
I.J. Intelligent Systems and Applications, 2019, 11, 25-37
Published Online November 2019 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijisa.2019.11.03

This work is open access and licensed under the Creative Commons CC BY 4.0 License. Volume 11 (2019), Issue 11

Parallel Implementation of a Video-based Vehicle

Speed Measurement System for Municipal

Roadways

Abdorreza Joe Afshany
Department of Computer Engineering, University of Guilan, Rasht, Iran

E-mail: joe_afshany@msc.guilan.ac.ir

Ali Tourani1, Asadollah Shahbahrami1, Saeed Khazaee2, and Alireza Akoushideh3

1 Department of Computer Engineering, University of Guilan, Rasht, Iran
2 Centre for Pattern Recognition and Machine Intelligence, Concordia University Montreal, Canada

3 Shahid-Chamran College, Technical and Vocational University, Tehran, Iran

E-mails tourani@msc.guilan.ac.ir, shahbahrami@guilan.ac.ir, s_khaza@encs.concordia.ca, akushide@sbu.ac.ir

Received: 21 April 2019; Revised: 20 May 2019; Accepted: 07 June 2019; Published: 08 November 2019

Abstract—Nowadays, Intelligent Transportation Systems

(ITS) are known as powerful solutions for handling

traffic-related issues. ITS are used in various applications

such as traffic signal control, vehicle counting, and

automatic license plate detection. In the special case,

video cameras are applied in ITS which can provide

useful information after processing their outputs, known

as Video-based Intelligent Transportation Systems (V-

ITS). Among various applications of V-ITS, automatic

vehicle speed measurement is a fast-growing field due to

its numerous benefits. In this regard, visual appearance-

based methods are common types of video-based speed

measurement approaches which suffer from a

computationally intensive performance. These methods

repeatedly search for special visual features of vehicles,

like the license plate, in consecutive frames. In this paper,

a parallelized version of an appearance-based speed

measurement method is presented which is real-time and

requires lower computational costs. To acquire this, data-

level parallelism was applied on three computationally

intensive modules of the method with low dependencies

using NVidia’s CUDA platform. The parallelization

process was performed by the distribution of the

method’s constituent modules on multiple processing

elements, which resulted in better throughputs and

massively parallelism. Experimental results have shown

that the CUDA-enabled implementation runs about 1.81

times faster than the main sequential approach to

calculate each vehicle’s speed. In addition, the

parallelized kernels of the mentioned modules provide

21.28, 408.71 and 188.87 speed-up in singularly

execution. The reason for performing these experiments

was to clarify the vital role of computational cost in

developing video-based speed measurement systems for

real-time applications.

Index Terms—Parallelism, speed measurement, video

processing, intelligent transportation systems.

I. INTRODUCTION

For several years, providing safe and secure

transportation circumstances have been considered as the

basic requirement for the development of industries and

increasing social welfare level in developed countries [1].

Nowadays, transportation issues such as environmental

pollutions, reduction of energy resources, corporeal and

financial damages caused by car accidents and the rapid

growth trend of transportation demands - especially

during the peak hours of road traffics - have become an

unbreakable challenge in all cities around the world [2].

In this regard, Intelligent Transportation Systems (ITS)

are defined as the means for collection of tools, facilities,

and specializations, such as traffic management and

telecommunications technologies in the form of

coordinated instruments. ITS have various branches to

provide the desired solutions to tackle the mentioned

issues [3]. One of the main applications of ITS is the

automatic speed measurement. Due to the possible

dangers such as vehicle-pedestrians’ accidents, vehicles’

speed control procedure on urban roadways is very

important. There are several methods for speed

measurement purposes and many systems designed over

the time to calculate the passing vehicles’ speeds, like

inductive loop detectors, Laser-based (Lidar) and Radar-

based systems [4]. Inductive loop detectors are known as

widely used instruments, but they suffer from some

major problems such as challenging installation and

maintenance, short lifetime and road damage [5]. On the

other hand, Laser-based and Radar-based systems are

more expensive than inductive loop detectors, but they

have the advantage of better accuracy [6]. Here, the

accuracy is defined as the proximity of a vehicle’s real

mailto:joe_afshany@msc.guilan.ac.ir
mailto:tourani@msc.guilan.ac.ir
mailto:shahbahrami@guilan.ac.ir
mailto:s_khaza@encs.concordia.ca
mailto:akushide@sbu.ac.ir

Parallel Implementation of a Video-based Vehicle Speed Measurement System for Municipal Roadways

26 Volume 11 (2019), Issue 11

instantaneous speed and calculated speed. As another

type of devices, speed sensors using Digital Image

Processing (DIP) have attracted huge interest among

researchers in recent years. These systems, which known

as vision-based approaches, use the video output of

installed road cameras and process them to obtain

information about the vehicle’s speed [7]. Vision-based

methods can be remarked as alternatives for existing

speed measurement systems, i.e. Radar and Laser-based

applications, in case they provide acceptable accuracy.

Although these approaches suffer from some limitations

like high computational cost and some challenges in

detecting and tracking vehicles in the video scene,

measuring vehicle speeds using DIP has several

advantages such as lower cost, easier maintenance, and

better expandability.

In this paper, we introduce a parallel implementation

of a formerly presented computationally intensive vision-

based vehicle speed measurement method [12] to provide

a real-time performance by utilizing GPU for

parallelization. Experimental results have shown about

55.12% decrease in the execution of the parallelized

version compared to the CPU-based approach. It should

be noted that some minor changes in vehicle detection

and tracking modules have been applied which are

thoroughly explained in related sections. The main

contributions of our work are summarized below:

1) We developed a parallel implementation of a

sequential (CPU-based) speed measurement

approach;

2) General analysis and profiling of the method to

detect computationally intensive modules with low

dependencies to other modules was performed;

3) The effect of parallelization in both kernel and

application levels was calculated;

4) We observed that by parallelizing some

computationally intensive modules made the

method robust against executing in almost real-

time applications;

The rest of the paper is organized as follows: we will

first explain the definitions and some related works in

Section 2. In Section 3, the description of the proposed

method which is a parallelized implementation of a speed

measurement approach including motion detection,

license plate recognition, vehicle tracking, and speed

calculation modules is introduced. Experimental results

and evaluations are presented in Section 4 and finally, we

finish with conclusions in Section 5.

II. RELATED WORKS

In this section, some primary concepts are introduced

to provide a better understanding of the speed

measurement process and later, some related works are

presented and discussed. As a common classification of

vision-based speed measurement approaches, two main

categories, including motion-based and appearance-based

methods are existed [7]. Motion-based approaches do not

depend on visual features of the vehicles and instead,

require a sequence of frames to detect moving vehicles.

Although these methods are able to recognize the depth

of the scene, they do not represent vehicles by their

visual features and thus, they provide lower

computational costs. Appearance-based approaches, on

the other hand, need some visual features of the vehicles,

e.g. license plate or tail-light, in each frame. As a

common manner, vehicle speed measurement algorithms

using DIP have a general block diagram as shown in Fig.

1. They come along with some differences in applying

algorithms for each part of the scenario which may result

in different computational costs and performance. As it

can be mentioned, in the first step, the general

topographies of moving vehicles in the scene should be

detected using various methods such as background

subtraction or frame differencing in motion-based, and

visual pattern or texture in appearance-based approaches.

These features may be existed in the whole or some

special regions of vehicles, like the headlights, license

plate, etc. In the next step, the previously found features

should be tracked among sequential frames to provide the

vehicle’s displacement in pixels. Tracking process makes

it possible to measure the amount of the moving vehicle’s

displacement to provide speed measurement parameters.

The final results of this process can be some special parts

of the vehicles or the whole vehicle’s shape. Finally, a

module to calculate vehicle speed through mapping

pixels to meters and frame numbers to seconds is

performed. This mapping function should convert the

displacement vector 𝑑𝑖
⃗⃗ ⃗ in the camera’s focal length to the

displacement vector 𝐷𝑖
⃗⃗ ⃗ in real-world metrics.

Fig.1. A general block diagram of common vision-based speed

measurement methods.

Because of the direct recognition of vehicles in

separate frames, these methods are faced with high

computational cost and time consumption to provide

appropriate accuracy. In this regard, parallelization of

such algorithms is an appropriate process to tackle high

computational costs by concurrent execution of

procedure divisions on various processing units. In recent

years, Graphical Processing Units (GPUs) have become

significantly powerful tools for parallelization purposes.

GPUs, with the help of their abundant number of

processing units, are able to provide SIMT (Single

Instruction Multiple Threads) parallelization and execute

a method in a fraction of time required for the execution

of the same method on CPUs.

A. Background Information

In this sub-section, some important definition of

concepts and background information which have been

used in the upcoming parts of the paper are presented [8-

11]:

 Compute Unified Device Architecture (CUDA):

Detecting Moving
Vehicles

Features
Extraction

& Selection

Features
Tracking

Speed
Measurement

Parallel Implementation of a Video-based Vehicle Speed Measurement System for Municipal Roadways

Volume 11 (2019), Issue 11 27

in order to utilize a Graphical Processing Unit as

a powerful device to speed up computationally

intensive algorithms, CUDA has been developed

by NVidia as a great programming tool for

parallelization. Before introducing CUDA, the

task of GPU programming was tough and the

programmer needed to know the main

architecture of the GPU. CUDA simplified the

implementation of GPU-enabled applications to

be rendered on NVidia GPUs. Computationally

intensive applications with the lowest possible

dependencies are the best candidates for

parallelization on CUDA. This environment

makes programmers able to distribute the

amount of computation in their codes on

thousands of cores of their GPU cards and

consequently, provide the performance equal to

tens of CPUs with much less cost. In CUDA,

kernels are referred to data-parallel portions of

an application, which contain several threads for

parallel execution to be operated on data stored

in the GPU’s memory. It should be mentioned

that the process of initiating the kernels is done

by CPU. For parallelization of an application,

these threads should be grouped together to

provide warps and blocks of codes. The main

challenge for the programmer is to avoid serially

execution of threads and provide optimized

performance.

 Good features: Since selecting appropriate

features equivalent to the physical points in

ground truth is a difficult process, correct

detection of these features is so important in

object tracking goals. A “good feature” as it is

mentioned in [9], is a region with high-intensity

variations in more than one direction, like the

areas of texture or corners. In this regard, Good

Features to Track [9] is a corner detection

approach based on the Harris corner detector

which finds the strongest corners in an image

and skips the corners below a pre-defined

quality. So the output of this function is a

number of corners which are appropriate for

later tracking that makes the system needless of

extracting information from every single corner

in an image.

 Motion History Image (MHI): MHI is a

common vision-based method for detecting

moving objects in sequential frames which uses

a static image template to understand the

location and path of the motion. This technique

has some advantages such as insensitivity to

silhouette noises, holes, shadows and missing

parts, and the ability of implementation in low

illumination conditions. In MHI method, the

intensity of each pixel in a temporal manner is

used for motion representation, and a history of

changes at each pixel location is stored for

motion detection purposes.

 Pyramid version of Kanade-Lucas-Tomasi

(KLT): because the traditional algorithm of KLT

only works for small displacements (in the order

of one pixel), the pyramid version of this

method is used in [10] to overcome the

limitation of larger displacement detections. The

pyramid version of KLT algorithm picks up a

pyramid for each frame, where the image with

the main dimensions is placed at the base of the

pyramid. In each level, the width and height of

the image are reduced by half. The pyramid

KLT algorithm begins to find the vector d⃗ of

displacement from the last level of the pyramid

and uses the results for the initial estimation of d⃗
at the next level. This process continues to reach

the base of the pyramid, i.e. the original image.

 T-HOG text descriptor: this text descriptor

which was first presented in [8], detects a

collection of characters by obtaining a gradient

histogram of the top, middle and bottom of an

image area by the means of the histograms of

text regions. These areas have significant and

fundamental differences with other non-text

regions. Consequently, this method can be used

to detect a vehicle’s license plate regions in a

video frame for further processes.

B. Related Works

Due to the numerous benefits of video-based ITS

approaches, some different methods for estimating and

measuring the speed of vehicles on the roadways are

proposed. Most of these techniques use

background/foreground segmentation algorithms to

detect vehicles and track them in sequential frames to

calculate their displacement in a period of time. These

approaches follow the steps shown in Fig.1 in most of the

cases. In [12], a frame differencing technique to detect

moving vehicles is presented that seeks a vehicle’s

license plate to extract desired features and track its good

features in multiple frames using the pyramid KLT

algorithm. The speed measurement average error in this

approach was -0.5 km/h and in over 96.0% of cases,

measurement errors were inside [-3, +2] km/h range.

Similarly, a robust approach presented in [13] used the

same vehicle detection technique which considers each

vehicle as a blob by the means of the edge detection

method and tracks their centroids to calculate the

displacements of blobs in a limited time range and

measure the vehicles’ speed. In [14], another frame

differencing method to detect moving vehicles is

presented which detects corners of the vehicle by Harris

algorithm and tracks the centroid points using the

Kanade-Lucas-Tomasi (KLT) method among sequential

frames. After the tracking step, the vehicle’s speed is

calculated using a spherical projection that relates image

movement with the vehicle’s displacement. Authors in

[15] used a frame differencing method for vehicle

detection, which selects special points with large spatial

gradients in two orthogonal directions within the

vehicle’s coverage area to track features. Therefore, the

vehicle’s speed was calculated by the means of velocity

Parallel Implementation of a Video-based Vehicle Speed Measurement System for Municipal Roadways

28 Volume 11 (2019), Issue 11

vectors obtained from the tracking step using an optical

flow method. Similarly, in [16] a frame differencing and

blob tracking method is presented in which the vehicle’s

speed is obtained by estimating each blob’s displacement

using static parameters. In other approaches, authors of

[17-19] used a median filter for moving vehicle detection

and calculated the real position of the vehicle in video

frames to measure speed. A Gaussian distribution for

detecting moving vehicles is presented in [20] which uses

blob detection and tracking for speed calculation. In [21],

the authors used the background/foreground

segmentation technique to detect moving vehicles and

blob tracking method to estimate their speed. Some other

approaches like [22-24] used vehicles’ license plates for

detection purposes and by tracking the extracted features

from the license plates, their speed was measured. In [22]

detected characters using an Optical Character

Recognition (OCR) algorithm which is inconstant in

position and size are used for vehicle detection. This

method requires a robust OCR and does not provide

acceptable results even in a controlled environment.

Similar work in [23] is done based on vehicles’ license

plate detection and tracking.

Although some of the mentioned methods are similar

in detection or tracking steps, they have fundamental

differences due to utilizing a wide variety of algorithms.

Methods based on blob analysis, i.e. [13-14, 16, 18] and

[34-35], are sensitive to environmental conditions such as

shadow, perspective effect, and lighting changes. In

addition, these methods only provide satisfactory results

when the camera is fixed on top of the roadway. They are

also computationally intensive due to their appearance-

based methodologies. Some other methods used the same

types of features from the blobs, such as [24] that detects

the edges close to the boundaries of each blob, or [26]

that extracts features including derivatives, Laplacian and

colors from each blob. In [27], blob analysis problems

were solved by direct tracking of unique features using

the Lucas-Kanade optical flow algorithm, but according

to the assumptions, this method could only track one

vehicle in any timestamp [28].

Inspired by the mentioned approaches for vehicle

detection and speed measurement, in this article, we

implemented a parallel version of the vehicle speed

measurement approach presented in [12]. The main

reason for choosing this method is its robust performance,

containing computationally intensive modules and the

high potential of parallelization according to the authors’

claims. This method takes advantage of license plate text

features but does not require the characters of the license

plate to be accurately segmented by the OCR algorithm

to detect and track vehicles. Instead, the whole text

appeared inside the license plate zone is recognized and

tracked. The overall process of this approach includes

four sequential steps, as it is shown briefly in Fig.2.

Fig.2. A block diagram of the speed measurement approach presented

in [12]: a) Detecting a moving vehicle, b) Features extraction &
candidate selection, c) Features tracking, and d) Speed measurement.

The first step is to find the moving objects – i.e.

vehicles - among consecutive frames in order to limit the

whole process to a set of regions. This goal was reached

using MHI motion detection algorithm presented in [29].

Then, the moving parts of the scene were considered as

vehicles’ boundaries and separated from the background

scene. The frame differencing method produces a

threshold binary image D(x, y, t) where the pixels with

value 1 in each frame are segmented and other remained

pixels, use the maximum value of the same rate in the

previous frame. This collection of the output pixels is

stored as H(x, y, t) in each frame which is shown in

Equation (1), where τ refers to the duration of the motion

in sequential frames.

𝐻 (𝑥. 𝑦. 𝑡) = {
𝜏 𝑖𝑓 𝐷(𝑥. 𝑦. 𝑡) = 1

max (0.𝐻(𝑥. 𝑦. 𝑡 − 1) − 1) 𝑜. 𝑤.
 (1)

Then, a binary segmentation mask M(x, y, t) is

acquired from H(x, y, t) to collect the moving parts,

where the values of H larger than zero are presented as

one in the mask. This process is presented in Equation (2):

𝑀 (𝑥. 𝑦. 𝑡) = {
1 𝑖𝑓 𝐻(𝑥. 𝑦. 𝑡) > 0
0 𝑜. 𝑤.

 (2)

Formerly, by applying Vertical Projection Profile

(VPP) [30], the left and right borders of vehicles are

detected (considering the vehicles moving from the

bottom to the top of the screen). VPP counts the number

of pixels existed in each column of the mask M(x, y, t)

and stores the values in an array VP with a length equal

to the number of the mask’s columns. After smoothing

and normalizing VP, the exact range of pixels refers to

the vehicle’s presence in each frame are recognized and

cropped by applying Find-Hills [12] method. By

detecting the regions inside the vehicle’s cropped area,

the candidates of being the vehicle’s license plate are

extracted. Thus, some parts of the moving vehicle with a

rectangular shape and white background are selected

using Edge Extraction and Filtering method [31].

Furthermore, a module to merge neighboring edges

remained after filtering is defined in which only the

edges with a pre-defined size and ratio are selected using

connected components labeling [32]. Among multiple

(a) (b) (c) (d)

Parallel Implementation of a Video-based Vehicle Speed Measurement System for Municipal Roadways

Volume 11 (2019), Issue 11 29

candidates, using T-HOG [27] text descriptor which has

been introduced in Section 2.1, the region with the most

probability of being the vehicle’s license plate will be

extracted. The T-HOG descriptor will be used as an input

for a Support Vector Machine (SVM) classifier and the

output of the classifier shows whether the region belongs

to a text or non-text area. In the next step and by

detecting the license plate’s region, a set of unique

features inside the region is chosen for tracking. This

process is done by good features extraction. The good

feature, in this case, is a high-intensity region with some

black pixels inside the white region, representing a

vehicle’s license plate. This feature is then tracked by the

pyramid KLT tracking method introduced in Section 2.1

to provide the motion vector of the moving vehicle. In

addition, a timer triggers as the vehicle enters the region

of interest and stops as it leaves the region. Finally, each

vector can represent the instantaneous speed of the

vehicle at a specified time in pixels-per-frame metrics.

Thus, a mapping function to convert it to the kilometers-

per-hour unit is necessary to be applied. As it has been

proved in the pinhole camera model, for a single view of

the scene, the homograph matrix HM [33] can perform

this mapping. Thus, according to the Equation (3), a

plane-to-plane projective transformation and inverse

perspective mapping can provide the final world plane

metrics [37], where for a 3x3 homograph matrix HM,

point 𝑝𝑖(𝑥𝑖 ‚𝑦𝑖) can be mapped to the point 𝑝𝑤̂(𝑥𝑤 ‚𝑦𝑤) in

the world plane [36]:

[
 𝑥𝑤

 𝑦𝑤

 1
] = [

 𝑧𝑥𝑤
𝑧𝑦𝑤

 𝑧
] = 𝐻𝑀 [

 𝑥𝑖

 𝑦𝑖

 1
] (3)

HM can be obtained from four points in the image with

known coordinates in the real-world plane in the

calibration step. These features are utilized to present the

relocation of the vehicle and calculate its speed by

mapping pixels-to-meters and frames-to-seconds.

As it has been acknowledged in the paper, the process

of calculating H(x, y, t) and M(x, y, t) matrices is

computationally intensive. To solve this issue, the author

suggested to apply subsampling function [12], but it still

would be a bottleneck for the performance of the system.

We will discuss the structure of parallelization for better

performance in Section 3.

III. PROPOSED METHOD

For parallelization, some time-consuming modules of

the mentioned method were detected and implemented on

GPU using CUDA programming environment. Although

the mentioned approach is robust against high accuracy

performance, it is considered as a time-consuming

method due to containing multiple computationally

intensive modules. In this section, the implementation of

a CUDA-enabled version of the same method is

presented in order to decrease the time required for

execution. To investigate the effects of each module in

the performance, we implemented the same approach

[12]. Fig.3 shows the time portion required for the

execution of each module obtained by the means of

profiling technique. To gather these time-shares, the

implemented method was executed on several videos and

the presented values are the average of the multiple

calculated measures.

Fig.3. The time portion of various modules in the system (in

milliseconds).

As it can be seen, the calculation of H(x, y, t) and M(x,

y, t) matrices takes the most portion of time among the

whole process, respectively. Vehicle tracking using the

pyramid KLT is another computationally intensive

module. In this regard, the system consumes totally

870.35 milliseconds to process the scene in order to

detect and track vehicles in each frame; while the three

mentioned modules consume 80.67% of the total time.

The main reason of the huge time consumption in H(x, y,

t) and M(x, y, t) matrices calculation is due to the system

requirement for repeatedly performing the calculation for

each pixel. These two modules have a rich data

parallelism capability because they are made up of nested

matrix multiplication operations. In addition, in the

pyramid KLT tracking phase, the process of downsizing

the vehicle’s image and drawing motion vectors in each

level of the pyramid needs a huge amount of calculations.

According to Fig.3, VPP is another computationally

intensive module which does not support running across

multiple cores in parallel.

To optimize the performance of these three time-

consuming modules, we want to perform a parallelization

by implementing their CUDA-enabled versions. In the

parallel implementations, data-parallel portions of each

module should be implemented as a CUDA kernel, where

these kernels are manipulated by the main processor, i.e.

CPU. Consequently, a 30×30 matrix of pixels was

allocated as a block to the GPU to optimize the

calculating process. A block is a group of threads

referring to each pixel that should be processed and by

aggregating them into Grids, the architecture of a parallel

version of each module will be shaped. The

parallelization logic should distribute light calculation

workloads (such as matrix multiplication) of the selected

modules on each thread with the lowest data fetching

overhead and optimal memory allocation.

Fig.4 shows the architecture of a GPU in brief [39].

According to Fig.4, there is a shared memory module and

several registers inside each block which are allocated for

calculations and shared for all threads of the block. In

addition, each thread of a block has a unique local

Parallel Implementation of a Video-based Vehicle Speed Measurement System for Municipal Roadways

30 Volume 11 (2019), Issue 11

memory to store non-local variables, which are placed

outside of the block. On the other hand, other memories

including global, texture and constant memories are

considered in GPU’s architecture for higher efficiency

and better control of processes and shared by all threads

inside the Gird. Consequently, to provide a high-

efficiency system, it is necessary to utilize these

memories and registers by the means of the CUDA

platform.

Fig.4. A common architecture of a GPU.

In order to parallelize H(x, y, t), M(x, y, t) and pyramid

KLT modules, we need to utilize GPU threads for each

light-weight process. Fig.5 shows the CPU-based

(sequential) version of MHI calculation according to

Equation (1). As can be seen, all the pixels belong to the

subtraction matrix of two sequential frames, named as

diff should be checked as it was previously discussed in

Equation (1). The current value of MHI module which is

called H in this figure is the output of the system based

on the previous frame’s MHI value prev. It should be

noted that the variable mhi_duration is set to 5 in this

approach, which means the system keeps tracking of five

frames as the history to calculate the H matrix.

Fig.5. Sequential implementations of H(x, y, t) module.

In addition, Fig.6 shows the pseudo-code of the

parallelized version of Algorithm1 presented in Fig.5. In

this case, the block-size of the GPU is set to 30×30 which

provides the best performance according to experiments

and the resolution of the frames, named as w and h are

utilized to calculate the grid based on block-size. In the

parallel implementation, all the elements of the matrix

diff are sequentially segmented into blocks and each

block element should dedicate into a single processing

thread. The pixels to thread mapping is done in O(1) and

the row-major fetching of the diff matrix element, makes

the H matrix calculation process to run in O(w+h) instead

of O(wh).

Fig.6. Parallel implementations of H(x, y, t) module.

Similarly, Fig.7 and Fig.8 show the CPU-based

(sequential) and GPU-based (parallel) versions of M(x, y,

t) matrix calculation method. As it has been described

before, M(x, y, t) matrix is used for segmentation of MHI.

Here, variable M refers to the calculated mask M(x, y, t)

presented in Equation (2). The parallelization process of

this module was the same as the method described in Fig.

6.

Fig.7. Sequential implementations of M(x, y, t) module.

Fig.8. Parallel implementations of M(x, y, t) module.

Parallel Implementation of a Video-based Vehicle Speed Measurement System for Municipal Roadways

Volume 11 (2019), Issue 11 31

In addition, Fig.9 shows the output of the produced

mask in the motion detection step. As it is shown, the

moving vehicle in multiple frames is totally segmented

from the background scene.

Finally, Fig.10 and Fig.11 illustrate the sequential and

parallel versions of the pyramid KLT module,

respectively. In these figures, previous and current frame

matrices with the resolution of w×h are utilized to detect

any relocation of the objects with special visual features

and provide tracking of them in two sequential frames.

These matrices are named prev_frame and curr_frame

and the candidate features of being a license plate found

by the good features algorithm are stored in

prev_features and the curr_features arrays, respectively.

Firstly, the algorithm builds a pyramid with multiple

levels, where the variable max_level defines the number

of levels.

(a)

(b)

Fig.9. A sample frame (a), its binary segmentation mask M (b).

Fig.10. Sequential implementations of the pyramid KLT tracking module.

Each detected license plate from the detection step of

the method lays in the base level of the pyramid and each

higher level, stores the image of the license plate with

half dimensions. Each pyramid version of the prev_frame

and curr_frame frames are stored at

pyramid_prev_frame[i] and pyramid_curr_frame[i]

respectively, where i is the corresponding level of the

pyramid. After building the pyramid, if a feature found in

both previous and current frames, its corresponding

element in the status array becomes one and otherwise, it

becomes zero. Similarly, the array err includes the type

of errors occurred in tracking the corresponding feature.

In addition, the variable tc stores the terminating

conditions of the search module and the maximum

number of pyramid levels is set to five by experiment in

this approach. Finally, the OpticalFlow variable includes

the required features for tracking the license plate in later

frames. It should be noted that in the proposed

implementation, we considered 10 frames for tracking,

instead of tracking the vehicle in the whole scene and no

huge changes in tracking accuracy were detected. Fig 11

indicates the parallel implementation of Algorithm5 in a

CUDA-enabled environment. According to [40], the

parallelized version of the KLT tracking algorithm can

provide a large rate of speed-up due to containing

multiple add, subtraction, and multiplication matrix

Parallel Implementation of a Video-based Vehicle Speed Measurement System for Municipal Roadways

32 Volume 11 (2019), Issue 11

processes. The definition of block and grid is the same as

Algorithm2 and Algorithm4. The pixels to threads

mapping is done in O(1) and the row-major fetching of

the pixels in each pyramid level is executed in parallel. It

should be noted that the implementation codes of both

CUP-based and CUDA-enabled version of Algorithms1

to 5 are presented in the Appendices section.

Fig.11. Parallel implementations of the pyramid KLT tracking module.

Fig.12. The overall diagram of the proposed parallelized speed measurement system.

Parallel Implementation of a Video-based Vehicle Speed Measurement System for Municipal Roadways

Volume 11 (2019), Issue 11 33

As a summary, Fig.12 demonstrates the overall process

of the speed measurement approach and the proposed

parallelized modules. As it can be seen, we have

considered a 30×30 block of pixels for parallelization of

MHI and segmentation modules, i.e. calculation of H(x, y,

t), M(x, y, t) matrices, respectively. On the other hand, the

parallelization of the pyramid KLT was done in each

level of the pyramid to track the vehicles in sequential

frames. Consequently, each block contains N+1 threads

and each thread works on M+1 data blocks on the global

memory. The final results of the processes are transferred

to the shared memory.

IV. EXPERIMENTAL RESULTS

This section introduces the performances of the

parallel implemented method presented in this article in

terms of time execution. Both the parallel (GPU-enabled)

and sequential (proposed in [12]) methods were analyzed

on a computer with properties demonstrated in Table 1.

We describe the experiment by introducing the main

factors utilized for time consumption comparison.

A. Dataset

The provided dataset for the experiment is a video

dataset which has been captured via a camera installed

above an urban roadway. The dataset is provided by the

Federal University of Technology of Paraná (FUTP) [12],

including five H264 videos captured by a 5-megapixel

CMOS image sensor with different illumination and

weather conditions summarized in Table 2. The video has

been captured the rear view of vehicles, makes it suitable

for license plate detection and speed measurement

purposes. It has to be mentioned that due to different

types of motorcycles’ license plates, they have been

skipped in this paper [12]. Frame resolution of the dataset

is 1920×1080 pixels and the frame-rate is 30.15 frames

per second. The videos are categorized into five different

categories according to weather and recording conditions.

Each video has a separate XML file format that contains

information about that video such as vehicle speed. Table

2 shows the properties of this dataset with its

corresponding speed ranges.

Table 1. Implementation Hardware And Environment

Hardware Properties

CPU 3.5 GHz Intel Core i7 – 7500U

RAM 12 GB

GPU NVIDIA GEFORCE 920MX

Operating System 64-bit Windows 10

Table 2. Properties Of The Dataset.

#Vehicles Video properties #frame Filename Dataset

119 Normal illumination 6918 Set01_video01

The Federal

University of
Technology of

Paraná [12]

223 High illumination 12053 Set02_ video01

460
Low-light

illumination
24301 Set03_ video01

349
Rainy weather

conditions
19744 Set04_ video01

869
Extreme rain

weather
36254 Set05_ video01

2020 - 99270 - Total

B. Time Consumption

To evaluate the performance of the parallelized

method, we have compared it to the sequential method

presented in [12]. Since there were no vast changes in the

accuracy of vehicle detection, tracking and speed

measurement processes in the parallelized and sequential

approaches, we have only focused on the time-

consumption comparison. By comparing elapsed times

for execution of the parallelized versions of H, M and

Pyramid KLT modules to the original, we observed a

huge change in the fields of performance and efficiency.

Table 3 shows the results of this evaluation in brief. It

should be noted that each cell of the table refers to the

average elapsed time for a particular vehicle to run the

mentioned modules in different videos. As it can be seen,

the parallelized versions (kernels) execute 188.87, 408.71

and 21.28 times faster than the sequential versions in

calculating H, M and Pyramid KLT modules, respectively.

According to Table 3, only the effect of parallelization

on each module H, M and Pyramid KLT are presented in

terms of speed-up. In other words, Table 3 only shows

the effect of parallelization on each kernel, while the

whole effect of utilizing these modules in the application

level is not provided. In order to review the effects of

parallelization on the whole process of speed

measurement, Fig.13 illustrates the average of the total

time required to calculate a single vehicles’ speed in

various videos of the dataset. As can be seen,

parallelization of the most computationally intensive

modules leads to about 1.81 execution speed-up in

application level in various illumination and weather

conditions. To acquire these numbers, a timer triggered

as a vehicle entered the ROI with a recognizable license

plate and stopped as it left the region. Although the

parallelized versions of H, M, and Pyramid KLT modules

provide a robust speed-up according to Table 3, the effect

of utilizing them in the speed measurement process did

not provide a vast difference, as it can be seen in Fig.13.

The reason can be found in the huge amount of data

transportation among GPU and CPU for processing.

Parallel Implementation of a Video-based Vehicle Speed Measurement System for Municipal Roadways

34 Volume 11 (2019), Issue 11

Table 3. Time Consumptions Of Sequential And Parallelized Implementations Of Modules For Each Vehicle.

Dataset Filename H(x, y, t) M(x, y, t) Pyramid KLT

The Federal
University of

Technology

of Paraná
[12]

Set01_video01 CPU GPU CPU GPU CPU GPU

Set02_
video01

318.93 1.54 272.76 0.18 132.71 6.02

Set03_

video01
285.42 1.33 224.85 0.43 144.56 6.49

Set04_
video01

341.72 2.19 242.12 0.82 150.25 7.73

Set05_

video01
315.07 1.68 218.74 0.68 146.23 6.89

Average 321.64 1.64 247.22 0.84 151.42 6.94

Speed-up 316.56 1.68 241.14 0.59 145.03 6.81

 188.87 408.71 21.28

Fig.13. Total running time of sequential and CUDA-enabled

implementations to calculate the speed of a single
vehicle on various videos.

Finally, to provide a better demonstration of the

parallelization effect on each distinct modules of the

proposed speed measurement approach, Fig.14 presents

the time portion required for the execution of each

essential module in brief. As it can be seen, the chart

shows the execution time (in milliseconds) of each

distinct modules of the parallelized version in

comparison with the sequential version, which has been

previously presented in Fig.3. It should be noted that to

acquire these execution times, the time wasted to transfer

data between GPU memories and CPU are skipped. On

the other hand, the effect of parallelization on the

accuracy of the system compared to the sequential

version was negligible.

Fig.14. Profiling time portion of various modules in the system (in

milliseconds).

According to Fig.14, the huge gap between H, M and

Pyramid KLT modules are obviously distinct (shown in

red dots for both sequential and parallelized versions). As

a result, the benefits and advantages presented in the

experiments are adequate to make the CUDA-enabled

version more applicable in almost real-time applications.

V. CONCLUSIONS

Intelligent Transportation Systems are used in various

traffic-related applications such as roadway monitoring

and vehicle counting. By utilizing cameras in ITS

applications, Video-based Intelligent Transportation

Systems were appeared, which can be used in various

applications like speed measurement. In this paper, a

parallelized version of a formerly-proposed vehicle speed

measurement method is presented which has the

advantage of appropriate time consumption, accuracy,

and robustness. The CPU-based version of the mentioned

method has three modules including vehicle detection,

tracking, and speed measurement. We have realized that

two functions in vehicle detection and one in the tracking

phase are computationally intensive and have the

potential to be highly reduced in cost. By implementing

the same method in a CUDA-enabled environment and

applying data-level parallelism on these modules, better

throughputs and performance have been obtained.

Experimental results showed that the parallelized version

of the method provides 1.81 speed-up in application level

to measure each vehicle’s speed compared to the normal

CPU-based implementation in overall. In addition, the

kernel-level parallelization provided 21.28, 408.71 and

188.87 speed-up in executing three computationally

intensive modules.

APPENDICES

Appendix I - Sequential and parallel implementations of

H(X, Y, T) module in C++

Below, the variable diff_mat refers to the subtraction

matrix of two sequential frames. If the result of the

subtraction was equal to 1, the first condition of Equation

(1) is used and otherwise, the second condition would be

utilized. In addition, variable current_mhi refers to the

current value of MHI and prev_mhi represents its value

in the previous frame. The variable mhi_duration is set to

5 in this approach, which means the system takes

advantage of five frames as the history to calculate the H

Parallel Implementation of a Video-based Vehicle Speed Measurement System for Municipal Roadways

Volume 11 (2019), Issue 11 35

matrix. In the CUDA-enabled codes, the block-size of the

GPU is defined in BX and BY and the resolution of the

frames are defined in DX and DY, respectively. In

addition, the function type qualifier __global__ refers to

a kernel with the ability to be executed on the CUDA

device and grid and block variables, contain the

dimensions of grids and blocks. The block size is set to

30×30, which provides the best performance according to

experiments. In addition, _Update_MHI_GPU is the

name of kernel and row and col variables are used to

choose threads. The provided pseudo-codes of these two

implementations are shown in below.

CPU:

for (int y=0; y<diff_mat.rows; y++)

 for (int x=0; x<diff_mat.cols; x++) {

 if (diff_mat.at<uchar>(y,x) == 1)

 current_mhi.at<uchar>(y,x) = mhi_duration;

 else if (prev_mhi.at<uchar>(y,x) > 0)

 current_mhi.at<uchar>(y,x) = prev_mhi.at<uchar>(y,x) - 1;

 }

GPU (CUDA):

#define BX 30 #define BY 30

#define DX 1920 #define DY 1080

dim3 block(BX,BY);

dim3 grid(DX/block.x,DY/block.y);

_Update_MHI_GPU <<<grid,block>>> ((uchar *) current_mhi.data,

(uchar *)prev_mhi.data, (uchar *) diff_mat.data, prev_mhi.step,

DY, DX, mhi_duration);

Function:

__global__ void _Update_MHI_GPU(uchar* current_mhi, uchar*

prev_mhi, uchar* diff_mat, size_t step, int h, int w, int

mhi_duration) {

 int row = blockIdx.y * blockDim.y + threadIdx.y;

 int col = blockIdx.x * blockDim.x + threadIdx.x;

 int index = col + row*(step / sizeof(uchar));

 if (index >= (h*w))

 return;

 if (diff_mat[index] == 1)

 current_mhi[index] = mhi_duration;

 else if (prev_mhi[index] > 0)

 current_mhi[index] = prev_mhi[index] - 1;

}

Appendix II - Sequential and parallel implementations of

M(X, Y, T) module in C++

Below, the CPU-based (sequential) and GPU-based

(parallel) implementations of M(x, y, t) matrix calculation

method are shown, where _SegmentationBy_GPU is the

name of the kernel. As it has been described before, M(x,

y, t) matrix is used for segmentation of MHI. Variable

m_mat refers to M(x, y, t) matrix presented in Equation

(2), thus if the value of MHI was bigger than zero, the

value of M would be 1 and otherwise, it stores as zero.

Pseudocodes of these two implementations are shown in

below.

CPU:

for (int y=0; y<mhi.rows; y++)

 for (int x=0; x<mhi.cols; x++) {

 if (mhi.at<uchar>(y,x) > 0)

 m_mat.at<uchar>(y,x) = 1;

 else

 m_mat.at<uchar>(y, x) = 0;

 }

GPU (CUDA):

#define BX 30 #define BY 30

#define DX 1920 #define DY 1080

dim3 block(BX,BY);

dim3 grid(DX/block.x, DY/block.y);

_SegmentationBy_GPU <<<grid, block >>> ((uchar *) GMat.data,

(uchar *)GMotionMat.data, GMat.step, DY, DX);

Function:

__global__ void _SegmentationBy_GPU(uchar* m_mat, uchar* mhi,

size_t step, int height, int width) {

 int row = blockIdx.y * blockDim.y + threadIdx.y;

 int col = blockIdx.x * blockDim.x + threadIdx.x;

 int index = col + row*(step / sizeof(uchar));

 if (index >= (height* width)) return;

 if (mhi[index] > 0)

 m_mat[index] = 1;

 else

 m_mat[index] = 0;

}

Appendix III - Sequential and parallel implementations of

the pyramid KLT tracking module in C++

Below codes illustrate the sequential and parallel

implementations of the pyramid KLT module. According

to these codes, prev_frame and curr_frame variables

refer to the current and previous frames matrices,

respectively. The candidate features of being a license

plate found in the previous frame by the good features

algorithm are stored in prev_features and the

curr_features variable keeps the features existed in the

current frame. Finally, variable tc stores the terminating

conditions of the search module. Pseudocodes of these

two implementations are shown in below.

CPU:

TermCriteria tc = TermCriteria (TermCriteria::COUNT +

TermCriteria::EPS, 30, 0.01);

CalcOpticalFlowPyrLK (prev_frame, curr_frame, prev_features,

curr_features, status, Size(11, 11), 5, tc, 0, 0.0001);

GPU (CUDA):

Ptr<cuda::SparsePyrLKOpticalFlow> d_pyrLK_sparse =

cuda::SparsePyrLKOpticalFlow::create(Size(11, 11), 5, 1);

d_pyrLK_sparse->calc(prev_frame, curr_frame, Prev_Points,

Next_Points, d_status);

REFERENCES

[1] K.N. Qureshi and A.H. Abdullah, “A Survey on

Intelligent Transportation Systems,” Middle-East Journal

of Scientific Research, vol. 15, No. 5, 2013.

[2] F. Zhu, Z. Li, S. Chen, and G. Xiong, “Parallel

Transportation Management and Control System and its

Applications in Building Smart Cities,” IEEE

Transactions on Intelligent Transportation Systems, vol.

17, no. 6, pp. 1576-1585, 2016.

[3] M. Bommes, A. Fazekas, T. Volkenhoff, and M. Oeser,

“Video based Intelligent Transportation Systems – State

of the Art and Future Development,” Transportation

Research Procedia, vol. 14, pp. 4495-4504, 2016.

[4] M. A. Adnan, N. Sulaiman, N. I. Zainuddin and T. B. H.

T. Besar, “Vehicle Speed Measurement Technique using

Various Speed Detection Instrumentation,” IEEE

Business Engineering and Industrial Applications

Colloquium, Langkawi, pp. 668-672, 2013.

[5] Z. Marszalek, R. Sroka and T. Zeglen, “Inductive Loop

for Vehicle Axle Detection from First Concepts to the

System based on Changes in the Sensor Impedance

Components,” 20th International Conference on Methods

and Models in Automation and Robotics, Miedzyzdroje,

pp. 765-769, 2015.

[6] J. Zhang, H.W. Li, L.H. Zhang and Q. Hu, “The Research

Of Radar Speed Measurement System based on

TMS320C6745,” IEEE 11th International Conference on

Signal Processing, Beijing, pp. 1843-1846, 2012.

[7] S. Sivaraman and M. M. Trivedi, “Looking at Vehicles on

the Road: A Survey of Vision-Based Vehicle Detection,

Tracking, and Behavior Analysis,” IEEE Transactions on

Intelligent Transportation Systems, vol. 14, no. 4, pp.

1773-1795, 2013.

[8] R. Minetto, N. Thome, M. Cord, J. Stolfi, and N. J. Leite,

“T-HOG: An Effective Gradient-Based Descriptor for

Parallel Implementation of a Video-based Vehicle Speed Measurement System for Municipal Roadways

36 Volume 11 (2019), Issue 11

Single Line Text Regions,” Pattern Recognition Elsevier,

vol. 46, no. 3, pp. 1078–1090, 2013.

[9] J. Shi, and C. Tomasi, “Good Features to Track,” IEEE

International Conference on Computer Vision and Pattern

Recognition, pp. 593–600, Seattle, 1994.

[10] J. Y. Bouguet, “Pyramidal Implementation of the Lucas

Kanade Feature Tracker,” Intel Corporation,

Microprocessor Research Labs, Technical Report, 2000.

[11] D. De Donno, A. Esposito, L. Tarricone and L.

Catarinucci, “Introduction to GPU Computing and

CUDA Programming: A Case Study on FDTD,” IEEE

Antennas and Propagation Magazine, vol. 52, no.3, June

2010.

[12] D. C. Luvizon, B. T. Nassu, and R. Minetto, “A Video-

Based System for Vehicle Speed Measurement in Urban

Roadways,” IEEE Transactions on Intelligent

Transportation Systems, vol. 18, no. 6, pp. 1393-1404,

2017.

[13] D. Dailey, F. Cathey, and S. Pumrin, “An Algorithm to

Estimate Mean Traffic Speed using Uncalibrated

Cameras,” IEEE Transactions on Intelligent

Transportation Systems, vol. 1, no. 2, pp. 98–107, 2000.

[14] V. Madasu and M. Hanmandlu, “Estimation of Vehicle

Speed by Motion Tracking on Image Sequences,” IEEE

Intelligent Vehicles Symposium, pp. 185–190, 2010.

[15] S. Dogan, M. S. Temiz, and S. Kulur, “Real-time Speed

Estimation of Moving Vehicles from Side View Images

from an Uncalibrated Video Camera,” Sensors, vol. 10,

no. 5, pp. 4805–4824, 2010.

[16] C. H. Xiao and N. H. C. Yung, “A novel Algorithm for

Estimating Vehicle Speed from Two Consecutive Images,”

IEEE Workshop on Applications of Computer Vision, p.

12-13, 2007.

[17] H. Zhiwei, L. Yuanyuan, and Y. Xueyi, “Models of

Vehicle Speeds Measurement with a Single Camera,”

International Conference on Computational Intelligence

and Security, pp. 283–286, Harbin, 2007.

[18] C. Maduro, K. Batista, P. Peixoto, and J. Batista,

“Estimation of Vehicle Velocity and Traffic Intensity

Using Rectified Images,” IEEE International Conference

on Image Processing, pp. 777–780, San Diego, 2008.

[19] H. Palaio, C. Maduro, K. Batista, and J. Batista, “Ground

Plane Velocity Estimation Embedding Rectification on a

Particle Filter Multitarget Tracking,” IEEE International

Conference on Robotics and Automation, pp. 825–830,

Kobe, 2009.

[20] L. Grammatikopoulos, G. Karras, and E. Petsa,

“Automatic Estimation of Vehicle Speed from

Uncalibrated Video Sequences,” Modern Technologies,

Education and Professional Practice in Geodesy and

Related Fields, pp. 332–338, 2005.

[21] T. Schoepflin and D. Dailey, “Dynamic Camera

Calibration of Roadside Traffic Management Cameras

for Vehicle Speed Estimation,” IEEE Transactions on

Intelligent Transportation Systems, vol. 4, no. 2, pp. 90–

98, 2003.

[22] G. Garibotto, P. Castello, E. Del Ninno, P. Pedrazzi, and

G. Zan, “Speedvision: Speed Measurement by License

Plate Reading and Tracking,” IEEE Transactions on

Intelligent Transportation System, pp. 585–590, Oakland,

2001.

[23] W. Czajewski and M. Iwanowski, “Vision-based Vehicle

Speed Measurement Method,” International Conference

on Computer Vision and Graphics, vol. 10, pp. 308–315,

Berlin, 2010.

[24] M. Garg and S. Goel, “Real-time License Plate

Recognition and Speed Estimation from Video Sequences,”

ITSI Transactions on Electrical and Electronics

Engineering, vol. 1, no. 5, pp. 1–4, 2013.

[25] C. N. E. Anagnostopoulos, I. E. Anagnostopoulos, I. D.

Psoroulas, V. Loumos, and E. Kayafas, “License Plate

Recognition from Still Images and Video Sequences: A

survey,” IEEE Transactions on Intelligent Transportation

Systems, vol. 9, no. 3, pp. 377–391, 2008.

[26] S. Du, M. Ibrahim, M. Shehata, and W. Badawy,

“Automatic License Plate Recognition (ALPR): A State-

of-the-art Review,” IEEE Transactions on Circuits

Systems and Video Technology, vol. 23, no. 2, pp. 311–

325, 2013.

[27] B. Li, B. Tian, Y. Li, and D. Wen, “Component-based

License Plate Detection using Conditional Random Field

Model,” IEEE Transactions on Intelligent Transportation

Systems, vol. 14, no. 4, pp. 1690–1699, 2013.

[28] B. D. Lucas and T. Kanade, “An Iterative Image

Registration Technique with an Application to Stereo

Vision,” Joint Conference on Artificial Intelligence, pp.

674–679, 1981.

[29] A. Bobick and J. Davis, “The Recognition of Human

Movement using Temporal Templates,” IEEE

Transactions on Pattern Analysis and Machine

Intelligence, vol. 23, no. 3, pp. 257–267, 2001.

[30] J. Ha, R. Haralick, and I. Phillips, “Document Page

Decomposition by the Bounding-Box Project,”

International Conference on Document Analysis and

Recognition, vol. 2, pp. 1119–1122, Montreal, 1995.

[31] T. Retornaz and B. Marcotegui, “Scene Text Localization

based on the Ultimate Opening,” International

Symposium on Mathematical Morphology, vol. 1, pp.

177–188, 2007.

[32] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,

“Introduction to Algorithms,” 3rd Edition, ISBN:

0262033844, The MIT Press, 2009.

[33] R. Minetto, N. Thome, M. Cord, N. J. Leite, and J. Stolfi,

“SnooperText: A Text Detection System for Automatic

Indexing of Urban Scenes,” Computer Vision and Image

Understanding Elsevier, vol. 122, pp. 92–104, 2014.

[34] G. Wang, Z. Hu, F. Wu, and H. T. Tsui, “Single View

Metrology from Scene Constraints,” Elsevier Image and

Vision Computing, vol. 23, no. 9, pp. 831–840, 2005.

[35] D. Zheng, Y. Zhao, and J. Wang, “An Efficient Method of

License Plate Location,” Pattern Recognition Letters

Elsevier, vol. 26, no. 15, pp. 2431–2438, 2005.

[36] B. Epshtein, E. Ofek, and Y. Wexler, “Detecting Text in

Natural Scenes with Stroke Width Transform,” IEEE

International Conference on Computer Vision and Pattern

Recognition, pp. 886–893, San Francisco, 2010.

[37] D. G. R. Bradski and A. Kaehler, “Learning OpenCV:

Computer Vision with the OpenCV Library,” 1st Edition,

ISBN: 0596516134, O’Reilly Media, 2008.

[38] H. Li, M. Feng, and X. Wang, “Inverse Perspective

Mapping based Urban Road Markings Detection,” IEEE

International Conference on Cloud Computing and

Intelligent Systems, vol. 03, pp. 1178-1182, Hangzhou,

2012.

[39] P. KaewTraKulPong and R. Bowden, “An Improved

Adaptive Background Mixture Model for Real-time

Tracking with Shadow Detection,” 2nd European

Workshop on Advanced Video-based Surveillance

Systems, Genova, 2002.

[40] M. Chonglei, J. Hai and J. Jeff, “CUDA-based AES

Parallelization with Fine-tuned GPU Memory Utilization,”

IEEE International Symposium on Parallel and

Distributed Processing, 2010.

[41] J. Hedborg, J. Skoglund and M. Felsberg, “KLT Tracking

Parallel Implementation of a Video-based Vehicle Speed Measurement System for Municipal Roadways

Volume 11 (2019), Issue 11 37

Implementation on the GPU,” Swedish Symposium in

Image Analysis, 2007.

Authors’ Profiles

Abdorreza Joe Afshany received his BSc

degree in computer software engineering in

2010 and his MSc degree in software

engineering at the University of Guilan in

2018. His main research interests include

motion detection, image processing, video

processing and applying computer vision

techniques to practical problems.

Ali Tourani is a research software engineer

in the University of Guilan Business Incubar

and Guilan Science and Technology Park. He

received his BSc degree in computer

software engineering in 2013 and his MSc

degree in software engineering in 2019 from

the University of Guilan. He is also the Chief

of Guilan University Student Branch of Iran Society of

Machine Vision and Image Processing. His main research

interests include motion detection and tracking, machine vision,

Digital Image Processing and video-based Intelligent

Transportation Systems.

Asadollah Shahbahrami received the BSc

and MSc degrees in computer engineering

(hardware and machine intelligence) from

Iran University of Science and Technology

and Shiraz University in 1993 and 1996,

respectively. He was offered a faculty

position in the Department of Electrical

Engineering at University of Guilan. He has been working at

University of Guilan since August 1996. In January 2004, he

joined the Faculty of Electrical Engineering, Mathematics, and

Computer Science, Delft University of Technology, Delft, The

Netherlands, as a full-time Ph.D. student under advisors Prof.

Stamatis Vassiliadis and Dr. Ben Juurlink. He received his PhD

degree in September 2008 from Delft University of Technology.

He has an assistant professor position in Department of

Computer Engineering at the University of Guilan. His research

interests include advanced computer architecture, image and

video processing, multimedia instructions set design,

reconfigurable computing, parallel processing, and SIMD

programming.

Saeed Khazaee was a full-time faculty

member at Azad University and a visiting

lecturer at the University of Guilan, Iran. He

received a full scholarship from Azad

university for his M.Sc. program. He has

also been awarded several times related to

his research. He has been in contact with

several universities and companies to increase his research

productivity. Saeed currently is a Ph.D. Candidate at the Centre

for Pattern Recognition and Machine Intelligence, Concordia

University, Montreal. Saeed does research in Computer and

Society, Data mining, Image Processing and Pattern

Recognition. He has published 11 journal or conference papers,

and 1 book chapter in the field of Data mining, pattern

recognition, and image processing. He was also a reviewer for

several conferences in Iran and Canada. He is receiving a full

scholarship from CENPARMI and “Concordia International

Tuition Award of Excellence”. He was also awarded by

“Concordia University Conference and Exposition Award”.

Alireza Akoushideh received the B.Sc. and

M.Sc. degree in Electrical engineering from

University of Guilan and Amirkabir

University of Technology (Tehran Polytechnic)

in 1997 and 2000, respectively. From 2001

until now, he is a faculty member of Technical

and Vocational University, Shahid-Chamran

community college, Rasht, Iran. He got his Ph.D. degree from

Shahid-Beheshti University, Tehran, Iran in 2016. As a visiting

researcher, he worked with the SCS group in the Twente

University, the Netherlands from January to September 2015.

He has taught courses in FPGA, microprocessor and

microcontrollers, computer architecture, and digital circuits. His

research interests include machine vision, texture analysis,

FPGA implementation, and parallel processing.

How to cite this paper: Abdorreza Joe Afshany, Ali Tourani,

Asadollah Shahbahrami, Saeed Khazaee, Alireza Akoushideh,

"Parallel Implementation of a Video-based Vehicle Speed

Measurement System for Municipal Roadways", International

Journal of Intelligent Systems and Applications(IJISA), Vol.11,

No.11, pp.25-37, 2019. DOI: 10.5815/ijisa.2019.11.03

