒  and sin 𝜃𝜃𝑒𝑒 ) may be predicted by using DSP 
microprocessor to put into effect the subsequent 
equations [1, 17]: 

 

𝛹𝛹𝑟𝑟����⃑ =  �𝛹𝛹𝑞𝑞𝑞𝑞𝑠𝑠
2 +𝛹𝛹𝑑𝑑𝑑𝑑𝑠𝑠

2        
 

𝛹𝛹𝑞𝑞𝑞𝑞𝑠𝑠 = 𝛹𝛹𝑟𝑟����⃑  𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑒𝑒 
 

𝛹𝛹𝑑𝑑𝑑𝑑𝑠𝑠 = 𝛹𝛹𝑟𝑟����⃑  𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑒𝑒 
 

𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑒𝑒 =
𝛹𝛹𝑞𝑞𝑞𝑞𝑠𝑠

𝛹𝛹𝑟𝑟����⃑
 

 
𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑒𝑒 = 𝛹𝛹𝑑𝑑𝑑𝑑

𝑠𝑠

𝛹𝛹𝑟𝑟�����⃑
                             (22) 
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Fig.4. Current model flux estimation 
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Flux estimation via the current version needs for a 
speed encoder, but the benefit is that the driving 
operation may be extended down to low and zero speed. 
It's crucial to mention, that the inputs to the estimator 
( 𝑖𝑖𝑞𝑞𝑞𝑞𝑠𝑠  and 𝑖𝑖𝑑𝑑𝑑𝑑𝑠𝑠  ) have to be filtered by using a low bypass 
filter. The simulation of the current version estimator is 
depicted in Fig.4. 

 

VI.  ARTIFICIAL NEURAL ESTIMATOR 

Recently, we've seen big researches and trends attempt 
to apply the intelligent device in lots of engineering 
applications, due to its robust features likable to learn, 
fast adapting, inherent approximation functionality, and 
excessive degree of tolerance [18,19]. Neural Network 
Controller (NNC) became efficiently delivered to 
improve the performance of nonlinearity, which might be 
an effective tool used to improve the overall performance 
for both identification and controlling device. The global 
approximation capabilities of multi-layer perceptron 
make it a famous desire for modeling nonlinear structures 
and for imposing robust controllers. A neural network is a 
sensible gadget which can be learned or trained the use of 
real present inputs and outputs table, the process can be 
executed in real-time or off-time operation [18,19]. 

Thus, those features can be employed in this work to 
estimate the value of the rotor flux vector 𝛹𝛹𝑟𝑟����⃑  and the unit 
vector (cos 𝜃𝜃𝑒𝑒  and sin 𝜃𝜃𝑒𝑒 ) as opposed to using DSP 
microprocessor, which lessen the complexity of the 
hardware, and decreases the Electro Magnetic 
Interference EMI effect on the microprocessor 
performance. Also, a neural-based PI controller may be 
implemented rather than the conventional PI controller. 

 

VII.  THE ARTIFICIAL NEURAL ESTIMATOR 

An ANN has four input and output neurons, (𝑖𝑖𝑞𝑞𝑞𝑞𝑠𝑠  , 𝑖𝑖𝑑𝑑𝑑𝑑𝑠𝑠  , 
𝛹𝛹𝑞𝑞𝑞𝑞𝑠𝑠  ,  𝛹𝛹𝑑𝑑𝑑𝑑𝑠𝑠 ) and (cos𝜃𝜃𝑒𝑒  , sin𝜃𝜃𝑒𝑒  , Te ,  𝛹𝛹𝑟𝑟 ) respectively, 
including 7 hidden layers are designed and trained to 
meet the required performance of the estimator. It's 
crucial to mention right here that is, usually a huge wide 
variety of input and output records of different operating 
conditions should be used to train the neural network, but 
in this paper a unique unit step signal with rising and fall 
edges was used to training the network, which offers a 
top-notch overall performance in various speed situations. 
The overall accuracy performance of the neural network 
can be shown in Fig.5.  

 
Fig.5-a. Accuracy performance for the neural controller 

 
Fig.5-b. Accuracy performance of the unit vector estimation 

 

VIII.  NEURAL-BASED PID CONTROLLER 

The disadvantage of the PID controller isn't 
appropriate for controlling a high time constant and 
nonlinear system, wherein the tuning of the P, I and D 
gains are complicated. With the improvement of 
contemporary computer technology, controlling 
techniques such as fuzzy and neural networks are 
developed. The adaptive PID controller neural network is 
a traditional PID approach combined with ANN, based on 
the discrete representation illustrated by [20,21], by 
which a new concept and new tool for controlling 
technique are presented. The self-learning ability of Back 
Propagation (BP) neural network can be tuning 
automatically and modifies the strong PID parameters. 
The PID controller combining BP neural network can 
give excellent consequences. Fig.6 shows the block 
diagram of the PID controller based on the discrete 
representation [22]. 
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Fig.6. The PID-NN controller 

The proposed adaptive controller law based on neural 
community method is as the following:  

 
𝑛𝑛𝑛𝑛𝑛𝑛(𝑘𝑘) = 𝑊𝑊1[𝑒𝑒(𝑘𝑘) − 𝑒𝑒(𝑘𝑘 − 1)] +𝑊𝑊2𝑒𝑒(𝑘𝑘) + 

    𝑊𝑊3[𝑒𝑒(𝑘𝑘) − 2𝑒𝑒(𝑘𝑘 − 1) + 𝑒𝑒(𝑘𝑘 − 2)]             (23) 
 
Where, (𝑘𝑘),(𝑘𝑘−1) 𝑎𝑎𝑎𝑎𝑎𝑎 𝑒𝑒(𝑘𝑘−2) are the error vectors of the 
kth instance. W1, W2, W3 are the controller weights. The 
output activation function “F” is a tan-sigmoid function: 
 

𝐹𝐹(𝑘𝑘) = 2
1−𝑒𝑒−2𝑛𝑛𝑛𝑛𝑛𝑛

− 1                       (24) 
 

The controller drive signal:  
 

(𝑘𝑘) = (𝑘𝑘 − 1) + 𝐹𝐹(𝑘𝑘)                     (25) 
 

Despite the BP is managing powerful computation tool 
that has been used considerably within the regions of 
locating the excellent parameters (weights). But, it has a 
drawback of prolonged training process to meet the 
required performance of the controller. To speed up the 
convergent process and to protect the weights being 
restricted into local optima, the Particle Swarm 
Optimization (PSO) technique can be followed to assess 
the PID-NN controller weights [21,22]. 

Nowadays, the PSO technique is very popular 
optimization method used to find the optimal parameters 
instead of complex analytic processes. In this paper the 
PI-NN controller is required to control both of the torque 
and speed loops, thus, only W1 and W2 are found out by 
the particle swarm optimizing process. Fig.7 shows the 
searching progress for optimum values of W1 and W2 
while the derivative weight W3 is set to zero. There are 
several fitness criteria used in the optimization process, in 
this work the Integral Time Square Error (ITSE) is used 
as a fitness function which is must be minimized in the 
optimization loop.   
 

 
Fig.7. the weights settling values during the optimization loop 

IX.  SIMULATION RESULTS 

The overall systems, both of the DSP and ANN-based 
estimator and controller, are simulated by using 
MATLAB-SIMULINK program as shown in Fig.8. The 
neural estimator weights were trained by using the BP 
technique to meet a set of input-output recorded table for 
different operating conditions (different loads and speeds). 
Whereas, the optimum weights of the PI-NN controller, 
as mentioned before, are obtained by using the particle 
swarm optimization technique. The used I.M has the 
following nameplate: 3-ph I.M, 380V, 2.2 kW, 2 poles, 
50 Hz, Ls= 13.6 mH, Lr= 11.4 mH, Rs=2.3 Ω, Rr= 3.4 Ω, 
rotor inertia= 4.5*10-3 kg/m2. 
 

 
Fig.8. The overall system simulation 

The performances of the DSP and ANN-systems, for 
different operating speeds under full-load condition, are 
depicted in Fig.9 and Fig.10 respectively.  

 

 
Fig.9. Speed and torque performance of DSP-based system
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Fig.10. Speed and torque performance of ANN-based  

Moreover, the performance of the motor in two 
quadrant operation, positive and negative load torque as 
well as zero speed, is investigated to examine the 
robustness degree of the ANN-based system, as shown in 
Fig.11. 

In addition, a comparison performance between the 
DSP and ANN-based systems are studied, to illustrate the 
feature of the proposed method, under full load and rated 
speed conditions as shown in Fig.12. Also, it investigated 
under variable speed and full load condition as shown in 
Fig.13. 

 

 
Fig.11. Two quadrant operation 

Furthermore, the effectiveness of the decoupling 
process can be inspected by the relationship between the 
q-axis current component and the developed torque, also 
the d-axis current component and the rotor flux as shown 
in Fig.14 and Fig.15 respectively. 

 

 
Fig.12. Comparison performance between DSP and ANN-based system, 

under hard step speed command and full-load condition 

 
Fig.13. comparison performance between DSP and ANN-based system, 

under stair steps speed command and full-load condition 

For further verification and to realize the robustness of 
the proposed controller, a comparison investigated is 
made between this controller and the presented system in 
[14] as different environments. The speed tracking 
performance shows slightly improving in the transient 
response as depicted in Fig.16. Also, Fig.17 shows the 
electromagnetic torque for both of the proposed and 
reference systems. These results demonstrate that the 
proposed controller has significant robustness which 
enabling it to experience the various changes associated 
with different operating conditions and for different types 
of motors, which achieves high operating stability and 
excellent performance for various loads.      
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Fig.14. The relationship between 𝑖𝑖𝑞𝑞𝑞𝑞𝑠𝑠  and the torque 

 
Fig.15. The relationship between  𝑖𝑖𝑑𝑑𝑑𝑑𝑠𝑠  and the flux 

 
Fig.16. Speed performance compared with reference [14] 

 
Fig.17. Produced torque compared with reference [14] 

 

X.  CONCLUSION 

In this paper, the concepts of FOC strategy and its 
overall performance have been analyzed for both of DSP 

and ANN estimating and controlling strategies. The 
derivations may be summarized as following: 

Obviously, FOC is a powerful complex controller in 
line with excessive overall performance demand, which 
gives a strong performance in various operation steps, 
underneath full-load circumstance in both variable torque 
and weakening field operation regions. 

Implementing of Neural estimator and controller does 
not only reduce the complexity of the hardware, but it 
improves the overall system performance, which gives: 
overshot less than 0.5%, rise time 0.514 s, steady state 
error less than 0.2%, settling time 0.7 s. in conjunction 
with that of DSP-based performance: overshot about 2%, 
rise time 0.64 s, steady state error less than 0.4%, settling 
time 0.75 s.   

The decoupling of the stator current components is 
exactly aligned on the dq-axis. The torque current (𝑖𝑖𝑞𝑞𝑞𝑞𝑠𝑠 ) is 
precisely analogous the electromagnetic torque (Te) as 
proven in Fig.14, and the flux current (𝑖𝑖𝑑𝑑𝑑𝑑𝑠𝑠 ) is regular and 
precisely analogous the airgap flux as proven in Fig.15. 
The investigation results with other system presented in 
[14] prove that the proposed controller has considerable 
robustness which enabling the system to overcome 
various changes associated with different operating 
conditions and for different types of motors, which 
achieves high operating stability and excellent 
performance for various loads.      
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