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Abstract—With the increase in popularity of the Internet 
and the advancement of technology in the fields like 
bioinformatics and other scientific communities the 
amount of sequential data is on the increase at a 
tremendous rate. With this increase, it has become 
inevitable to mine useful information from this vast 
amount of data. The mined information can be used in 
various spheres; from day to day web activities like the 
prediction of next web pages, serving better 
advertisements, to biological areas like genomic data 
analysis etc. A rough set based clustering of sequential 
data was proposed by Kumar et al recently. They defined 
and used a measure, called Sequence and Set Similarity 
Measure to determine similarity in data. However, we 
have observed that this measure does not reflect some 
important characteristics of sequential data. As a result, in 
this paper, we used the fuzzy set technique to introduce a 
similarity measure, which we termed as Kernel and Set 
Similarity Measure to find the similarity of sequential 
data and generate overlapping clusters. For this purpose, 
we used exponential string kernels and Jaccard's 
similarity index. The new similarity measure takes an 
account of the order of items in the sequence as well as 
the content of the sequential pattern. In order to compare 
our algorithm with that of Kumar et al, we used the 
MSNBC data set from the UCI repository, which was 
also used in their paper. As far as our knowledge goes, 
this is the first fuzzy clustering algorithm for sequential 
data. 
 
Index Terms—Clustering, Fuzzy Clustering, Sequence 
mining, Similarity measures, Pattern mining. 
 

I.  INTRODUCTION 

Clustering of data is an integral part of Data Mining 
and serves an important role in many fields such as 
pattern recognition, scientific data exploration, taxonomy, 
medicine, geology, business, engineering systems, 
information retrieval, text mining and image processing. 
It is a process of grouping data based on their similarity 
such that elements in individual groups are having more 
similarity than elements in different groups. There are 
several approaches to classify the processes of clustering. 

With respect to the formation of clusters, it may be 
hierarchical or non-hierarchical. Hierarchical clustering 
can further be divided into agglomerative (bottom-up) or 
divisive (top-down). The additional feature of a 
sequential dataset in comparison to the normal datasets is 
the order of occurrence of elements. Sequential data 
analysis is one of the vital research areas which include 
deriving better similarity measures, clustering and 
classification. Several forms of sequential data sets are 
available; like weblogs, music files, transaction records, 
and genomic data. There has been an enormous growth in 
data in various domains including scientific and 
commercial. These data have inherent sequential nature. 
Clustering and classification of this sequential data have 
various applications. As has been found in literature, 
there have been various methods to classify/cluster 
sequential data using model-based techniques like the 
most widely used Hidden Markov models and feature 
based techniques. 

The central problem is the similarity measure that can 
capture both the content and sequential nature of the 
items in the given sequential data. In this paper, we will 
be using kernel-based functions to capture the sequential 
nature and Jaccard's set similarity measure to capture the 
content of the sequences. We used fuzzy clustering 
algorithms to cluster the data into various overlapping 
clusters based on the similarity or dissimilarity of the 
sequences. 

The rest of the paper is organized as follows. In section 
2, a brief literature review along with the problem 
statement is provided. A new similarity measure called 
Kernel and Set Similarity Measure (KS2M) is introduced 
in section 3. In section 4, a brief description of the data 
set is given that is used for experimentation; also a 
comparison is made between the new similarity measure 
KS2M and Sequence and Set Similarity Measure (S3M). 
In section 5, a brief overview of fuzzy set theory and 
fuzzy clustering algorithms is provided. The proposed 
algorithm is introduced in section 6. The analysis of the 
experiment and results obtained are presented in section 7 
and we conclude our findings in this paper in section 8. 
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II.  LITERATURE REVIEW AND PROBLEM STATEMENT 

Clustering can be classified on a broader level into 
hierarchical and non-hierarchical clustering methods. The 
main difference between the two methods is that in non-
hierarchical clustering methods, a desired number of 
clusters is assumed at the start while in hierarchical 
methods, a series of successive fusions or divisions are 
performed based on some external similarity or 
dissimilarity parameters. Hierarchical clustering methods 
include agglomerative clustering of data which is bottom-
up i.e. starting from single elements or data points they 
will be merged into a cluster based on some similarity 
measure, and divisive where the elements/data points are 
partitioned into smaller partitions (clusters) in the top to 
bottom manner. Then we have different methods of 
selecting the data to be clustered like feature based; 
where we extract some features form the given data and 
satisfies the following characteristics in the context of 
sequence mining [35]. 

 
1. Effectiveness in capturing the sequential relations 

between the different set of elements contained in the 
sequences 

2. Wide presence in sequences 
3. Completeness of the derived feature space 
 
There are various methods suggested for feature 

selection or alternatively feature pruning in literature like 
the global and local approach in [19]. 

There are several applications of clustering techniques 
in various real life situations. In [4] a hierarchical 
clustering method was proposed to handle the attention 
deficit hyperactive disorder children using attribute 
dependency. A study on automatic brain tissues 
segmentation is carried out by using self-initializing k-
means clustering technique in [27]. A method to study 
unstructured activity analysis is proposed by using 
covering based rough sets in [47]. Clustering techniques 
have been used successfully in analysis of depth 
computation of Leukemia images through refined bit 
plane and uncertainty based models in [42]. Analysis of 
satellite images provides useful information on the 
geographical and environmental features of the globe. An 
attempt in this direction is done in [43]. Big data is a 
recent revolution in the field of Data Science. A recent 
volume published in 2017 contains many important 
contributions on big data classification [40]. Specifically 
an interesting compilation is made in [47] with up to date 
information on the different clustering algorithms for big 
data found in literature so far. Another important 
algorithm using self-initializing k-means clustering 
technique is proposed in [27] which do not need any 
human intervention during the process of brain tissue 
segmentation. Possibilistic approach to clustering is 
proposed in [2]. Medoid based clustering algorithms were 
proposed in [21, 22]. Hybrid clustering approach is dealt 
in [3]. 

We also have model-based clustering techniques, the 
strategies discussed before i.e. feature based and 

hierarchical, directly work on the raw data with a 
definition of the distance or similarity measure or 
indirectly extract features from the raw data and use the 
existing clustering algorithms for feature vector based 
data. The models can be Gaussian, t-distribution for non-
sequence data clustering. Among all the possible models, 
the hidden Markov model (HMM), perhaps the most 
important one is widely used in speech recognition 
extensively. We also have other models for sequence 
clustering like Mixtures of ARMA Models, Mixture of 
Markov Chains and Mixture of Polynomial models [35]. 

Along with hard clustering algorithms as mentioned 
above, in which a particular data point or sequence can 
only belong to one cluster, Soft clustering algorithms are 
also there which are based on the principles of the fuzzy 
set theory [50], rough sets [28]. In soft clustering, a data 
point or sequence can belong to multiple clusters with a 
membership value lying in (0, 1) to each cluster. 

Work has been done to get Rough overlapping clusters 
using a Sequence and Set Similarity Measure (S3M) [5], 
which are defined as: 
 

3 ( , ) ( , ) ( , )S M A B p SeqSim A B q SetSim A B= ∗ + ∗ , 

where p + q =1                             (1) 
 

( , ) ( , ) / max(| |, | |)SeqSim A B LLCS A B A B=        (2) 
 

and SetSim (A, B) is the Jaccard similarity coefficient 
given by: 

 

( , )
A B

J A B
A B

=



                              (3) 

 
Various comparisons were made between this S3M and 

other similarity measures in [24]. 
As to be pointed out in the next section, there are some 

drawbacks of using Length of Longest Common Sub-
sequence (LLCS) to measure the similarity of the order or 
sequence in a given sequential data. To overcome this 
problem we have introduced a new similarity measure 
based on string kernels. The soft clusters obtained by the 
rough clustering approach don’t specify the degree or 
membership of a particular sequence to different clusters. 
We develop a fuzzy clustering method that provides us 
the degree to which a particular sequence belongs to a 
cluster. 

 

III.  PROPOSED NEW SIMILARITY METRIC 

We first start with the main issues which are associated 
with measures of similarity of two sequences defined 
through LLCS. The following points need attention: 
 

1. LLCS does not take the position of items into 
account. 

2. LLCS does not consider the length of the part which 
is not common into account (uses the length to normalize 
the result.) 
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We consider the following example to illustrate the 
above two points. Let us take the three sequences, 

 
A = a, b, c, d, e, B = q, a, e, m, n and C = a, e, t, r, s. 

 
The length of the longest common sub-sequence in all 

three is two; the subsequence being {a, e} irrespective of 
the location of the items. Intuitively the pair {B, C} 
should be more similar than {A, C}, and {A, B}. But, 
LLCS returns the value ‘two' for all the pairs. 

Jaccard’s similarity index is a good similarity index for 
obtaining the content similarity between given sequences 
but we can’t infer anything about the order of the 
items/elements in the given sequence. 

For example, consider two sequences: A = {1, 2, 3, 4} 
and B = {4, 3, 2, 1} using the Jaccard’s measure the 
similarity between A and B is ‘1’; i.e. both are 
completely similar but from the sequential perspective, 
the two are completely different as the order of 
occurrence of elements is in the two sequences is 
completely different. 

On a broader level, we can say that in the similarity 
measure S3M, the first component LLCS is used to get 
the sequential order from the data and the second 
component, which is set similarity, is used to get the 
content of the given data set. 

Basing upon the two notes above, we propose that 
instead of using LLCS, some other better measure can be 
used, so that it will take into account the position and 
length of the matching sub-sequence/substring. As a 
solution to this, we find that Kernel methods for 
comparing the sequential parts are a good candidate. 
There are many popular Kernel methods in the literature 
like Graph kernels, Polynomial kernel, Radial basis 
function kernel, String kernels as analyzed in [20]. 

Again, for strings we have various types of kernel 
methods; like the string sub-sequence kernel (SSK) [26] 
which allow the gaps or mismatch, whereas some others 
like the spectrum, compare only exactly matching 
substrings of the sequences. A nice presentation and 
analysis on string kernels is provided in [1]. For the sake 
of completeness, we provide below an overview of some 
of the commonly used string kernels.
 

Spectrum: This kernel considers only matching the 
substring of exactly specified length. Each such substring 
is given a constant weight. 

Boundrange: This kernel considers only matching 
substrings of length less than or equal to a given number 
N. 

Constant: This kernel considers all matching 
substrings and assigns constant weight to each of them. 

Exponential: Also called exponential decay kernel has 
the property that the weights of the substrings decay as 
the matching substring get longer. This kernel requires a 
decay factor. 

It is worth noting that although string kernels take care 
of the order of the items and to some extent the content 
(as common substrings are similar in order as well as 
content); by using only substring matches they ignore the 
non-sequential part which might be similar in content. So, 

it is felt that in order to consider the content of the 
sequences we can use the same Jaccard's similarity 
coefficient instead. Both the components; the order of 
items and their contents are essential as in some 
applications like web mining, the order of the items is 
more important/ relevant than the content whereas in 
some other areas related to bioinformatics the content is 
more important. Taking into account the above-
mentioned factors we propose the following Kernel 
and 2KS M . 

 
2 ( , ) ( , ) ( , )KS M A B p SK A B q J A B= ∗ + ∗         (4) 

 
where p + q = 1 such that values of p and q act as weight 
factors, and can be varied as per the requirements of the 
application domain or area. SK stands for any String 
based kernel we have done used to string kernels one is 
the Exponential Decay String Kernel from [1] and the 
other one is String Subsequence Kernel [26] for the sake 
of comparison between different kernels. 

To overcome the limitations of LLCS we used the 
exponential string kernel in which the substring weight 
decays as the matching substring gets longer. For 
example, consider the three random strings: x = "abcdefl”, 
y = "agbjckd” and z = "abncdmv". The matching sub-
string in these strings is “abcd”. But a closer look at the 
sequences says that the similarity between x and y should 
be less than the similarity between x and z as the length 
of the matching substring is seven (agbjckd) in case of y 
and that for z it is five (abncd). 

This kernel requires a decay factor [1] lambda >1.The 
decay factor is used to assign more weight to those 
substrings in which the length of matching substring is 
smaller in comparison to those in which the length is 
larger as explained in the above example of three 
sequences x, y, and z. 

It is mentioned in [14] that in order to qualify as a good 
metric, a similarity measure should satisfy the properties 
of symmetricity, non-negativity and normalized. All these 
are satisfied by as 

 
Symmetric: 2KS M (A, B) = 2KS M (B, A) 

 
Let's take two strings "abcde" and "bc", length of 

common matching substring taken into consideration by 
the string kernel is three i.e. to match the common pattern 
"bc", first three characters of string "abcde" has to be 
considered. This is symmetric in the sense that the length 
will remain same for 2KS M (“abcde”, “bc”) and for 
(“bc” , “abcde”). 

Non-negativity: By its definition, 2KS M  generates 
non-negative similarity value. 

At maximum the value returned by 2KS M can be zero 
because the similarity between two strings at worst can 
be zero i.e. they are completely different strings. There is 
no meaning of negative similarity in 2KS M as 
components, the string kernel, and the Jaccard's similarity  
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index are based only on the common pattern between two 
given sequences which can be zero at the minimum for 
two totally different sequences. 

Normalized: The value returned by 2KS M is 
normalized to lie in the unit interval [0, 1] for better 
comparison between the different set of sequences. 

There are kernels like String Subsequence Kernel (SSK) 
[28] which takes into account the position of matching 
substring or subsequence. SSK appears to be too strict on 
limited length sequential data as shown in the next 
section. 
 

IV.  DESCRIPTION OF THE DATASET AND COMPARISON OF 
2KS M WITH 3S M  

Internet Information Server (IIS) logs for MSNBC.com 
and news related portions of msn.com for the entire day 
of September 28, 1999, is collected from the UCI dataset 
repository. Each sequence in the dataset corresponds to 
page views of a user during that twenty-four hour period. 
There are 17 page categories, namely ‘frontpage', 'news', 
tech', ‘local', ‘opinion', ‘on-air', ‘misc', ‘weather', 'health', 
‘living', ‘business', ‘sports', ‘summary', ‘bbs', ‘travel', 
‘msn-news', and ‘msn-sports'. Table 1 below shows the 
characteristics of the dataset. 

Table 1. Characteristics of the Data Set 

Number of users 989,818 
Minimum session length 1 
Maximum session length 500 

Average number of visits per user
 5.7 

To compare the validity and effectiveness we will be 
taking the same data samples taken in [26] which 
consider the following ten random sequences from the 
above-mentioned dataset of length 6 (as average length is 
5.7): 

 
T1: on-air misc misc misc misc on-air misc 
T2: news sports tech local sports sports 
T3: bbs bbs bbs bbs bbs bbs 
T4: frontpage frontpage sports news news local 
T5: on-air weather weather weather weather sports 
T6: on-air on-air on-air on-air tech bbs 
T7: frontpage bbs bbs frontpage frontpage news 
T8: frontpage frontpage frontpage frontpage frontpage 

bbs 
T9: news news travel opinion opinion msn-news 
T10: frontpage business frontpage news news bbs 
 
For the sake of comparison let’s cluster them in 

different clusters using a classic algorithm like 
Partitioning Around Medoids (PAM)[51] using the 
similarity matrix generated by 3S M and by 2KS M . 

We will be using average silhouette width to compare 
the given similarity measures [33]. Silhouette width value 
varies between -1 to 1 and in general the greater the value 
the better are the clusters. The method for the 
computation of silhouettes as described in [33] is as 
follows: 

 
 
 

 

Table 2. Similarity Matrix Using Proposed Metric 2KS M With P = 0.5 

 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 
T1 1.000 0.011 0.006 0.014 0.165 0.245 0.011 0.010 0.041 0.011 
T2 0.011 1.000 0.138 0.580 0.208 0.147 0.333 0.152 0.253 0.336 
T3 0.006 0.138 1.000 0.151 0.040 0.274 0.528 0.448 0.076 0.334 
T4 0.014 0.580 0.151 1.000 0.184 0.075 0.485 0.387 0.267 0.551 
T5 0.165 0.208 0.040 0.184 1.000 0.175 0.099 0.063 0.078 0.095 
T6 0.245 0.147 0.274 0.075 0.175 1.000 0.203 0.216 0.091 0.182 
T7 0.011 0.333 0.528 0.485 0.099 0.203 1.000 0.664 0.228 0.724 
T8 0.010 0.152 0.448 0.387 0.063 0.216 0.664 1.000 0.120 0.650 
T9 0.041 0.253 0.076 0.267 0.078 0.091 0.228 0.120 1.000 0.262 
T10 0.011 0.336 0.334 0.551 0.095 0.182 0.724 0.650 0.262 1.000 

 
In the case of dissimilarities, take any object i (in our 

case any sequence) in the data set and denote by A the 
cluster to which it has been assigned. When cluster A 
contains other objects apart from i, then we can compute: 
 

a(i)=average dissimilarity of i to all other objects of A 
 

Now consider any cluster C which is different from A 
and compute: 
 

d(i, C)=average dissimilarity of i to all objects of C. 
 

Do this for all clusters C A≠ , select the smallest of 
those numbers and denote it by b(i). Basically what we 
are looking for is the cluster apart from A which can be a 
good candidate or second best choice for the assignment 
of object i. Then the number s(i) silhouette of i is 
obtained by combining a(i) and b(i) as follows: 

 

         

(5)
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when cluster A contains only a single object it is unclear 
how a(i) should be defined and then it is simply set to 
zero, as a value of zero appears to be most neutral. As 
mentioned earlier, we can easily observe from the above 
definitions that -1 s(i) 1≤ ≤ for each object i. In case 
similarities are used then the same definition can be used 
with slight modifications as explained in [33]. 
 

 
Fig.1. Cluster Silhouette plot with k = 4 using 2KS M (lambda = 1.3) 

similarity measure 

 
Fig.2. Cluster Silhouette plot with 3S M similarity measure  

with k=4 and p=0.5 

As is clearly visible from the silhouette plots, average 
silhouette width value (greater the better) is greater when 

2KS M it is used as similarity measure instead of S3M 
leading to the conclusion that 2KS M is comparable to 
S3M.Similar results were obtained when compared with a 
larger number of transactions. 

In the next section, a brief overview of Fuzzy sets and 
fuzzy clustering is presented, to put our proposed 

algorithm in the proper perspective. The reason for 
developing a soft clustering technique like fuzzy 
clustering instead of hard clustering is that the elements 
of sequential data sets might be similar to each other, 
some are more similar and some are less. For example, 
let's take the A = {a, b, c, d, e, f}, B = {b, c, d, e, g, h}, 
and C = {e, g, h, j, k, l}. The similarity of the pair of 
sequences A and B is higher than that of the pair B and C, 
as A and B have common sequential part {b, c, d, e} of 
length four; whereas B and C have the common 
sequential part {e, g, h}, which has length three. So, 
similarities of sequences are graded and also the clusters 
formed have common elements. Hence, scenarios like 
this can be taken care in a better way by soft clustering 
methods than hard computing algorithms. 

 

V.  FUZZY SET AND CLUSTERING 

Uncertainty in data has become an inherent issue in 
modern-day datasets. To handle such uncertainty many 
uncertainty based models have been proposed over the 
years. Fuzzy set theory introduced by Zadeh in 1965 [49] 
is one of the most fruitful of such methods. In contrast to 
dichotomous nature of crisp sets where an element may 
be in a set or may not be in it, fuzzy set permits graded 
membership of elements in it. A fuzzy subset X of a 
universal set U is given by a function 

: [0,1]X Uµ → such that , ( ) [0,1]Xx U xµ α∀ ∈ = ∈ . 
Extending the notion of non-membership value of 

elements in a fuzzy set, the notion of non-membership 
functions was introduced by Atanassov in [4]. It captures 
the uncertainty in data in a more realistic manner. Fuzzy 
set theory for cluster analysis was first proposed in 
Bellman et al [5] followed by the fuzzy c-means (FCM) 
algorithm in Ruspini [36-38]. The objective function 
approach to fuzzy c-means started by Ruspini [37]. This 
was followed by its improvement by Roubens [33], as the 
objective function in [36] was complicated and difficult 
to interpret. But, the objective function in [33] was 
unstable and Libert and Roubens [25] tried to modify it. 
This trend was followed by modification of objective 
functions in Hathaway et al [12, 13] and Bezdek et al [9, 
10]. An iterative algorithm which is a variation of the 
coordinate descent method was described in [35]. But, 
perhaps the FCM what is used now a day has its origin in 
the paper by Dunn [13], which was generalized by 
Bezdek [6]. This method is widely used and applied in a 
variety of substantive areas. Rough sets were introduced 
by Pawlak in 1982 [30]. The above approach is now 
followed extensively in developing clustering algorithms 
which are either extension like intuitionistic fuzzy C-
means (IFCM) [12] and the hybrid algorithm of rough 
fuzzy c-means (RFCM) [28, 29, 31] and the rough 
intuitionistic fuzzy c- means (RIFCM) [11]. It may be 
noted that several generalized versions of FCM exist in 
the literature [7, 8, 15, 17, 36, 48, 50]. However, there are 
no fuzzy algorithms to cluster sequential data available in 
the literature [32]. In this paper, our attempt is to develop 
a fuzzy clustering algorithm for sequential data. 
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Variants of fuzzy set based or its hybrid models have 
been used in developing clustering algorithms to handle 
specific situations in data analysis. For example Hu et al 
[24, 27] have extended fuzzy clustering to ordinal scale 
and further by using likelihood functions. Genetic 
algorithms are now well-known methods to handle 
optimization situations. Using particle swarm 
optimization (PSO) an efficient clustering algorithm is 
proposed in [5]. Incomplete data sets are common in 
modern societies due to various reasons. Handling such 
data sets have been dealt with from different angles. A 
fuzzy clustering algorithm is proposed in this direction in 
[26]. A Clustering technique has been proposed in [47] 
which deals with unstructured activity analysis using the 
generalised notion of covering rough sets. Graph 
clustering algorithms are relatively rare in the literature. 
A brief account of such algorithms based on FMST with 
a comparative analysis is found in [39]. Datasets may be 
heterogeneous, i.e. they may contain categorical and 
nominal attributes together. Several algorithms have been 
developed in the literature to handle clustering of such 
data sets using rough set theory. The latest one which 
generalises the family of such algorithms is presented in 
[45], called the Min Mean Mean Rough set clustering 
algorithm (MMeMeR), which has been found to be the 
most efficient and the authors have observed that this 
algorithm if extended by using existing techniques 
followed in the family of algorithms leading to this does 
not provide any improvement in the clustering process. 
An adaptive clustering approach is provided in [16] and 
an application to medical diagnosis is provided in [15, 
41]. 

 

VI.  MOVING TOWARDS THE FUZZY CLUSTERS 

The c-means algorithms (hard or fuzzy) are popular 
and effective tools in order to cluster n objects into 
groups of similar individuals for data available as a set of 
n feature vectors in RP. It may be noted that for data sets 
described in terms of relational data cannot be handled by 
these algorithms directly [18, 48, 49].There are various 
algorithms in the literature to handle relational data for 
fuzzy clustering including the "Relational dual of the c-
means clustering algorithm" [18] which is the dual of the 
most widely used Fuzzy c-Means algorithm. There are 
some constraints on using these algorithms, some require 
that the distance or similarity(dissimilarity) measure 
should be derived from the Euclidean 
distance[RFCM].To overcome this distance measure 
constraint a new algorithm NERFCM which involves 
extra computations for data expansion(Beta-spread 
transformation)was introduced [18]. 

We will be using a variant of FANNY(by Kaufman 
and Rousseeuw) [23], which is extended by Martin M. et 
al [27] to allow user-specified parameters like the value 
of fuzzifier (m), which is fixed to 2 in the original 
algorithm. It is more robust to spherical cluster 
assumption and also provides a novel graphical display, 
the silhouette plot. When compared to the likes of Fuzzy 
C-means, FANNY is a bit slower as in each iteration 

cycle FANNY performs a loop over all the pairs of 
objects and in case of Fuzzy C-Means the looping is over 
the measurement variables and the number of objects is 
normally more than double of the number of variables. In 
the improved algorithm the following objective function 
is to be minimized: 

 

, 1

1
1

( , )

2

n m mk ip jpi j
n m

p jpj

d i jµ µ

µ
=

=
=

∑
∑

∑
                          (6) 

 
Here, the membership of the ith object to cluster p is 

represented by ipµ . It may be noted that the numerator of 

the objective function contains dissimilarities ( , )d i j and 
the membership coefficients to be determined and the 
sum is over all pairs of objects unlike objective functions 
of other algorithms which contain the sum of distances of 
objects from cluster centres. The factor ‘2’ in the 
denominator takes care of distances between a pair of 
objects being counted twice because of similarity. 

To measure the fuzziness of the clusters we have used 
the Dunn’s partition coefficient (1976) given by 

 
2

1 1

n k ip
k i p

F
n
µ

= =
= ∑ ∑                             (7) 

 
The expression in (4) assumes the minimal value 1/k, l 

when the clustering is complete and the maximal value 
‘1’ occurs for crisp partitioning. The normalized version 

kF  is given by 
 

                        
(8) 

 
 

and ranges between 0 and 1.In the next section, the 
overall outline of the algorithm is given, which is used 
for clustering of the above-mentioned datasets. 

A.  Algorithm for Fuzzy Clustering of Sequential Data 

Fanny requires the dissimilarity matrix or the pairwise 
dissimilarity of the given objects. The clustering 
algorithm is free from the distance or similarity metric 
used to generate the pairwise similarity. Here, we use 
the 2KS M  similarity metric to generate the similarity 
matrix, then to obtain the entries of the dissimilarity 
matrix we take the 1’s complement of corresponding 
entries in the similarity matrix, which provides us the 
respective pairwise dissimilarity. The dissimilarity matrix 
is required because FANNY starts with a collection of 
dissimilarities and doesn’t depend upon any other 
measure. Overall, the detailed description of the 
algorithm is as follows: 

 
Algorithm: Fuzzy Clustering of Sequential data 
 
Input: 
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T: A set of n transactions 
K: No. of clusters 
m: Fuzzifier value 
tol: tolerance value 
max_it: Maximum no. of Iterations 
Output: 
 K number of overlapping clusters 
 V: normalized Dunn’s partition coefficient 
 P: a silhouette plot for each transaction/sequence. 
Begin: 
Step 1: Construct the similarity matrix (sim_m) using 

2KS M measure.
 
Step 2: Construct dissimilarity (diss) matrix by taking 

1’s complement of sim_m. 
Step 3: while (not converged and iterations< max_it): 
               fanny(diss,k,m,max_it,tol) 

 
Step 4: Return K clusters. 
End  

 
Using the cluster data we can also calculate the values 

of Silhouette plot (P) using equation 2 and Dunn’s 
partition coefficient (V) using equations 3 & 4.As 
mentioned earlier Silhouette width is used as a measure 
of cluster validation the more it is the better the clustering 
and Dunn’s partition coefficient is used to measure the 
fuzziness of the clusters formed the less the value the 
more fuzzier the clusters. The algorithm will terminate in 
two scenarios, one in which the convergence is reached 
i.e. the difference between the value of the objective 
function (3) for two consecutive iterations is less than the 
tolerance value and the other when the algorithm is not 
converged but the maximum no. of iterations is reached. 
Both the tolerance value and the maximum no. of 

iterations are given as input parameters. 
In the next section, the above-mentioned algorithm is 

used on variable sizes of the dataset. While performing 
the experimental analysis, it was observed that sometimes 
the computation time for more transactions (sequences) is 
less as compared to a smaller number of transactions i.e. 
the number of iterations needed is smaller for the prior. 
The time complexity of FANNY cannot be computed or 
hard to do so as the data size determines the number of 
iterations. One can go through chapter 4 of [25] for the 
detailed explanation of FANNY along with its 
similarities to other fuzzy clustering algorithms like 
Fuzzy c-means and others. 

 

VII.  EXPERIMENTAL RESULTS 

We have conducted experiments on data sets of 
variable size ranging from ten to three thousand randomly 
selected transactions. Results obtained are summarized in 
Table 5. For the better selection of the number of clusters 
we have used the average Silhouette width as a cluster 
validation factor; that is, we have selected the number of 
clusters as the value of the maximum average silhouette 
width for a given set of inputs. This is shown in Fig. 3. 

The clusters obtained are overlapping clusters i.e. each 
transaction is assigned to different clusters with different 
memberships. To have a look at the structure of the 
clusters formed, we present the results of fifty randomly 
selected transactions. The categories are labelled with 
integers; like labels of ‘frontpage' and ‘news' are ‘1’ and 
‘2’ respectively. The hits of a user are presented in the 
rows of Table 4. 

 

 
Fig.3. Computation of the no. of clusters using average Silhouette width for transactions listed in Table 3 
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Table 3. Sample of Fifty Web Transactions 

1 (‘3’, ‘2’, ‘2’, ‘4’, ‘2’, ‘2’) 26 (‘6’, ‘2’, ‘2’, ‘2’, ‘15’, ‘2’) 
2 (‘6’, ‘7’, ‘7’, ‘7’, ‘6’, ‘6’) 27 (‘1’, ‘14’, ‘1’, ‘14’, ‘1’, ‘1’) 
3 (‘6’, ‘9’, ‘4’, ‘4’, ‘4’, ‘10’) 28 (‘9’, ‘7’, ‘7’, ‘9’, ‘4’, ‘4’) 
4 (‘8’, ‘8’, ‘1’, ‘7’, ‘8’, ‘8’) 29 (‘1’, ‘14’, ‘14’, ‘14’, ‘14’,’14’) 
5 (‘13’, ‘7’, ‘13’, ‘7’, ‘7’, ‘13’) 30 (‘1’, ‘1’, ‘14’, ‘1’, ‘14’, ‘14’) 
6 (‘13’, ‘8’, ‘13’, ‘13’, ‘13’, ‘14’) 31 (‘8’, ‘8’, ‘8’, ‘8’, ‘8’, ‘8’) 
7 (‘13’, ‘13’, ‘13’, ‘13’, ‘13’, ‘13’) 32 (‘1’, ‘1’, ‘11’, ‘11’, ‘11’, ‘1’) 
8 (‘1’, ‘1’, ‘11’, ‘1’, ‘12’, ‘1’) 33 (‘9’, ‘9’, ‘13’, ‘13’, ‘13’, ‘13’) 
9 (‘14’, ‘14’, ‘14’, ‘14’, ‘14’, ‘14’) 34 (‘6’, ‘6’, ‘6’, ‘15’, ‘5’, ‘6’) 
10 (‘9’, ‘12’, ‘9’, ‘9’, ‘9’, ‘9’) 35 (‘1’, ‘3’, ‘3’, ‘1’, ‘1’, ‘1’) 
11 (‘1’, ‘2’, ‘1’, ‘14’, ‘14’, ‘14’) 36 (‘1’, ‘1’, ‘10’, ‘1’, ‘1’, ‘1’) 
12 (‘1’, ‘4’, ‘7’, ‘1’, ‘10’, ‘10’) 37 (‘9’, ‘9’, ‘9’, ‘4’, ‘4’, ‘4’) 
13 (‘1’, ‘1’, ‘4’, ‘10’, ‘10’, ‘10’) 38 (‘4’, ‘4’, ‘4’, ‘4’, ‘4’, ‘4’) 
14 (‘8’, ‘8’, ‘8’, ‘8’, ‘8’, ‘8’) 39 (‘6’, ‘6’, ‘6’, ‘6’, ‘6’, ‘6’) 
15 (‘9’, ‘7’, ‘9’, ‘7’, ‘7’, ‘9’) 40 (‘8’, ‘8’, ‘14’, ‘14’, ‘14’, ‘4’) 
16 (‘4’, ‘4’, ‘10’, ‘10’, ‘10’, ‘10’) 41 (‘9’, ‘7’, ‘9’, ‘5’, ‘5’, ‘5’) 
17 (‘8’, ‘8’, ‘8’, ‘8’, ‘8’, ‘13’) 42 (‘1’, ‘2’, ‘1’, ‘2’, ‘1’, ‘6’) 
18 (‘1’, ‘1’, ‘1’, ‘12’, ‘1’, ‘10’) 43 (‘9’, ‘3’, ‘4’, ‘6’, ‘7’, ‘7’) 
19 (‘13’, ‘13’, ‘13’, ‘13’, ‘13’, ‘13’) 44 (‘9’, ‘5’, ‘5’, ‘5’, ‘5’, ‘5’) 
20 (‘13’, ‘13’, ‘13’, ‘14’, ‘14’, ‘14’) 45 (‘1’, ‘11’, ‘17’, ‘1’, ‘1’, ‘6’) 
21 (‘5’, ‘5’, ‘5’, ‘5’, ‘5’, ‘5’) 46 (‘12’, ‘12’, ‘12’, ‘14’, ‘14’, ‘14’) 
22 (‘11’, ‘1’, ‘1’, ‘1’, ‘2’, ‘1’) 47 (‘13’, ‘13’, ‘13’, ‘13’, ‘13’, ‘13’) 
23 (‘8’, ‘8’, ‘8’, ‘8’, ‘8’, ‘8’) 48 (‘1’, ‘14’, ‘14’, ‘14’, ‘14’, ‘1’) 
24 (‘9’, ‘9’, ‘9’, ‘9’, ‘9’, ‘5’) 49 (‘1’, ‘6’, ‘6’, ‘10’, ‘10’, ‘10’) 
25 (‘1’, ‘2’, ‘2’, ‘2’, ‘2’, ‘2’) 50 (‘12’, ‘12’, ‘12’, ‘12’, ‘12’, ‘12’) 

No. of clusters (k) =15                                                                                                                              Tolerance =1e-5 
p = 0.6, q = 0.4 (order of the sequence is given more weight) m = 1.7 

 

 

 

Fig.4. Cluster Silhouette plot with k=15 using the 2
KS M similarity measure
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Fig.5. Crisp cluster plot of the transactions in Table 2 

Underlying cluster structure: As we have used fuzzy 
clustering algorithms, the clusters should have an 
overlapping structure i.e. one transaction can belong to 
various clusters with varying membership values lying in 
(0, 1).A crisp cluster plot can be shown by assigning the 
data sequences to those clusters in which they have the 

maximum membership value, the tie is broken by 
selecting anyone cluster randomly, such a plot is shown 
in Fig. 5. In Table 4 we have listed the degrees of 
belongingness of the first 10 transactions from Table 3, to 
15clusters.

Table 4. Membership Values of First Ten Transactions 

 C1 C2 C3 C4 C5 

T1 0.1247107547 4.786556e-02 6.306157e-02 4.150351e-02 0.1247107547 

T2 0.1017356296 1.279904e-01 6.065663e-02 3.979379e-02 0.1017356296 

T3 0.0083193159 4.042299e-03 9.301986e-01 2.620698e-03 0.0083193159 

T4 0.1062574976 4.283117e-02 4.715071e-02 1.190521e-01 0.1062574976 

T5 0.1085935313 4.055198e-02 4.606384e-02 3.515933e-02 0.1085935313 

T6 0.0104532972 3.597261e-03 4.435396e-03 4.195599e-03 0.0104532972 

T7 0.0001727610 6.942278e-05 7.907199e-05 6.127987e-05 0.0001727610 

T8 0.0644565646 1.475648e-02 1.780729e-02 1.274614e-02 0.0644565646 

T9 0.0118194561 4.261906e-03 6.505562e-03 3.719402e-03 0.0118194561 

T10 0.0945576283 4.018902e-02 5.780429e-02 3.502571e-02 0.0945576283 
 

 C6 C7 C8 C9 C10 
T1 5.547569e-02 4.433506e-02 5.948177e-02 5.596454e-02 4.890683e-02 
T2 4.861291e-02 3.972324e-02 5.263081e-02 4.877193e-02 4.661362e-02 
T3 3.796023e-03 2.818474e-03 4.037273e-03 4.761592e-03 4.031263e-03 
T4 6.109563e-02 3.968123e-02 6.427554e-02 5.020444e-02 4.333372e-02 
T5 9.241485e-02 9.259198e-02 6.178594e-02 5.153410e-02 4.095466e-02 
T6 9.060171e-01 1.404459e-02 6.199910e-03 7.163494e-03 3.657663e-03 
T7 3.330332e-04 9.983418e-01 1.089503e-04 9.114765e-05 7.050041e-05 
T8 2.354641e-02 1.719810e-02 5.890399e-01 2.274222e-02 1.503953e-02 
T9 8.445114e-03 4.426664e-03 6.770689e-03 8.814046e-01 4.335732e-03 
T10 4.627521e-02 3.730241e-02 5.513418e-02 4.623465e-02 1.711853e-01 
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 C11 C12 C13 C14 C15 
T1 4.858132e-02 6.107853e-02 5.058996e-02 4.902339e-02 0.1247107547 
T2 4.324751e-02 5.211687e-02 8.672480e-02 4.791062e-02 0.1017356296 
T3 4.113494e-03 6.988868e-03 4.110347e-03 3.523083e-03 0.0083193159 
T4 5.266665e-02 5.980031e-02 5.694969e-02 4.418633e-02 0.1062574976 
T5 4.754302e-02 5.763058e-02 6.618988e-02 4.179925e-02 0.1085935313 
T6 6.235334e-03 5.658205e-03 3.758548e-03 3.677021e-03 0.0104532972 
T7 8.445117e-05 9.891202e-05 7.216886e-05 7.101965e-05 0.0001727610 
T8 3.006254e-02 3.339625e-02 1.527503e-02 1.502042e-02 0.0644565646 
T9 2.872958e-02 7.121539e-03 4.463450e-03 4.357355e-03 0.0118194561 
T10 4.134532e-02 4.830115e-02 8.335657e-02 5.417334e-02 0.0945576283 

Table 5. Experimental Results 

No. of data 
samples 

No. of overlapping 
Clusters(k) Fuzzifier(m) Average Silhouette 

Width p Normalized Dunn’s 
Partition coefficient 

10 4 1.96 0.20 0.5 0.26 
25 9 1.85 0.27 0.5 0.33 
50 18 1.8 0.22 0.5 0.42 

250 78 1.8 0.26 0.5 0.47 
500 136 1.8 0.30 0.5 0.48 
1000 187 1.7 0.28 0.5 0.44 
2000 430 1.6 0.36 0.5 0.53 
3000 515 1.7 0.39 0.5 0.50 
3000 550 1.6 0.40 0.5 0.51 

 

A.  Result analysis 

When the object set is increased in size, its dimension 
also goes up. It has been observed that the value of the 
fuzzifier m needs to be decreased so that proper 
clustering can be achieved. But robustness of a clustering 
algorithm varies directly as the value of m. As clearly 
visible from Table 6, the value of m has decreased from 
the maximum 1.96 to a minimum of 1.6 as the sample 
size increases from 10 to 3000. 

Normalized Dunn's partition coefficient is used to 
measure the degree of fuzziness of the clusters formed. 
The value of Dunn's coefficient lies between 0 and 1, a 
value nearer to 1 represents crisper clusters while a value 
close to zero represents less crisper i.e. more fuzziness in 
the clusters formed. The value of this coefficient should 
increase as we decrease the value of fuzzifier (m), as the 
degree of fuzziness is controlled by the value of fuzzifier. 
There is no fixed value of fuzzifier that should be used, 
generally, a value between [1.5, 2.5] is suggested for 
obtaining fuzzy clusters [6].We have used the same range 
for our experimental analysis. As clearly visible from the 
Table 6, the value of Dunn’s coefficient agrees with our 
above observation between same data samples (3000 at 
1.7 and 1.6) as well as between different data samples. 

We have kept equal weightage for both parts the 
sequence and the content which can be varied as per the 
requirement of the domain as mentioned earlier, in some 
domains related to bioinformatics, the content is more 
important in that case the value of p can be decreased 
while in some domains related to web mining the 
sequence or order of items is more important in that case 
we can increase the value of p. 

The algorithm used is stable can be established by the 
fact that the value of average silhouette width is always 

above 0.25 in most of the cases. In fact, as visible from 
Table 6, the value starts increasing as we increase the no. 
of data samples. The value of average silhouette width as 
mentioned earlier ranges between [-1, 1] and measures 
how good a given data sample belongs to its own cluster 
in comparison to the nearby clusters. The greater the 
value the good the clusters formed. The reason why we 
have used average silhouette width along with Dunn’s 
partition coefficient as a measure of cluster quality is that 
both of these two indices are used in the original 
algorithm as described in [23][24]. 
 

VIII.  CONCLUSIONS 

In this paper, we applied the concept of fuzzy clusters 
to classify different sequential patterns in different groups 
based on the sequence as well as content similarity. We 
introduced a new similarity measure 2KS M which in 
comparison to other similarity measures like cosine 
similarity, Jaccard's similarity index and S3M captures the 
order and the content of the elements/items in the 
sequences more appropriately. In S3M, LLCS is used 
which has some limitations as mentioned above. 

We have obtained overlapping clusters similar to what 
is obtained in [24] but the main difference lies in the 
specification of the degree (membership) of a particular 
sequence to a particular cluster instead of only the no. of 
overlapping clusters, a sequence or pattern belongs to. 
We would like to note that an integrated covering based 
rough fuzzy set based clustering algorithm was developed 
in [44] for sequential data which extends the algorithm 
proposed in [24]. 
 

Different initial membership matrices will lead to 
different cluster structure, here we used a random initial 
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membership matrix, and work can be done in future to 
improve this initial membership matrix to obtain more 
meaningful clusters. We have used silhouette width as an 
index to get a rough estimate of the number of clusters 
(k), other methods like analysis of kernel matrix; elbow 
method etc. can be compared to obtain an appropriate 
estimate of the value of k. 
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