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Abstract—Lung is a vital organ that plays a pivotal role 

in every second of our lives. Lungs may be affected by a 

number of diseases, including pulmonary edema and 

cancer. These diseases deemed life-sustained diseases, so 

they possess high preferences in detection, diagnosis, and 

possible treatments. In this paper, we presented a textural 

feature analysis framework that is capable of detecting 

lung abnormalities (edema or cancer) using Laws masks 

texture features. Laws masks are conventional texture 

feature extractor, and considered as one of the best 

methods for texture analysis in image processing. 

However, computing and extracting the texture features 

through various masks are very time consuming, whereas 

lung diseases demand rapid yet accurate diagnosis. Today, 

increased efficiency is being achieved through 

parallelism, and this trend is believed to continue in the 

future, with all computing devices likely to have many 

processors. Therefore, our objective is to investigate a 

multi-level parallel algorithm on Laws masks to describe 

structural variations of lung abnormalities. To our 

knowledge, there are no published researches that 

employed parallel strategies for lung abnormalities 

detection using Laws method. The proposed system has 

been experimented on real CT lung images. The results 

indicate that Laws texture features are capable of 

discriminating among normal, edema and cancerous 

lungs. Furthermore, applying parallel processing 

approaches improves significantly the overall system 

performance.  

 

Index Terms—Lung cancer, Pulmonary Edema, Laws 

Texture Feature, Texture analysis, parallel processing. 

 

I.  INTRODUCTION 

Currently, images are widely used in several 

application areas. One of the greatest significant areas is 

medicine where Computer-aided diagnostic processing 

turns out to be an essential part of clinical routines. 

Medical image processing has to encounter the challenges 

arise from the rush of the new progress of high 

technology, the usage of various imaging modalities, as 

well as the growth of data volumes to produce high-

quality information that is suitable for disease diagnosis 

and treatment. Texture analysis arises to be a substantial 

strategy in medical image processing that assists gray-

level patterns interpretation, pixel mutual relations 

realization, and an image spectral properties detection. 

Furthermore, texture analysis approaches can be used to 

enhance the image appearance for visual analysis. 

The process of medical image texture analysis is still a 

complex and challenging problem due to the various 

properties of medical images. It incorporates four main 

issues; texture feature extraction, texture discrimination, 

texture classification and shape reconstruction from 

texture information [1]. Feature extraction is the initial 

and crucial stage of image texture analysis. The obtained 

results from this stage are used to discriminate the 

textures, classify the textures or determine the object 

shape [2]. 

Research in the literature have tackled this problem, 

and hence utilized many approaches for texture analysis 

[3-6].  

Some algorithms implement structural approaches that 

characterize texture by well-defined primitive textual 

elements organized according to a particular replacement 

rule [7].  

Others apply model-based methods, in these methods; 

fractal and stochastic models are used to interpret image 

texture. Parameters of these models are estimated then 

used for image analysis [8]. 

Statistical texture analysis methods are firmly fixed in 

the computer vision area and have been comprehensively 

harnessed to several tasks. These methods characterize 

the texture quantitatively with parameters that are 

computed from the spatial distribution of pixels 

intensities and their relationships [9-10]. Furthermore, 

filter-based approaches are widely used in the literature 

[11-13]. In these methods, filter banks are applied on the 

images to extract relevant textural information using 

spatial, frequency and joint spatial-frequency filtering 

techniques. 

All these methods suffered from the main problem, 

they are computationally expensive due to a large amount 
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of processed data. Typically, in medical applications, the 

processing time has to be very small and sometimes real-

time processing is necessitated. Hence, during the last 

decade parallel algorithms has become an important tool 

for implementing medical image processing techniques 

[14-16]. 

In this study, we submit an efficient multi-level parallel 

algorithm for lung abnormality detection. The algorithm 

is an extension of the lung abnormality detection 

algorithm presented in [17]. The results disclose that our 

procedure significantly outperforms the other technique 

as it considerably reduces the computation complexity 

and increases the processing speed. Moreover, to 

investigate and analyze more texture properties, the latter 

algorithm is extended to include sixteen Laws masks 

instead of five masks in the previous work.  

Our parallel solution allocates images in a distributed 

system for local or remote inter-process communication. 

Based on our previous sequential implementation, the 

Laws texture feature detection scheme is, therefore, 

established in parallel by distributing and transferring 

information between different processing elements (PEs). 

The organization of this paper is as follows: Section 2 

discusses the previous related work. Section 3 presents 

the lung abnormality detection algorithm proposed by 

[17].  Section 4 explains our comprehensive approach for 

lung abnormality detection using parallel processing. In 

section 5, we provide and discuss the experimental results. 

Finally, section 6 concludes the paper. 

 

II.  RELATED WORK 

This section generally presents the current challenges 

and weaknesses of texture analysis in medical images. In 

addition, it introduces some existing parallel textural 

analysis models, and finally, it illustrates the deficiencies 

of using parallel processing in texture analysis for 

medical images. 

A.  Texture Analysis for Medical Images 

Analyzing texture parameters is a useful computational 

manner for pathologically differentiating between 

different regions on medical images. It has been proven 

to perform better than human eyesight at different 

applications; segmentation of particular anatomical 

structures, detection of lesions, discrimination between 

pathological and healthy tissue in various organs. 

Sun et al. [18] studied and tested the use of three-

dimensional (3D) texture features to recognize the 

malignancy level. Five sets of features were realized and 

examined, Grey Level Co-occurrence Matrix (GLCM), 

Local Binary Pattern (LBP), Scale-Invariant Feature 

Transform (SIFT), steerable, and wavelet features. 

Yao et al. [19] developed a computer-assisted detection 

technique to identify and measure the pulmonary 

abnormalities on Chest Computed Tomography (CT) 

imaging in infection cases. Each lung image is subdivided 

into texture blocks of size 16×16 pixels, from which 25 

different texture features are computed from histogram 

statistics, co-occurrence matrix and run-length matrix. 

These features are fed to the support vector machine 

classifier to discriminate areas of the abnormal lung on 

CT in H1N1 influenza patients from those of normal 

lungs, fibrosis, and other infections. Also, those texture 

features are quantified to measure the disease progression 

and severity. 

Zayed and Elnemr [10] introduced an automated 

texture analysis based scheme to detect and distinguish 

lung abnormalities, whether lung tumor or pulmonary 

edema. Haralick’s features computed from the GLCM are 

tested and evaluated to select the most discriminating and 

significant texture features that can be utilized to 

distinguish between the two types of abnormalities, 

comparing to normal. 

Filter-based texture analysis using wavelet transform 

has been used for automatic image segmentation system 

to classify the region of interest [20], besides it has been 

adopted for medical image retrieval [21]. Furthermore, 

texture features extracted from discrete wavelet frame 

along with grey–level histogram features were combined 

and used to diagnose and classify interstitial lung diseases 

[22]. 

The study of [23] displayed a computer-aided 

diagnostic hierarchal classifier for discriminating between 

normal, fatty, and heterogeneous liver ultrasound images 

using feature fusion techniques. GLCM and LBP features 

were extracted as spatial domain features, 2-D wavelet 

packet transforms sub-images and 2-D Gabor filter banks 

transformed images were obtained as transform domain 

features. The dominant features of the parallel and serial 

fused feature spaces were selected using particle swarm 

optimization algorithm. 

A major challenge faces texture analysis approaches is 

that they are computationally expensive and, thus, time-

consuming. Whereas, medical applications require high-

efficiency performance with small processing time and 

sometimes real-time is desired. Fortunately, parallel 

processing approaches have become a dominant trend to 

solve complicated scientific problems. Parallel processing 

schemes and their implementations for texture analysis 

will be discussed in the next section. 

B.  Parallelization of Texture Analysis 

In order to perform different medical image tasks, 

especially texture analysis, a very long time as well as a 

huge amount of data are required, which are considered 

significant problems. Therefore, parallel algorithms are 

used to speed up image processing tasks. 

Parallel Processing Architectures 

Parallel computation can be defined as “efficiently use 

of multiple processors/computers to execute independent 

tasks/problems concurrently”. Parallel algorithms should 

take into consideration both CPU and I/O computation 

times, data dependency, and communication overheads 

[24-26]. 

Parallel architectures are classified as Single 

Instruction Single Data (SISD), Multiple Instruction 

Single Data (MISD), Single Instruction Multiple Data 

(SIMD), and Multiple Instruction Multiple Data (MIMD) 
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models. SIMD architecture which contains a large 

number of simple processing elements (PEs) is suitable 

for low-level image processing such as point or 

neighborhood operators. On the other hand, MIMD 

architectures, which consist of sets of interconnected 

processors/computers (called nodes), are fitting for high-

level image processing.  MIMD architectures are divided 

into Shared Memory (SM), Distributed Memory (DM), 

and Distributed-Shared Memory (DSM) systems. In SM 

systems, image/images are stored in a common memory 

and can be accessed by any PE/node at any time. While 

in DM architectures; where each node has its own local 

memory; image/ images must be split and distributed to 

different PEs/nodes and the data are exchanged through 

messages [27].  

Parallel machines that are based on the combination of 

both shared and distributed memory models are called 

Distributed-Shared Memory (DSM). In a DSM system, 

the shared memory is physically distributed to all 

processors (called local memories). The collection of all 

local memories forms a global address space accessible 

by all PEs. Besides distributed memories, globally shared 

memory can be added to the system. In this case, there 

are three memory-access patterns, the fastest is local 

memory access, the next is global memory access, and 

the slowest is remote memory access. Global image 

processing operators can be executed on DSM 

architectures. 

Parallel Texture Analysis Related Work   

This subsection introduces some existing parallel 

textural analysis algorithms.  

Mursalin [24] in his work designed a "C" coded 

parallel algorithm to extract textural features from High 

Content Screening (HCS) data. Threshold adjacency 

statistics features introduced by Hamilton et al. [28], have 

been computed to discriminate sub-cellular localization 

of cells. 

You and Bhattacharya [29] proposed a high-

performance hierarchical image matching scheme based 

on wavelet transform. The hierarchical image matching 

scheme was carried out on an interesting points image 

pyramid, that is extracted from different levels of sub and 

images obtained from wavelet transform. The interesting 

points were obtained at each level based on adaptive 

thresholding through fuzzy compactness. The matching 

procedure was directed from the coarse-level in the 

pyramid to the fine-level through the hierarchical 

structure. The proposed hierarchical matching scheme 

was performed on a network of workstation clusters using 

a parallel virtual machine on the basis of divide-and-

conquer strategy.  

Woods et al. [30] exhibited a parallel implementation 

scheme for 4D Haralick texture analysis on PC clusters 

using task and data parallelism. 

Sidiropoulos et al. [31] designed a pattern recognition 

system to differentiate between benign and malignant 

breast lesions, based on textural features extracted from 

digital mammography and ultrasound breast concerning 

the same patient. The system is developed on commercial 

Graphics Processing Unit (GPU) cards using parallel 

programming.  

Zolynski et al. [32] presented an implementation of the 

LBP texture analysis operator on GPU. Leibstein et al. 

[33] suggested a texture classification method 

implemented and parallelized so as to be used on a GPU. 

The submitted algorithm is a Radial Local Binary Pattern 

(RLBP) and it is based on the ideas of Zolynski et al. [32]. 

Furthermore, based on the two previous studies, 

Leibstein et al. [34] submitted a parallel implementation 

of a texture analysis classification methodology using a 

GPU. Various descriptors are applied, including LBP, 

Multi-Block Local Binary Pattern (MB-LBP) and Radial 

Multi-Block Local Binary Pattern (MB-LBP). 

Classification is carried out by obtaining these descriptors 

from various unique texture classes at several spatial 

resolutions and rotations. 

As formerly discussed, parallel computing techniques 

have been previously employed in research that 

developed texture analysis approaches for image 

processing. However, to the best of our knowledge, there 

is no issued study of parallel implementation to deal with 

the specific problem of designing Computer Aided 

Design (CAD) systems for lung abnormality detection 

using Laws texture analysis method. 

 

III.  LUNGS ABNORMALITY DETECTION 

This section portrays the implemented lung 

abnormality detection scheme. It is carried out in four 

phases: first the preprocessing stage, where the original 

image slices are processed to remove the irrelevant 

information or noises and improve their visual 

appearance. Then, an efficient fully automated lung 

segmentation scheme is applied on the enhanced images 

[10] and [17]. In the third stage, Laws masks descriptors 

are anticipated to extract the textural features from the 

lung images. Finally, a statistical analysis is performed to 

select the significant features that are capable of 

distinguishing among normal, cancerous and pulmonary 

edema lungs. These stages will be explored in the 

following subsections. 

A.  The Dataset 

The research is conducted on a real-image set provided 

by the radiology department at New Elkasr ElAiny 

teaching hospital, the University of Cairo for the 

evaluation of lung cancer. The image set consists of nine 

patients (average age 50.44 years, range from 33 to 75 

years, 7 males and 2 females). Four patients (3 males and 

a female) suffer from lung cancer and five patients (4 

males and a female) suffer from pulmonary edema. All 

patients underwent one imaging session, and they were at 

the acute stage of lung cancer or pulmonary edema when 

subjected to the imaging session. In this study, we had 

excluded patients who had relative contradictions for a 

CT scan and who had other suspected reasons of lung 

problems. Twenty CT scans for each patient are 

considered yielding a total of 180 investigated images. 

The ethics board  of  the  institution  approved  this  study,  
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which followed the tenets of the Declaration of Helsinki, 

and all participants provided informed written consent 

prior to their participation. 

B.  Preprocessing and Lung Segmentation 

Preprocessing is a mandatory task in image processing 

that aims to reduce the noise artifacts and enhance the 

image quality. 

In this work, we implemented the preprocessing 

algorithm introduced in [10] and [17]. The utilized 

preprocessing scheme proceeds by first using histogram 

equalization to improve the lung image contrast. Then, 

Wiener filter is applied to remove blur in lung images. 

Afterward, we fulfilled the fully automated lung 

segmentation technique suggested by [10] and [17]. This 

lung segmentation technique is a two-step method to split 

up the voxels belonging to lung tissues from the 

surrounding anatomy within the enhanced CT images. 

The first step is based on the fact that the air-filled lung 

tissue is highly distinctive in density from its surrounding 

tissues. While the second step benefited from the fact that, 

in the human body, both lungs roughly resemble mirror 

images of each other. 

In the first step, a binary image is created from the 

enhanced CT image using a threshold of 128. The two 

lungs are marked and cropped out from the surrounding 

area. Then, in order to remove white areas within the two 

lungs, erosion morphological operation is performed.  

The second step comprises dividing both the eroded 

and the cropped original images into two equal parts. In 

the eroded image, the region that enfolds larger black 

area is deemed as a lung mask. The lung mask is mirrored 

in the reverse direction in order to obtain right and left 

lung masks. These lung masks are projected on the 

original left and right lung images by multiplying them 

with the corresponding original image parts. Ultimately, 

the black pixels in the resulted images are replaced by 

their corresponding original values other pixels are set to 

255. The preprocessing and lung segmentation algorithms 

are presented in figure 1. 

C.  Laws Texture Features Extraction 

Feature extraction is one of the substantive tasks that 

work toward obtaining high-level information as color, 

shape, and texture to understand the details of the image. 

After lung segmentation step Laws texture features are 

extracted from the segmented lung regions. The Laws 

technique applies a bank of texture filters to an image to 

create filtered images from which various texture features 

are determined.  

There are four main primitive geometric attributes that 

can be explored for an image. Therefore, Laws developed 

two-dimensional convolution masks or kernels by 

combining labeled vectors that each signifies a specific 

feature identified as Level, Edge, Spot, and Ripple. These 

masks are:  L5 = [ 1, 4, 6, 4, 1],  E5 = [-1,-2, 0, 2, 1], S5 = 

[-1, 0, 2, 0,-1] and R5 = [ 1,-4, 6,-4, 1]. Accordingly, 16 

different masks are generated each of size 5×5 as 

illustrated in table 1. 

Table 1. The 16 2-D combined Laws masks 

L5L5 L5E5 L5S5 L5R5 

E5L5 E5E5 E5S5 E5R5 

S5L5 S5E5 S5S5 S5R5 

R5L5 R5E5 R5S5 R5R5 

 original image histequ

wiener

 
Original image 

original image histequ

wiener

 
Histogram equalized 

image 

original image histequ

wiener

 
Wiener filtered 
image image

m
ask

eroded image mask new image mask

 
Thresholded image 

image
m

ask

eroded image mask new image mask

 
 
The eroded image 

image
m

ask

eroded image mask new image mask

 
 

The lung mask 

Lung1 Lung2

Lung1 with mask Lung2 with mask

Lung1 Lung2

Lung1 with mask Lung2 with mask

 
Mask projection 

Lung1 Lung2

Lung1 with mask Lung2 with mask

Lung1 Lung2

Lung1 with mask Lung2 with mask

 
Segmented lungs 

 

Fig.1. Preprocessing and segmentation of lungs image 

Laws masks are convolved with the segmented lung 

images, the outputs are then filtered using the Texture 

Energy Measurement (TEM) filters. This is performed by 

moving a nonlinear window through the image. Every 

pixel is compared with its local neighbourhood and 

consequently replaced with the mean, absolute mean 

(ABSM) and standard deviation (STDD) of the 

neighbouring pixels. The three statistical descriptors 

(S.D.) can be realized as follows: 
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where W is the window size. In this study, we applied 

7×7 pixels window. 

As a result, three TEM images are created for each 

image, by replacing every pixel with its corresponding 

statistical descriptor. Each TEM image is normalized 

using min-max normalization method so that it is 

invariant to illumination and contrast variations.  

In order to remove the dimensionality bias from the 

extracted features, TEM descriptors are combined. Thus, 

For example, since L5E5 and E5L5 measure vertical and 

horizontal edge content, respectively, joining them 

generates total edge content [35-36]. Hence, the 

combined texture energy measurement (TRL5E5/E5L5) 

is given as follows: 
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Accordingly, there are 10 combined texture energy 

measurements (TR) as shown in Table 2. 

Table 2. Combined texture energy measurements (TR) 

TRL5L5 TRS5S5 TRL5E5/ E5L5 TR E5R5/ R5E5 TRS5E5/ E5S5 

TRE5E5 TRR5R5 TRS5L5/ L5S5 TR R5S5/ S5R5 TRL5R5/ R5L5 

 

Afterward, we calculate three statistical features (S.F.); 

absolute mean (AS), mean square (MS) or energy and 

entropy (ENT) for each TR image as follows: 
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where I(x,y) is the pixel value, and R and C are image 

dimensions.  

It is clear that the computation of both TR images and 

extracting texture features are very processing intensive. 

Therefore, in order to improve the performance of the 

whole system, we developed a multi-level parallel system 

for the proposed lung abnormality detection algorithm. 

Figure 2 presents the proposed system architecture. 

 

IV.  A MULTI-LEVEL PARALLEL SYSTEM FOR LUNG 

ABNORMALITY DETECTION 

In this work, a multi-level parallel system is used to 

speed up the texture analysis for lung abnormality 

detection process. The first level of parallelization is the 

coarse grained level where the parallelization is done at 

the image level (each PE can compute one or more 

images). In the second level (medium level) 

parallelization is done in the lung level (that is to say each 

PE computes one or more lung image). Moreover, in the 

third level (fine grained level) more than one PE 

cooperate to compute the work of each lung image. In 

this level the parallelization is done in the instruction 

level; (laws masks texture feature extraction level); where 

feature extraction and feature tracking tasks are divided 

into small subtasks and executed in parallel.  

A.  Problem Description (Lung abnormality detection 

process) 

Assume that there are "N" patients, {Pat1, Pat2,..., PatN}.  

Each patient Pati has "n" lung images, {imagei1, 

imagei2,….., imagein} as presented in figure 3-a. Each 

image is divided into two images namely: left lung image 

represented by Lij and right lung image signified by Rij. 

Moreover, each Rij and Lij image is convolved with 16 

selected Laws masks. Then, the attained images are 

filtered and thus three TEM images are constructed for 

each convolved image.  The lung abnormality detection 

process can be divided into small processes that can be 

executed in parallel as shown in figure 3-b. 

B.  Parallel Machine Structure 

The choice of parallel architecture is an important 

factor that affects the performance of the parallel design. 

As mentioned in the previous section there are "N" 

patients, each patient has "n" lung images, each one is 

divided into two images, and these images are convolved 

with Laws masks to detect lung abnormality. The lung 

abnormality detection operation is capable of being 

divided into small procedures that can be executed in 

parallel. That is to say, each patient can be computed 

separately from the others and they are independent. 

Therefore, they can be considered as separated tasks.  

This leads us to use cluster computing architecture. In 

clusters, powerful low-cost nodes/processing elements 

are linked through a high-speed network to achieve high-

performance parallel computing. Any task that has been 

assigned to the cluster would run on all cluster nodes in a 

parallel fashion by breaking the whole task into smaller 

tasks. Then, the result of the smaller tasks would be 

combined to form the final result. Clusters are used 

primarily to run applications that require high availability 

and high throughput processing [37-38].  

Let "N" be the homogenous clusters {C1, C2, ….., CN}, 

where N = the number of patients. These clusters are 

connected through an external network. Each cluster 
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consists of "M" PEs {PE0, PE1, PE2, … PEM-1}. 

C.  The Proposed Parallel Model 

To exploit parallelism for each patient Pati, first, the 

"n" images of that patient are assigned priorities and 

placed in a list ordered in decreasing values of priority. 

We assume that the image which needs largest execution 

time takes the highest priority. In this work, a multi-level 

parallel scheme is implemented to speed up the texture 

analysis for lung abnormality detection process. 

1)  Coarse Grained Level of Parallelization (n ≥ M)  

When the number of PEs "M" is smaller than or equal 

to the number of images "n”, each PE will compute 

"n/M" images.  

2)  Medium Grained Level of Parallelism (n < M ≤ 2n) 

When the number of PEs "M" is greater than the 

number of images "n", more than one PE will cooperate 

to execute each image. In this case, the parallelization is 

done on the lung level (PE computes one lung).  

That is to say, for M = n + i:  

 

 For the first "i" images in the queue, each image is  

assigned two PEs (one for each lung), 

 For the remaining images, each image is assigned 

one PE. 

 When M=2n, each image is assigned two PEs (one 

for each lung). 

3)  Third Level of Parallelism (2n < M ≤ 20n) 

For both lung images "Rij and Lij" the parallelization is 

done at the mask level. As mentioned at in section 3.2, 

the TEM descriptors are combined to generate 10 TRs. 

As the time needed to generate each TR is very small, we 

have assumed that one PE is needed for this process. 

Thus, there will be only 10 tasks to be carried out for 

each lung.    

Assuming that the number of PEs assigned to "Rij and 

Lij" are "RMij and LMij" respectively. For simplicity, we 

assume that RMij = LMij = M/2n. Hence, there will be 

three cases: 

 First, M <20n, RMij = LMij <10  

In this case, each PE assigned 10/LMij masks, and the 

remaining (LMij-10) masks are assigned to the lightly 

loaded PEs.  

 Second, M= 20n, RMij = LMij =10 

Each PE is assigned one mask.  

 Third, 3*20n ≥M >20n, RMij = LMij = (M/2n) > 

10 

In this case, the parallelization is done in the level of 

masks. Initially, the masks of each image are located in a 

list arranged in descending order of execution time, and 

three functions Mean, ABSM and STDD are calculated 

for each mask, as stated in section 3.2. When LMij < 30, 

each mask is assigned one PE and the remaining (LMij -

10) PEs are assigned to the first ((LMij -10) /2) masks 

(each mask is assigned two PEs). In the case of LMij 

equals 30, each mask is assigned three PEs (the 

maximum number of PEs= 600n). 

In the next section, we will present an analysis of the 

various experiments conducted and results obtained. 

 

 

Fig.2. Parallel lung abnormality detection model 
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(b) DAG representation of the lung abnormality detection process 

Fig.3. Parallel lung abnormalities detection 

V.  RESULTS 

This section presents the experiments accomplished to 

obtain the most significant Laws texture features that can 

be exploited to detect and discriminate lung abnormalities 

(cancer or edema). Furthermore, the attained performance 

improvements of our parallel implementation to the 

proposed lung abnormality detection system are 

displayed. 

A.  Statistical Analysis   

The statistical values (mean ± standard deviation 

(STDV)) for all studied Laws masks are reported. Single 

factor Analysis of Variance (ANOVA) method is fulfilled 

for each Laws texture feature to obtain the significant 

features that can discriminate between diseased (cancer or 

pulmonary edema) and normal lungs, cancer and normal 

lungs, pulmonary edema and normal lungs, and finally 

between cancerous and pulmonary edema lungs. The 

significance level is selected at P ≤ 0.001.   

Table 3 displays the significant Laws texture features 

that can discriminate tumor affected lungs from their 

normal fellows, while Table 4 illustrates the significant 

Laws texture features that can differentiate among 

pulmonary edema and normal lungs. Moreover, the 

significant Laws texture features are provided: for lung 

cancer patients vs. pulmonary edema patients in Table 5; 

for diseased (cancer or edema) lungs vs. normal lungs in 

Table 6. 
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Table 3. ANOVA results for cancer patients significant Laws texture features (comparison between AL and FL).  
AL = Affected Lung; FL = Fellow Lung. 

Laws mask S.D. S.F. 
mean ± STDV 

P F 
AL FL 

L5S5/S5L5 

MEAN 
AS 0.481 ± 0.030 0.505 ± 0.036 7.9E-06 2.1E+01 

MS 0.236 ± 0.030 0.260 ± 0.034 4.4E-06 2.3E+01 

STDD 
AS 0.184 ± 0.036 0.161 ± 0.039 6.5E-05 1.7E+01 

MS 0.057 ± 0.018 0.045 ± 0.016 9.8E-06 2.1E+01 

E5S5/S5E5 

ABSM 
AS 0.185 ± 0.038 0.160 ± 0.037 5.9E-05 1.7E+01 

MS 0.063 ± 0.021 0.049 ± 0.019 2.2E-05 1.9E+01 

STDD 
AS 0.206 ± 0.043 0.169 ± 0.052 9.5E-08 3.1E+01 

MS 0.074 ± 0.024 0.052 ± 0.026 2.6E-08 3.4E+01 

L5R5/R5L5 STDD AS 0.084 ± 0.021 0.071 ± 0.022 2.8E-04 1.4E+01 

E5R5/R5E5 

ABSM 
AS 0.081 ± 0.018 0.065 ± 0.020 4.0E-07 2.8E+01 

MS 0.020 ± 0.008 0.014 ± 0.009 2.1E-05 1.9E+01 

STDD 
AS 0.091 ± 0.023 0.073 ± 0.029 1.4E-05 2.0E+01 

MS 0.025 ± 0.012 0.018 ± 0.013 3.0E-04 1.4E+01 

R5S5/S5R5 

ABSM 
AS 0.068 ± 0.017 0.056 ± 0.019 4.1E-05 1.8E+01 

MS 0.019 ± 0.008 0.014 ± 0.008 2.1E-04 1.4E+01 

STDD 
AS 0.085 ± 0.024 0.069 ± 0.029 1.1E-04 1.6E+01 

MS 0.027 ± 0.012 0.020 ± 0.013 3.3E-04 1.3E+01 

S5S5 ABSM 
AS 0.149 ± 0.035 0.117 ± 0.034 2.5E-08 3.4E+01 

MS 0.045 ± 0.017 0.031 ± 0.016 6.0E-08 3.2E+01 

L5L5 

MEAN 
AS 0.587 ± 0.097 0.649 ± 0.093 5.9E-05 1.7E+01 

MS 0.481 ± 0.087 0.532 ± 0.089 3.7E-04 1.3E+01 

ABSM 
AS 0.587 ± 0.097 0.649 ± 0.093 5.9E-05 1.7E+01 

MS 0.481 ± 0.087 0.532 ± 0.089 3.7E-04 1.3E+01 

Table 4. ANOVA results for edema patients significant Laws texture features (comparison between AL and FL).  

AL = Affected Lung; FL = Fellow Lung. 

Laws mask S.D. S.F. 
mean ± STDV 

P F 
AL FL 

L5E5/E5L5 

ABSM 
AS 0.187 ± 0.040 0.143 ± 0.036 4.2E-14 6.6E+01 

MS 0.062 ± 0.020 0.040 ± 0.015 2.0E-16 8.1E+01 

STDD 
AS 0.193 ± 0.040 0.155 ± 0.038 8.3E-11 4.7E+01 

MS 0.062 ± 0.020 0.044 ± 0.017 1.1E-11 5.2E+01 

L5S5/S5L5 

ABSM 
AS 0.168 ± 0.035 0.133 ± 0.036 1.9E-10 4.5E+01 

MS 0.048 ± 0.017 0.034 ± 0.014 1.6E-10 4.6E+01 

STDD 
AS 0.189 ± 0.039 0.148 ± 0.039 7.6E-12 5.3E+01 

MS 0.060 ± 0.020 0.040 ± 0.016 4.0E-12 5.5E+01 

E5S5/S5E5 

ABSM 
AS 0.203 ± 0.045 0.135 ± 0.048 1.7E-18 9.4E+01 

MS 0.073 ± 0.025 0.038 ± 0.022 2.6E-19 1.0E+02 

STDD 
AS 0.224 ± 0.049 0.147 ± 0.052 1.7E-19 1.0E+02 

MS 0.085 ± 0.029 0.044 ± 0.026 3.0E-20 1.1E+02 

L5R5/R5L5 

MEAN 
AS 0.542 ± 0.042 0.515 ± 0.033 2.9E-06 2.3E+01 

MS 0.296 ± 0.045 0.267 ± 0.035 2.6E-06 2.3E+01 

ABSM AS 0.075 ± 0.014 0.064 ± 0.019 9.7E-06 2.1E+01 

STDD AS 0.084 ± 0.016 0.072 ± 0.022 2.0E-05 1.9E+01 

E5R5/R5E5 

ABSM 
AS 0.088 ± 0.020 0.070 ± 0.023 3.6E-08 3.3E+01 

MS 0.022 ± 0.007 0.017 ± 0.009 4.9E-06 2.2E+01 

STDD 
AS 0.103 ± 0.024 0.083 ± 0.029 8.6E-07 2.6E+01 

MS 0.031 ± 0.010 0.023 ± 0.013 8.2E-06 2.1E+01 

R5S5/S5R5 

ABSM 
AS 0.077 ± 0.019 0.062 ± 0.022 2.2E-06 2.4E+01 

MS 0.022 ± 0.007 0.017 ± 0.009 6.3E-06 2.2E+01 

STDD 
AS 0.097 ± 0.025 0.079 ± 0.029 9.0E-06 2.1E+01 

MS 0.033 ± 0.012 0.024 ± 0.013 3.7E-06 2.3E+01 

S5S5 ABSM 
AS 0.157 ± 0.034 0.100 ± 0.041 4.7E-20 1.1E+02 

MS 0.048 ± 0.015 0.025 ± 0.017 4.0E-19 9.9E+01 

L5L5 

MEAN 
AS 0.610 ± 0.098 0.693 ± 0.078 9.8E-12 5.2E+01 

MS 0.488 ± 0.096 0.554 ± 0.084 2.3E-07 2.9E+01 

ABSM 
AS 0.610 ± 0.098 0.693 ± 0.078 9.8E-12 5.2E+01 

MS 0.488 ± 0.096 0.554 ± 0.084 2.3E-07 2.9E+01 

E5E5 ABSM 
AS 0.218 ± 0.040 0.148 ± 0.047 6.6E-23 1.3E+02 

MS 0.084 ± 0.024 0.045 ± 0.025 8.2E-26 1.5E+02 

R5R5 ABSM 
AS 0.062 ± 0.015 0.050 ± 0.021 1.8E-05 1.9E+01 

MS 0.019 ± 0.006 0.014 ± 0.009 4.5E-07 2.7E+01 
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Table 5. ANOVA results for patients significant Laws texture features edema vs. cancer patients (comparison between EL and CL).  
EL = Edema Lung; CL = Cancer Lung. 

Laws mask S.D. 
S.F. mean ± STDV 

P F 

 
EL CL 

L5E5/E5L5 

MEAN ENT 4.522 ± 0.230 4.737 ± 0.044 5.0E-07 2.7E+01 

ABSM 
AS 0.275 ± 0.070 0.273 ± 0.025 7.8E-04 1.2E+01 

ENT 4.384 ± 0.246 4.615 ± 0.047 6.4E-04 1.2E+01 

STDD ENT 4.406 ± 0.248 4.645 ± 0.047 3.6E-04 1.3E+01 

L5S5/S5L5 

MEAN 

AS 0.546 ± 0.031 0.508 ± 0.023 9.5E-16 7.8E+01 

MS 0.303 ± 0.033 0.263 ± 0.024 9.2E-16 7.8E+01 

ENT 4.529 ± 0.230 4.743 ± 0.042 6.9E-07 2.7E+01 

ABSM ENT 4.388 ± 0.249 4.622 ± 0.047 4.2E-04 1.3E+01 

STDD ENT 4.408 ± 0.249 4.648 ± 0.047 2.6E-04 1.4E+01 

E5S5/S5E5 

MEAN ENT 4.528 ± 0.229 4.743 ± 0.042 5.8E-07 2.7E+01 

ABSM ENT 4.388 ± 0.249 4.622 ± 0.046 4.1E-04 1.3E+01 

STDD ENT 4.407 ± 0.247 4.647 ± 0.046 2.4E-04 1.4E+01 

L5R5/R5L5 

MEAN 

AS 0.556 ± 0.042 0.482 ± 0.031 1.1E-16 8.4E+01 

MS 0.312 ± 0.046 0.234 ± 0.029 9.3E-17 8.5E+01 

ENT 4.531 ± 0.229 4.745 ± 0.042 6.1E-07 2.7E+01 

ABSM ENT 4.346 ± 0.235 4.593 ± 0.047 1.4E-04 1.5E+01 

STDD ENT 4.323 ± 0.229 4.572 ± 0.048 8.0E-05 1.6E+01 

E5R5/R5E5 

MEAN ENT 4.531 ± 0.229 4.745 ± 0.042 6.0E-07 2.7E+01 

ABSM ENT 4.321 ± 0.233 4.567 ± 0.043 1.8E-04 1.5E+01 

STDD ENT 4.301 ± 0.229 4.543 ± 0.044 1.2E-04 1.6E+01 

R5S5/S5R5 

MEAN ENT 4.530 ± 0.229 4.745 ± 0.042 5.9E-07 2.7E+01 

ABSM ENT 4.253 ± 0.236 4.499 ± 0.043 2.3E-04 1.4E+01 

STDD ENT 4.244 ± 0.234 4.480 ± 0.047 1.7E-04 1.5E+01 

S5S5 

MEAN ENT 4.516 ± 0.230 4.727 ± 0.042 6.2E-07 2.7E+01 

ABSM ENT 4.373 ± 0.241 4.601 ± 0.045 3.3E-04 1.3E+01 

STDD 

AS 0.278 ± 0.079 0.319 ± 0.041 3.9E-07 2.8E+01 

MS 0.118 ± 0.060 0.144 ± 0.033 7.7E-07 2.6E+01 

ENT 4.395 ± 0.245 4.636 ± 0.047 4.2E-04 1.3E+01 

L5L5 

MEAN ENT 4.474 ± 0.246 4.726 ± 0.044 4.2E-05 1.8E+01 

ABSM ENT 4.377 ± 0.241 4.601 ± 0.046 4.2E-05 1.8E+01 

STDD 

AS 0.319 ± 0.096 0.304 ± 0.036 6.1E-06 2.2E+01 

MS 0.154 ± 0.066 0.131 ± 0.025 7.5E-08 3.2E+01 

ENT 4.389 ± 0.249 4.633 ± 0.047 2.6E-04 1.4E+01 

E5E5 

MEAN ENT 4.527 ± 0.230 4.741 ± 0.042 5.5E-07 2.7E+01 

ABSM 

AS 0.258 ± 0.072 0.260 ± 0.042 2.6E-06 2.4E+01 

MS 0.110 ± 0.054 0.108 ± 0.033 6.6E-06 2.2E+01 

ENT 4.372 ± 0.243 4.602 ± 0.044 5.6E-04 1.2E+01 

STDD 
AS 0.292 ± 0.073 0.303 ± 0.051 9.6E-05 1.6E+01 

ENT 4.394 ± 0.246 4.631 ± 0.046 4.2E-04 1.3E+01 

R5R5 

MEAN ENT 4.526 ± 0.230 4.740 ± 0.042 5.9E-07 2.7E+01 

ABSM ENT 4.296 ± 0.313 4.601 ± 0.046 2.7E-04 1.4E+01 

STDD 

AS 0.278 ± 0.133 0.304 ± 0.039 1.3E-06 2.5E+01 

MS 0.132 ± 0.076 0.134 ± 0.028 2.4E-06 2.4E+01 

ENT 4.310 ± 0.322 4.628 ± 0.046 8.6E-04 1.1E+01 

 

From Table 3, we can realize that  

 

 the mask L5S5/S5L5 with mean and STDD 

descriptors  (AS and MS features), 

 the masks E5S5/S5E5, E5R5/R5E5 and 

R5S5/S5R5 with ABSM and STDD descriptors 

(AS and MS features), 

 the mask L5R5/R5L5 with STDD descriptor (AS 
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feature), 

 the mask S5S5 with ABSM descriptor (AS and 

MS features) and  

 the mask L5L5 with mean and ABSM descriptors 

(AS and MS features)  

represent the significant Laws texture features that 

can discriminate between cancerous lungs and 

their normal fellows. 

Table 4, on the other hand, indicates that 

 

 the masks L5E5/E5L5, L5S5/S5L5, E5S5/S5E5, 

E5R5/R5E5 and R5S5/S5R5 with ABSM and 

STDD descriptors (AS and MS features), 

 the mask L5R5/R5L5 with mean (AS and MS 

features), ABSM and STDD descriptors (AS 

feature) and 

 the masks S5S5, E5E5 and R5R5 with ABSM 

descriptor (AS and MS features) 

 the mask L5L5 with mean and ABSM descriptors 

(AS and MS features) 

are the most discriminating Laws texture features 

that can separate pulmonary edema lungs from 

their normal fellows. 

Table 6. ANOVA results for (cancer or edema) patients significant Laws texture features (comparison between DL and NL).  
DL = Diseased Lung; NL = Normal Lung. 

Laws mask S.F. S.D. 
mean ± STDV 

P F 
DL NL 

L5E5/E5L5 

ABSM 
AS 0.180 ± 0.036 0.155 ± 0.036 1.5E-10 4.3E+01 

MS 0.058 ± 0.017 0.046 ± 0.015 2.7E-12 5.2E+01 

STDD 
AS 0.188 ± 0.036 0.164 ± 0.038 3.4E-09 3.7E+01 

MS 0.060 ± 0.018 0.049 ± 0.017 2.1E-09 3.8E+01 

L5S5/S5L5 

ABSM 
AS 0.165 ± 0.034 0.140 ± 0.036 4.2E-11 4.6E+01 

MS 0.047 ± 0.016 0.036 ± 0.014 1.0E-11 5.0E+01 

STDD 
AS 0.187 ± 0.037 0.154 ± 0.039 3.8E-15 6.8E+01 

MS 0.058 ± 0.019 0.042 ± 0.016 2.8E-16 7.4E+01 

E5S5/S5E5 

ABSM 
AS 0.195 ± 0.043 0.146 ± 0.048 3.4E-21 1.0E+02 

MS 0.068 ± 0.024 0.043 ± 0.022 2.5E-22 1.1E+02 

STDD 
AS 0.216 ± 0.047 0.157 ± 0.052 2.2E-25 1.3E+02 

MS 0.080 ± 0.028 0.048 ± 0.026 1.2E-26 1.3E+02 

L5R5/R5L5 

ABSM 
AS 0.074 ± 0.016 0.064 ± 0.019 6.3E-08 3.1E+01 

MS 0.014 ± 0.005 0.012 ± 0.006 5.4E-04 1.2E+01 

STDD 
AS 0.084 ± 0.019 0.072 ± 0.022 2.2E-08 3.3E+01 

MS 0.019 ± 0.008 0.016 ± 0.009 8.5E-05 1.6E+01 

E5R5/R5E5 

ABSM 
AS 0.085 ± 0.019 0.068 ± 0.023 1.3E-13 5.9E+01 

MS 0.021 ± 0.008 0.016 ± 0.009 6.6E-10 4.0E+01 

STDD 
AS 0.097 ± 0.025 0.078 ± 0.029 1.1E-10 4.4E+01 

MS 0.028 ± 0.011 0.021 ± 0.013 2.2E-08 3.3E+01 

R5S5/S5R5 

ABSM 
AS 0.073 ± 0.019 0.059 ± 0.022 7.1E-10 4.0E+01 

MS 0.020 ± 0.008 0.015 ± 0.009 8.0E-09 3.5E+01 

STDD 
AS 0.092 ± 0.025 0.075 ± 0.029 7.1E-09 3.5E+01 

MS 0.030 ± 0.012 0.022 ± 0.013 9.6E-09 3.5E+01 

S5S5 ABSM 
AS 0.174 ± 0.040 0.151 ± 0.038 2.2E-26 1.3E+02 

MS 0.061 ± 0.022 0.048 ± 0.019 7.4E-25 1.2E+02 

L5L5 

MEAN 
AS 0.480 ± 0.051 0.491 ± 0.063 5.0E-14 6.2E+01 

MS 0.247 ± 0.065 0.255 ± 0.074 4.7E-10 4.1E+01 

ABSM 
AS 0.185 ± 0.038 0.159 ± 0.041 5.0E-14 6.2E+01 

MS 0.067 ± 0.021 0.053 ± 0.022 4.7E-10 4.1E+01 

E5E5 ABSM 
AS 0.157 ± 0.038 0.132 ± 0.036 1.1E-15 7.0E+01 

MS 0.050 ± 0.019 0.037 ± 0.015 6.3E-16 7.2E+01 

R5R5 ABSM 
AS 0.173 ± 0.040 0.147 ± 0.045 2.2E-07 2.8E+01 

MS 0.059 ± 0.025 0.046 ± 0.026 4.1E-08 3.1E+01 

 

Furthermore, from Table 5, we can perceive that some 

Laws texture features of pulmonary edema affected lungs 

are significantly different than that of the tumor affected 

lungs. These features are described below: 

 

 the mask L5E5/E5L5 with ABSM descriptor (AS 

and ENT features), mean and STDD descriptors 

(ENT feature),  

 the mask L5S5/S5L5 and L5R5/R5L5 with mean 

descriptor (AS, MS and ENT features), ABSM and 

STDD descriptors (ENT feature), 

 the masks E5S5/S5E5, E5R5/R5E5 and 

R5S5/S5R5 with mean, ABSM and STDD 

descriptors (ENT feature), 

 the masks and S5S5, L5L5 and R5R5 with mean 

and ABSM descriptors (ENT feature) and STDD 

descriptor (AS, MS and ENT features) and 

the mask E5E5 with mean and STDD descriptors 

(ENT feature) and ABSM descriptor (AS, MS and 

ENT features). 

 

In addition, the significant features that differentiate 

among diseased and normal lungs are reported in Table 6 

as follows: 

 

 the masks L5E5/E5L5,  L5S5/S5L5,  E5S5/S5E5, 

L5R5/R5L5, E5R5/R5E5 and R5S5/S5R5  with 

ABSM and STDD descriptors (AS and MS 
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features), 

 the masks S5S5, E5E5 and R5R5 with ABSM 

descriptor (AS and MS features) and 

 the mask L5L5 with mean and ABSM descriptors 

(AS and MS features). 

B.  Parallel Performance 

Both sequential and parallel implementations of texture 

feature analysis scheme for lung abnormality detection 

are reported. The time needed to execute all images 

sequentially is almost 22 hours on an Intel processor with 

a quad core of 4GHz. Extracting the texture features 

through various masks are very time-consuming. Hence, 

it is necessary to find out an optimized implementation to 

solve this problem. By using parallel computation the 

implementation of texture features extraction can be 

recovered to improve the performance of the lung 

abnormality detection. Many performance metrics have 

been proposed to quantify the parallel systems. Among of 

them are: parallel execution time, speed up, efficiency 

and sequential versus parallel execution [39]. Figure 4 

depicts the performance of the proposed parallel lung 

abnormality detection model for different cluster 

architecture (M= 2 to 400).  

 

 Figure (4-a) summarizes the total parallel 

execution time for a different number of PEs (from 

2 to 400). It is shown that as the number of PEs 

increases, the execution time decreases. The 

reduction is approximately 50% as the number of 

PEs increases from one to two, while the total 

execution time decreases by about 25% when the 

number of PEs equals four. In the case of 

increasing the number of PEs to 20 the execution 

time decreases to 10% of its equivalent sequential 

time. 

 Upon increasing the number of PEs, the speed up 

will increase as presented in figure (4-b). 

 Figure (4-c) portrays the degree of improvement, 

compared to the sequential performance for M =2 

to 400. The proposed parallel method enhance the 

performance of the lung abnormality detection 

algorithm by 49.8%, 74.4%, 84.9%, 89.6%, 94.5%, 

95%, 97.2%, 98.5%, 99.2%, and 99.6% for 2, 4, 8, 

10, 20, 32, 40, 80, 200, and 400 PEs, respectively. 

 Figure (4-d) illustrates the system efficiency. This 

figure shows that the efficiency decreases at (M 

mod n =1) until reaches (M mod n =0) it increases. 

That is because at each (M mod n =0) all PEs are 

assigned the same number of tasks 

(images/lungs/or masks) and the load is balanced 

between all PEs.  

 Increasing the number of PEs reduces the total 

execution time but correspondingly increases the 

cost overhead and reduces the system efficiency. 

To obtain a reasonable efficiency, we will be 

satisfied with an improved degree equals to 98% 

with efficiency equals to 66%, which can be 

satisfied when M=20n. That is to say when 

increasing the number of PEs than "20n" the 

system will not become optimal in terms of cost. 

Furthermore, to increase the system efficiency, the 

load can be redistributed between PEs. In this case, 

two underloaded PEs can help each overloaded PE 

to execute its task (mask level). Hence, after load 

balancing, the efficiency is significantly increased 

to 75%. 

C.  Discussion 

In view of the obtained results, we can conclude that 

MS (using L5R5/R5L5 with ABSM and STDD 

descriptors) are deemed better biomarkers to significantly 

distinguish among diseased and normal lungs, while they 

are not in other cases. Similarly, AS (using S5S5, L5L5, 

E5E5 and R5R5 with STDD descriptor) and MS (using 

S5S5, L5L5, and R5R5 with STDD descriptor) are 

considered discriminative attributes between pulmonary 

edema and cancerous lungs only. The most interesting 

parameter in these results is “ENT” (for all masks using 

all feature descriptors), which exclusively differentiates 

cancer cases from edema cases.  

Furthermore, the features that are significantly 

discriminate cancerous lungs vs. normal or pulmonary 

edema are AS and MS (using L5S5 with mean descriptor). 

While those who substantially distinguish among edema 

and normal or tumorous lungs are AS and MS (using 

L5R5 with mean descriptor). Besides, AS (using 

L5S5/S5L5, L5R5/R5L5 and R5R5 with ABSM 

descriptor as well as L5E5/E5L5 with STDD descriptor) 

and MS (using L5E5/E5L5, L5S5/S5L5 and R5R5 with 

ABSM descriptor as well as L5E5/E5L5 with STDD 

descriptor) differentiate significantly between normal 

lungs and diseased or edema affected lungs.  

On the other hand, our suggested parallel framework 

has tremendously improved the entire system 

performance. Our findings show that the parallel scheme 

reduces the computational time by a factor of "98%" over 

non-parallel implementations with efficiency equals to 

66%. After load balancing, a reasonable efficiency equals 

to 75% is obtained. Moreover, the proposed parallel 

design is scalable (increasing the number of images and 

the number of PEs improves the system performance).   

Fulfilling the global throughput targets of different 

applications is an important challenge in parallel 

computing. Different parameters such as the number of 

nodes, communication overhead, and etc. affect the 

overall system performance. Optimizing the cost of 

system resources usage is an important problem. The cost 

of optimal cluster composition specifies the number of 

PEs/nodes that enables the execution of the given tasks 

while minimizing the cost. In this work, we tried to 

balance the trade-off between cost and performance by 

implementing cluster architecture. In the case of a small 

number of patients (tens), one cluster can be used to 

compute patients sequentially, while the tasks of each 

patient are executed in parallel. While In the case of a 

large number of patients (hundreds) more than one cluster 

can compute one or more patients.  
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Fig.4. System performance for different cluster architectures 

 

VI.  CONCLUSION AND FUTURE WORK 

The analysis of texture parameters is a useful way of 

increasing the information obtainable from medical 

images. In this article, we submitted an approach to detect 

abnormalities emerged in human lungs. Our focus in this 

work is on two common abnormalities; pulmonary edema 

and lung tumor. The proposed algorithm rooted on 

extracting Laws texture features, which are based on 

micro-texture masks that are designed to detect certain 

texture patterns at different orientations.  

The results demonstrate that Laws texture features 

exhibited high efficiency in differentiating among normal, 

edema and cancerous lungs. The performed feature 

analysis shows that “ENT” (for all masks using all feature 

descriptors) is significantly different in edema patients vs. 

cancer patients while it is not in edema or cancer patients 

vs. normal. In view of the fact that “ENT” refers to the 

amount of randomness or the amount of disorder in the 

image, this can be explained as cancer produces a 

localized heterogeneous masses in the diseased region 

within the lung, while edema generates heterogeneous 

disorder within the entire lung image. Moreover, AS 

(using S5S5, L5L5, E5E5, and R5R5 with STDD 

descriptor) and MS (using S5S5, L5L5, and R5R5 with 

STDD descriptor) are good biomarkers that can separate 

tumor cases from edema cases. Additionally, MS (using 

L5R5/R5L5 with ABSM and STDD descriptors) are good 

biomarkers that can significantly discriminate among 

normal and diseased lungs (cancer or edema). 

Even though the proposed method has proven to be 

very efficient, a huge amount of time and data are needed. 

Therefore, parallel algorithms are used to speed up the 

overall system. In this work, multi-level parallel 

architecture is implemented to handle the huge amount of 

data as well as reduce the computational time. The 

proposed parallel scheme achieves 49.8%, 74.4%, 84.9%, 

89.6%, 94.5%, 95%, 97.2%, 98.5%, 99.2%, and 99.6% 

execution time improvement comparing with its 

sequential method, for 2, 4, 8, 10, 20, 32, 40, 80, 200, and 

400 PEs respectively.  

The choice of parallel architecture is an important 

factor that affects the performance of the parallel design. 

Our experimental results indicate that the proposed 

algorithm's performance using the clusters system is the 

best choice. Meanwhile, the experiments also disclose 

that clusters are useful when only a large number of 

patients are available.   

The proposed system may be extended to include other 

lung diseases. Furthermore, once a computer cluster is 

available, we will be able to test the proposed algorithm 

in a much larger dataset. Hence, the overall system 

performance can be improved. 
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