
I.J. Intelligent Systems and Applications, 2018, 8, 1-10
Published Online August 2018 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijisa.2018.08.01

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 8, 1-10

Multi-Character Fighting Simulation

Sukoco
Department of Computer Science and Electronics, Faculty of Mathematics and Natural Sciences

Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia

Department of Informatics, Universitas Surakarta, Surakarta, 57772, Indonesia

E-mail: pak_koco@yahoo.com

Retantyo Wardoyo and Agus Harjoko
Department of Computer Science and Electronics, Faculty of Mathematics and Natural Sciences

Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia

E-mail: rw@ugm.ac.id, aharjoko@ugm.ac.id

Mochamad Hariadi
Department of Electrical Engineering, Faculty of Industrial Technology,

Institut Teknologi Sepuluh Nopember (ITS), Surabaya, 60111, Indonesia

E-mail: mochar@ee.its.ac.id

Received: 17 April 2017; Accepted: 20 December 2017; Published: 08 August 2018

Abstract—In the development of and research into multi-

character fighting computer games, Non-Player

Characters (NPCs) frequently seem less intelligent owing

to them having a single focus. As such, multi-character

fighting becomes one-on-one fighting; one character will

encounter another character only once the previous

opponent is defeated. This study develops a new model in

multi-character fighting, in which each NPC can

simultaneously fight against many characters. Following

this model, each character becomes an agent that makes

his own decisions. The first advantage of this model is the

integration of multi-character behaviors in fights. Each

character can seek out enemies/opponents, select one

target opponent, avoid obstacles, approach the target

opponent, change the target opponent, and then defeat the

opponent or be defeated by the opponent; in other words,

each character can thus fight against many opponents. All

of the behaviors in the fight take place automatically. The

second advantage of this model is that each character

does not only focus on the opponent being targeted, but

also on the other opponents surrounding him. Each

character can move from one opponent to another, even

when the target opponent is not yet defeated. The third

advantage of this model is that each character can move

to another fight cluster, thus ensuring that fights seem

more dynamic. This research has experimented with the

model using a 3D application that can run on personal

computers or smart phones.

Index Terms—Multi-character fighting, NPC, 3D

simulation.

I. INTRODUCTION

There is high demand for creating fight scenes in the

film, television, and game industries. Although fighting is

an event of continuous human interactions, it is not easily

simulated on computers [1]. One important element in

video games is NPCs (non-player characters), characters

that are controlled not by a player, but by the computer.

Research into NPCs has focused primarily on the quality

of their behavior [2]. Non-player characters improve the

gameplay experience [3], and their visual appearance in a

game has a direct effect on player performance [4]. While

it is relatively easy to simulate simple, individual NPC

behaviors, it is much more difficult to create meaningful

interactions between them [5].

In game applications, NPCs in multi-character fight

scenes frequently appear foolish, as despite being close to

opponents they will do nothing. They will focus only on

one opponent, even when other opponents are closer.

Therefore, although fight scenes appear to involve

multiple characters, they are essentially one-on-one;

NPCs will only switch to another opponent once the one

being fought is defeated.

Animating scenes with multi-character interactions can

be a particularly complex process [6], especially multi-

character fight scenes. So far, research into multi-

character fights is still limited. Also, multi-character fight

simulation studies have several limitations. In simulation

by Shum et al. [7], it seems that characters only attack or

avoid attacks automatically. This is limited to generating

scenes where multiple characters continuously interact

and require enemies to be defeated after interaction [8].

As such, NPCs will only switch their targets if the

opponent being fought is defeated.

Shum et al. [7] simulates multi-character fights using

motion capture data instead of an agent-based approach.

In creating his simulation, Shum uses more settings from

an interaction patch. This has weaknesses in simulating

multi-character fights because it only generates one-on-

one fights, and then combines these fights to form "multi-

2 Multi-Character Fighting Simulation

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 8, 1-10

character" fights. Characters continue to change their

opponents only once the opponent being fought is

defeated.

Agent system has many advantages in solving many

problems [9]. The primary objective of this paper is to

establish a model so each character can, as an agent, fight

many opponents simultaneously. Therefore, each

character can switch from one opponent to another, even

when the opponent presently being fought has not yet

been defeated. The advantage of this model is that multi-

character fighting can take place automatically.

In this model, each character acts as an agent that can

independently seek out and select opponents. Each

character can fight many opponents and decide to choose

one available opponent to be confronted, as each

character focuses not only on one opponent but also on

those surrounding him. The model functions both with

low and high character populations. In implementing this

model, a 3D simulation has been developed to simulate

multi-character fighting.

The paper is organized as follows. Section I describes

the problem statement, the research objective, and the

organization of the paper. Section II provides related

work, includes previous studies of interaction simulation

and fight simulation. Section III explains the proposed

model. Section IV describes simulation result and

discussion. Section V presents the conclusion of this

research.

II. RELATED WORKS

A. Interaction Simulation

Much research has been conducted in interaction

simulation. In previous studies, many have emphasized

the simulation human agents' movement. Zhao et al.

present a simulation of pedestrians' backtrack and the

waiting behavior [10]. Heliovaara et al. present a model

for agents’ behavior in counterflow situations [11]. Pouke

et al. calibrate fluctuations of pedestrian traffic in a

random model [12]. Li et al. animate large crowds using

existing examples of groups motions' by applying an

enhanced copy and paste technique on characters [13].

Hofinger et al. create models of human factors,

including physical, cognitive, motivational and social

variables, in evacuation [14]. Wong et al. present an

algorithm to compute the optimal route for each local

region. The system is to reduce congestion and maximize

the number of evacuees arriving at exits in each time span.

They also simulate crowd movements during route

optimization [15].

Weiss et al. present a crowd simulation method that

runs at interactive rates for hundreds of thousands of

agents. The simulation animates a sparse and dense group

of agents at interactive rates. It optimizes evacuation

routes based on crowd simulations [16].

Interaction among individuals further develops into the

interaction of agents with another object, as when

Safonova and Hodgins simulate a man walking and

taking a ball from the ground. They use A∗ search to get

an optimal solution in a graph that satisfies the user’s

specification [17]. Jablonski et al. present pedestrians

(agents) that move, watch stores, enter stores, and

reappear from stores. Each agent has their own personal

interests and needs, which affects its objectives and

interactions with the surroundings. Genetic algorithms are

used to animate the dynamic behavior of the environment

and the knowledge spreading [18]. Mankovecky

simulates pedestrians and obstacles in virtual cities. His

model is based on the Social Forces Model and improved

the model using Monte Carlo simulation [19]. Henry et al.

simulate a crowd of humans passing through complex

obstacles. They represent the crowd with a deformable

mesh, and allow the user, via multitouch input, to identify

high level movements and formations that are important

for context delivery [20]. Fata et al. simulate pilgrims’

movements circling the Kaaba (Tawaf). Each agent is

developed with some parameters such as: age, gender and

intention outlook, in order to simulate the Tawaf crowd

animation [21]. Vaillant et al. extend a quadratic

program-based task-space character control approach to

multiple characters interacting with each other and with

objects [22]. Xhao et al. propose to use the interaction

bisector surface (IBS) between the body and the object as

a feature of the interaction [23].

Hyun et al. use rewriting rules and grammar parsing to

synthesize the three-dimensional animation of multiple

characters. The simulation demonstrates animating

basketball games from drawings on a tactic board [24].

Kusuma et al. [25] purpose a new crowd simulation

model for traditional markets. The crowd model includes

simplified movement and unplanned purchasing models.

Bosse et al. simulate a real-life incident that happened

on May 4, 2010, in Amsterdam [26]. Durupınar et al. add

a psychological element to create mobs' collective

misbehavior [27]. Park et al. propose a decision support

system called SimCrowdControl has been developed

using the technique of agent-based modeling and

simulation (ABMS). The simulation shows the polices

block the hostile rioters to protect core downtown

areas[28].

B. Fight Simulation

There are several studies in fight simulation. Study of

characters' interactions through fighting have been

conducted. In general, fight simulations develop

beginning with one-on-one fights, then develop into one-

against-many fights and ultimately many-against-many

fights.

Zordan and Hodgins simulated motion that responds to

attacks on the upper body of a human using motion

capture data [29] and implemented their research in the

form of a boxing animation between two people. They

succeeded in simulating the reactions of people who are

hit and beaten in boxing, but were unable to realistically

show the intensive interactions between two competing

characters. Their research was also implemented using

table tennis and fencing.

Lee and Lee developed interaction between agents for

a boxing simulation using data obtained from motion

 Multi-Character Fighting Simulation 3

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 8, 1-10

capture. Their developed model successfully selected the

motion with minimal runtime cost, and their method was

based on reinforcement learning allowing autonomous

agents to learn certain behaviors through trial and error

[30]. However, this simulation was still limited to the

interaction of two characters boxing.

Kovar and Gleicher simulated kicking, based on

motion capture data. The developed model was meant to

find and select appropriate motion for motion capture

sequences [31], and it had not shown a fight yet.

Komura conducted research on a character's reactions

to a blow that hit it. Although animations generated from

motion capture data with a momentum-based inverse

kinematic were capable of displaying various reactions

that occur after a character receives a punch [32], this is

not a continuously animated fight.

Shum et al. simulate the interaction of two boxing

characters, based on motion capture data [8]. Shum et al.

developed this further in 2008 by simulating many

characters with a model called interaction patch, which

was used with min-max search techniques to generate a

series of motions innon-player characters. The patch

interaction took a microlook at agents' interactions with

other agents. Interaction between agents was obtained by

creating a patch table in the form of data obtained from

motion capture. Interaction between agents was done

with less computation [7]. This interaction patch,

however, has limitations in simulating many characters

with continuous interaction [33].

Arikan et al. simulated push effects on the upper part

of the human body [34]. Their method could find visually

plausible transitions that did not necessarily correspond to

similar motions in terms of configuration. This method

could start with a limited set of recorded motions, which

could be modified to serve different pushes on the upper

body.

Ishihara et al. evaluate the performance of Monte-

Carlo Tree Search (MCTS) in a fighting game artificial

intelligence and proposes an improvement for the

algorithm. They improve the Monte-Carlo tree search in

fighting game artificial intelligence and enhance it with

Roulette Selection and a rule base. They proposed

improvements, especially Roulette Selection, effectively

enhance the MCTS based method [35].

III. MULTI-CHARACTER FIGHTING MODEL

This study aims to establish a new model of

simultaneous fighting involving multiple characters. In

fulfilling the objective of this study, a multi-character

fighting model has been built.

A. Model and State

In this model, each character is an NPC that can seek

out and select opponents. Each character avoids any

obstacles that block his way. Each character can switch

from one opponent to another without waiting for the

current opponent to be defeated.

The model considers every agent as the same type of

character, without any variation in height, weight,

strength, initial health, and damage points. Therefore,

each character can make equal decisions during a fight.

Fig. 1 shows this model.

This model consists of 11 states, as follows:

1) Idle: The state in which this model starts. In this

state, a character does not move from his place.

2) Search Opponent: State in which the character

seeks an available opponent that is a

predetermined distance from him. The opponent is

another character that has a different tag and is a

certain distance from him. The list covers all

opponents near the character.

3) Choose Opponent: State in which the character

selects one opponent randomly from the available

list.

4) Search Enemy: State in which the character looks

for an enemy on the battlefield. An enemy is a

character that has a different tag than the character.

Enemy searching is performed over the entire

battlefield, no matter the distance.

5) Choose a Candidate Opponent: State in which the

character selects one enemy out of all enemies to

be a potential opponent. The candidate opponent

chosen is the nearest enemy.

Fig.1. Model of multi-character fight

6) Approach: State in which the character approaches

the potential opponent selected.

7) Avoid Obstacle: State in which the character

avoids an obstacle that is preventing him from

reaching his opponent. In this state, the character

moves to the right or left.

8) Fight: State in which the character is fighting

against an opponent. In this state, the character

tries to defeat the opponent.

9) Defeat: State in which the character successfully

defeats the opponent.

10) Defeated: State in which the opponent defeats/kills

the character. The defeated character is considered

dead/lost.

11) Win: State in which there are no more enemies on

the battlefield.

4 Multi-Character Fighting Simulation

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 8, 1-10

The multi-character fighting model is initiated from the

Idle state. Characters check whether or not there are any

opponents (Search Opponent state). A character

recognizes that nearby opponents using a circle that

intersects with other character’s colliders. The use of the

intersection between the circle and colliders identify the

tag of other characters. Fig. 2 illustrates the pseudocode

of the main proposed algorithm.

When in Search Opponent state, if there are some

potential opponents (sumOpponent>0), the character

selects an opponent to be encountered (Choose Opponent

state). If only one potential opponent is available, he

automatically becomes the opponent and enters the Fight

state.

If there is more than one opponent, the opponent is

selected randomly. In Fight state, in every looping period,

the character checks the opponents near him and chooses

one to be encountered.

If a character checks for an opponent but finds none

(sumOpponent=0), he will search for enemies over the

whole battlefield (Search Enemy state). Enemy searching

is performed by searching for a character that is tagged

differently. If there is no enemy found (En=0), then the

character's group wins (Win state).

 In Search Enemy state, when he finds an enemy, that

enemy becomes the character's target opponent. When a

character finds more than one enemy, he will select the

one closest to his position to become the target opponent

(Choose a Candidate Opponent state). After finding a

target opponent, the character moves closer to the target

opponent (Approach state). In Approach state, the

character searches for an enemy in every looping period.

The character approaches the target opponents, and

after reaching a certain distance (Dist<x), he enters Fight

state. In this model, x is two length units.

Fig.2. Main pseudocode of multi-character fighting

If there is an obstacle (object/human) between the

character and the target opponent (Obs=True), then he

should enter Avoid Obstacle state following the obstacle

avoidance algorithm described in Subsection III.B.

In avoiding an obstacle, if the distance between the

character and his enemy is greater than two length units,

and there is no obstacle (Obs=F & Dist>x), then the

character will approach the opponent (Approach state).

If the character's distance from the opponent is less

than or equal to two (Dist≤x), and there is no obstacle

(Obs=False), he will enter Fight state and thus approach

the opponent to attack.

In Fight state, when more than one opponent is

available, an opponent selection is performed randomly

among available opponents. Every looping period, each

character updates his list of opponents surrounding him.

The attack consists of two kinds of motion, kicks and

punches, which are performed randomly.

A character's attack reduces the health of the opponent.

If the health of a character reaches zero (Health ≤ 0), then

he enters Defeated state and is considered defeated. In

this simulation, the defeated character is simulated as

disappearing from the battlefield. Details about the health

system are provided in Subsection III.C.

If a character successfully defeats an opponent, he

enters Search Opponent state again. If he finds an

opponent, then he will fight again, until all of the

opponents are defeated. If there is no more enemies

remain (En=0), the character's group is considered

victorious (Win state).

B. Obstacle Avoidance System

Often, a character is impeded by an obstacle when

moving towards an opponent. Such obstacles may be the

character's allies or other objects. Often a character's

allies intuitively block other characters from reaching

opponents. If that happens, a character must avoid the

obstacle. Fig. 3 shows the obstacle avoidance pseudocode.

Fig.3. Obstacle avoidance pseudocode

The obstacle avoidance is performed through the value

isRight, a boolean variable with a randomly determined

 Multi-Character Fighting Simulation 5

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 8, 1-10

value. IsRight is used to determine a character's tendency

to move to the right or left.

If a character (white circle) moves forward and finds

an obstacle, and if isRight is True, that character will

move to the right. If there is an obstacle to the right, then

the character will move to the rear right. If there is an

obstacle there, the character will move to the left. If there

is an obstacle to the left, the character will move to the

rear left (see Fig. 4 (a–e)).

Conversely, if isRight is False, the character checks the

left first. If there is no obstacle to the left, the character

then moves to the left. If there is an obstacle to the left,

the character moves to the rear left. If there is an obstacle

to the rear left, the character moves to the right. If there is

an obstacleto the right, the character will go to the rear

right (see Fig. 4 (f–j)).

Fig.4. Avoiding obstacle system

C. Damage and Health System

In game development, there must be disequilibrium,

winners and losers. In fighting games, a character's health

is reduced when he is attacked by an opponent. Fig. 5

illustrates the damage and health pseudocode used.

Fig.5. Damage and health pseudocode

Damage in this model uses a Damage Per Second (DPS)

system. DPS is the value of damage performed by a

character over one second. A Damage Point (DP) is the

power of a single attack. Usually, every type of character

has different damage points, but in this model, all

characters have the same damage points. Hit Speed (HS)

is the amount of time used for a single attack. In this

model, all characters have the same Hit Speed. DPS is

calculated by:

HS/DPDPS (1)

The life of a character is shown in the form of a health

bar. In this model, all characters have the same initial

health. If a character is attacked, then his health is

reduced by an amount corresponding to the opponent's

DPS value; when a character attacks his opponent, his

health is unchanged (it does not decrease). In this model,

the type of attack (a punch or a kick) does not affect the

character's damage points.

IV. SIMULATION RESULT AND DISCUSSION

Personal computers and smart phones have been used

to implement this model. This was rendered using the

Unity game engine.

In this simulation, a fight takes place between two

groups, Group A and Group B. Group A wears white

clothes while group B wears black clothes.

Every character has the same behavior. The character

searches for opponents, selects one target opponent, and

fights with the target opponent. The character also

searches for enemies, chooses a potential opponent,

moves to approach the opponent, and avoids obstacles.

When searching for opponents, the distance searched is

less than or equal to two length units (x≤2). If the

distance is less than or equal to two, the character enters

the Fight state. In the Approach state, if the distance to

the opponent is less than or equal to two, the opponent

will also enter the Fight state.

Every character has the same initial health, 1000. Each

character has a damage point of 30 and requires 0.8

seconds per attack. As such, each character's DPS value

is 30 / 0.8 = 37.5; in other words, each character reduces

his opponent's health by 37.5 points every second of

attacking. If a character attacks for 5 seconds, then he

will reduce the opponent's health by 5 x 37.5 = 187.5

points.

6 Multi-Character Fighting Simulation

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 8, 1-10

Fig.6. Three characters fight

In a personal computer implementation (see Fig. 6), a

simulation of three characters fighting in one-on-two

fighting is shown. Fig. 6(a) shows an Idle state, in which

each character can select his opponent. Each character

will select the closest enemy. A1 and A2 have only one

enemy who can potentially become their opponent (B1).

B1 has two enemies, A1 and A2. As A1 is nearer than A2,

then B1 chooses A1 as his opponent. B1 moves to

approach A1. If the distance between A1 and B1 is less

than two units, A1 and B1 attack each other as opponents

in a Fight state (see Fig. 6(b)). When A1 and B1 are in a

Fight state, A2 goes forward to approach B1.

In Fig. 6(c), A2 approaches B1. B1 thus has two

opponents on his list, A1 and A2. In the Fight state, at a

certain time B1 randomly chooses a target to attack. In

Fig. 6(d), B1 changes his target opponent from A1 to A2.

In Fig. 6(e) A2 and B1 are in Fight state, A1 goes

forward to approach B1.

Fig. 7(a–e) shows a simulation of the obstacle avoiding

system. The scene takes the form of a fight in which four

characters face off against one character. The simulation

is initiated (see Fig. 7(a)) when A1, A2, A3 and A4

approach B1. A4 goes directly to B1 because he has no

obstacles ahead of him. A3 avoids A4 by moving to the

left as he approaches B1. A2 also avoids A3 by moving

to the left. A1 avoids A2 by moving to the right.

Fig.7. Avoiding obstacle simulation

After A2 moves to left, A1 has no obstacle ahead of

him. A1 may go forward (see Fig. 7(b)). In Fig. 7(c) A1,

A2 and A3 move forward. In Fig. 7(d), A1 moves to the

right and A2 moves forward to B1.

Fig. 7(a-e) shows that the model's obstacle avoidance

has worked. If an obstacle is in front of the character, the

character automatically makes a decision to move left or

right. If the character faces no obstacles, he moves

straight.

Fig. 8 shows a multi-character fight involving 15

characters. This fight consists of two groups, Group A

(five characters) and Group B (ten characters). In Fig.

8(a), all characters are in an Idle state. When the

simulation begins, all characters search for the closest

enemy. Each then approaches the potential opponent (see

Fig. 8(b) and (c)). If the distance between a character and

his candidate opponent is less than two distance units,

they are in a Fight state (see Fig. 8(d)).

 Multi-Character Fighting Simulation 7

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 8, 1-10

Fig.8. Changes enemy in fighting

In Fig. 8(e), character A1 has one opponent, A2 has

two opponents, A3 has two opponents, A4 has two

opponents, and A5 has three opponents. In the Fight state,

each character may change his target opponent. B5

changes his target opponent from A3 to A1. B1 changes

his target opponent from A2 to A4. This also means that

B1 and B5 change their fight cluster. A1 changes his

target from B6 to B5. A4 changes his target from B5 to

B8. A5 changes his target from B9 to B7. Finally, in Fig

8(f), character A1 has two opponents, A2 has one

opponent, A3 has one opponent, A4 has three opponents,

and A5 has three opponents.

Fig. 8 indicates that in this model, a character searches

for enemies, selects a potential opponent, and approaches

this potential opponent. Characters may sometimes have

one opponent, and sometimes have several opponents.

Eventually, each character will enter the Fight state to

defeat his target opponents or be defeated by his target

opponent. In a fight cluster, each character can move

from one opponent to another, without waiting for the

current opponent's defeat. Each character can move from

one fight cluster to nearby fight cluster.

In the Fight state, each character can change his target

opponent randomly in his fight cluster, even when his

target opponent is not defeated. Each opponent can then

fight all opponents simultaneously. Sometimes a

character moves from one fight cluster to another, thus

making the fight scene more dynamic.

With this model, then, multiple NPCs can thus fight

each other. In Fig. 9, a fight occurs between two groups,

with each group consisting of many characters. Fig. 9(a)

shows an Idle state position, a character does not move

from his place. After Idle state, all character check

whether or not there are any opponents. If a character has

an enemy nearby, the enemy will become an opponent.

Each character may thus encounter one or more

characters simultaneously (see Fig. 9(b) and 9(c)). If a

character encounters many potential opponents, he selects

randomly a target opponent to be encountered. If an

opponent is defeated, the character will search for another

enemy as a new target opponent (see Fig. 9(d)). If a

character is defeated, it will be dead and dissapeared.

Fig.9. Crowd fighting

The implementation of this model utilized a smart

phone. The smart phone has dual core procesor 1.3 GHz

and RAM 512 MB. Fig. 10 shows the implementation.

There are two groups fighting each other; with each

8 Multi-Character Fighting Simulation

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 8, 1-10

group consisting of ten characters. As with the

experiment using a personal computer, the

implementation of this model on a smart phone allowed

fights to be run simultaneously.

Fig.10. Twenty characters fight in smart phone

Five game players have tested the implementation of

this model, and they have the notion that it would be

positively applied in a game simulation. They hope that

this model can make fight scenes in games more realistic.

V. CONCLUSION

This research has simulated fights between multiple-

characters. Each character in this research is an NPC

(non-player character). This model can simulate fights

that can be run by the system and can be run

simultaneously. Each character can search for enemies or

opponents and select target opponents. Each character

can avoid obstacles, approach target opponents, change

target opponents, defeat opponents or be defeated by

opponents; as such, each character can fight against many

opponents.

Each character may encounter many characters at a

time. Each character focuses not only on one opponent,

but also those surrounding him. Each character can move

from one opponent to another in a fight cluster, without

waiting for the current opponent's defeat. Each character

can also move from one fight cluster to another. The

movement of characters in one cluster or between clusters

will make fight scenes more dynamic. This research has

implemented this model as a 3D simulation that can be

run on a personal computer or a smart phone.

In the future study and game development, each

character may have different power, skills, and thoughts

to create variations in each character's behavior during

the fighting. In game development, hit points and damage

per second can be varied for each different type of

character to provide variety and avoid a monotone.

REFERENCES

[1] H. Shum, and T. Komura, Generating Realistic Fighting

Scenes by Game Tree, Conference: SCA '06: Proceedings

of the 2006 ACM SIGGRAPH/ Eurographics symposium

on Computer animation, At Vienna, Austria, January

2006, ISBN: 3-905673-34-7

[2] A. Rankin, G. Acton, and M. Katchabaw, 2010, A

Scalable Approach to Believable Non Player Characters

In Modern Video Games, Conference: GameOn 2010, at

Leicester, United Kingdom

[3] O. Szymanezyk, P. Dickinson, T. Duckett, From

Individual Characters to Large Crowds: Augmenting the

Believability of Open-World Games through Exploring

Social Emotion in Pedestrian Groups, Proceedings of

Digital Games Research Association DiGRA 2011

Conference: Think Design Play, 2011

[4] E. Carrigan, E. Kokkinara, F. Gheorghe, M. Houlier, S.

Donikian, R. McDonnell, Crowd Appearance Affects

Player Performance In Game Combat Scenarios, ACM.,

MiG’16, Proceedings of the 9th International Conference

on Motion in Games, Burlingame, California — October

10 - 12, 2016, Pages 187-192, doi:

10.1145/2994258 .2994273

[5] M. Černý, C. Brom, R. Barták, M. Antoš, Spice it up!

Enriching Open World NPC Simulation Using Constraint

Satisfaction, Proceedings of the Tenth Annual AAAI

Conference on Artificial Intelligence and Interactive

Digital Entertainment (AIIDE 2014), AAAI Press, 2014,

16-22, ISBN:1577356810 978-1-57735-681-3

[6] J. Won, K. Lee, C. O’Sullivan, J. K. Hodgins, J. Lee,

Generating and Ranking Diverse Multi-Character

Interactions, ACM Transactions on Graphics (TOG) -

Proceedings of ACM SIGGRAPH Asia 2014, Volume 33

Issue 6, November 2014, Article No. 219, doi:

10.1145/2661229.2661271

[7] H. P. H. Shum, T. Komura, M. Shiraishi, S. Yamazaki,

Interaction Patches for Multi-Character Animation. ACM

Transactions on Graphics, Vol. 27, No. 5, Publication

date: December 8, 2008, Article No 114, doi: 10.1145/

1457515.1409067

[8] H. P. H., Shum, T., Komura, and S. Yamazaki, Simulating

Competitive Interactions Using Singly Captured Motions,

Proceedings of ACM Virtual Reality Software Technology

2007, p. 65–72, doi: 10.1145/1315184.1315194

[9] M. S. Iraji, Fuzzy Agent Oriented Software Effort

Estimate with COCOMO, I.J. Intelligent Systems and

Applications, 2015, 08, 18-29, doi:

10.5815/ijisa.2015.08.03

[10] X. Zhao, Y. You, Y. Zhang, Evacuation Simulation of

Counter-current Behavior Using Agent Model for

Pedestrian Dynamics, I.J. Education and Management

Engineering 2011, 4, 72-79, doi: 10.5815/

ijeme.2011.04.12

[11] S. Heliövaara, T. Korhonen, S. Hostikka, H. Ehtamo,

Counterflow Model For Agent-Based Simulation Of

Crowd Dynamics, Elsevier: Building and Environment,

vol. 48 (2012), pp. 89-10

[12] M. Pouke, J. Goncalves, D. Ferreira, V. Kostakos,

Practical simulation of virtual crowds using points of

interest, Computers, Environment and Urban Systems 57

(2016) 118–129, 2016, Elsevier Ltd, doi:

10.1016/j.compenvurbsys.2016.02.004

[13] Y. Li, M. Christie, O. Siret, R. Kulpa and J. Pettré,

Cloning Crowd Motions, Eurographics/ ACM

SIGGRAPH Symposium on Computer Animation (2012),

Pages 201-210, Switzerland, ISBN: 978-3-905674-37-8

[14] G. Hofinger, R. Zinke, L. Künzer, Human factors in

evacuation simulation, planning, and guidance, Elsevier

Transportation Research Procedia 2 (2014) 603 – 611,

doi: 10.1016/j.trpro.2014.09.101

[15] S. Wong, Y.S. Wang, P.K. Tang, and T.Y. Tsai,

Optimized evacuation route based on crowd simulation,

Computational Visual Media, Vol. 3, No. 3, September

2017, 243–261, doi: 10.1007/s41095-017-0081-9

 Multi-Character Fighting Simulation 9

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 8, 1-10

[16] T.Weiss, A. Litteneker, C. Jiang, and D. Terzopoulos,

Position-Based Multi-Agent Dynamics For Real-Time

Crowd Simulation, MiG’17, November8–10, 2017,

Barcelona, Spain, ACM, DOI:10.1145/3136457.3136462

[17] A. Safonova, and J.K. Hodgins, Construction And

Optimal Search Of Interpolated Motion Graphs, ACM

Transactions on Graphics 3, 2007

[18] K. Jablonski, V. Argyriou, D. Greenhill, Crowd

simulation for dynamic environments based on

information spreading and agents’personal interests,

Elsevier: Transportation Research Procedia 2 (2014) 412

– 417, doi: 10.1016/ j.trpro.2014.09.046

[19] R. Mankovecky, Dynamic Simulation of Virtual Agents

and Obstacles in Virtual Cities, Proceedings of CESCG

2016: The 20th Central European Seminar on Computer

Graphics, CESCG 2016, April 24-27, 2016, Smolenice,

Slovakia, ISBN: 3950253386, 9783950253382

[20] J. Henry, H.P.H. Shum, and T. Komura, Interactive

Formation Control in Complex Environments, IEEE

Transactions On Visualization And Computer Graphics,

Vol.20, No.2, February 2014, p 211-222, doi:

10.1109/TVCG.2013.116

[21] A.Z.A. Fata, M.S.M. Rahim, S. Kari, Autonomous Tawaf

Crowd Simulation, Borneo Science 36 (2): September

2015.

[22] J. Vaillant, K. Bouyarmane, and A. Kheddar, Multi-

Character Physical and Behavioral Interactions Controller,

IEEE Trans Vis Comput Graph. 2017 Jun; 23(6):1650-

1662. doi: 10.1109/TVCG.2016.2542067

[23] X. Xhao, M.G. Choi, T. Komura, Character-Object

Interaction Retrieval using the Interaction Bisector

Surface, EUROGRAPHICS 2017, The Eurographics

Association and John Wiley & Sons Ltd., Volume 36

(2017), Number 2, doi: 10.1111/cgf.13112.

[24] K. Hyun, K. Lee, and J. Lee, Motion Grammars for

Character Animation, EUROGRAPHICS 2016, Volume

35(2016), Number 2, Pages 103-113, doi:

10.1111/cgf.12815

[25] P. D. Kusuma, Azhari, R. Pulungan, Agent-Based Crowd

Simulation of Daily Goods Traditional Markets, I.J.

Intelligent Systems and Applications, 2016, 10, 1-10,

Published Online October 2016 in MECS

(http://www.mecs-press.org/), doi: 10.5815/ijisa.2016.10.

01

[26] T. Bosse, M. Hoogendoorn, M. C. A. Klein, J. Treur, C. N.

Vanderwal, A. van Wissen, Modelling Collective

Decision Making in Groups And Crowds: Integrating

Social Contagion And Interacting Emotions, Beliefs And

Intentions, Springer, Auton Agent Multi-Agent Syst(2013)

27:52–84, doi: 10.1007/s10458-012-9201-1

[27] F. Durupınar, U. Gudukbay, A. Aman, N.I. Badle,

Psychological Parameters for Crowd Simulation: From

Audiences to Mobs, IEEE Trans Vis Comput Graph. 2016

Sep;22(9):2145-59. doi: 10.1109/ TVCG. 2015.2501801

[28] A.J. Park, S. Buckley, H.H. Tsang, V. Spicer, A Decision

Support System for Crowd Control Using Agent-Based

Modeling and Simulation, 2015 IEEE 15th International

Conference on Data Mining Workshops, doi:

10.1109/ICDMW.2015.249

[29] V. B. Zordan, J. K. Hodgins, Motion Capture-Driven

Simulations That Hit And React, Proceedings of ACM

SIG-GRAPH Symposium on Computer Animation, July

21-22, 2002, p. 89-96, doi: 10.1145/545261.545276

[30] J. Lee, and K. H. Lee, Precomputing Avatar Behavior

From Human Motion Data, Proc of 2004 ACM

SIGGRAPH/ Eurographics Symp on Computer Animation,

2004, 79–87, doi: 10.1145/1028523.1028535

[31] Kovar , L. dan Gleicher, M., 2004, Automated Extraction

and Parameterization of Motions in Large Data Sets ,

Transactions on Graphics, 23, 3 (SIGGRAPH 2004)

[32] T. Komura, E.S.L. Ho, and R.W.H. Lau, Animating

Reactive Motion Using Momentum-Based Inverse

Kinematics, Computer Animation And Virtual Worlds

2005;16, John Wiley & Sons, Ltd., 2005, p 213–223, doi:

10.1002/cav.101

[33] H.P.H., Shum, Simulating Interactions Among Multiple

Characters, Dissertation, University of Edinburgh, 2010

[34] O. Arikan, DA. Forsyth, JF. O’Brien, JF, Pushing People

Around, Eurographics/ACM SIGGRAPH Symposium on

Computer Animation, 29–31 July 2005, Los Angeles, p

59-67, doi: 10.1145/1073368.1073376

[35] M. Ishihara, T. Miyazaki, C.Y. Chu, T. Harada, R.

Thawonmas, Applying and Improving Monte-Carlo Tree

Search in a Fighting Game AI, Proceeding of the 13th

International Conference on Advances in computer

entertainment Technology, ACM, Article No 27, Osaka,

Japan, November 9, 2016, ISBN 978-1-4503-4773-0, doi:

10.1145/3001773.3001797

Authors’ Profiles

Sukoco. Currently is pursuing his Doctoral

Program in Department of Computer

Science and Electronics FMIPA,

Universitas Gadjah Mada, Yogyakarta,

Indonesia.

He is a lecturer at Informatics

Departement of Universitas Surakarta,

Indonesia. He had his undergraduate degree

(SSi) in Electronics and Instrumentation, FMIPA, Universitas

Gadjah Mada, Yogyakarta, Indonesia in 1992, and Master

(MKom) in Informatics from Universitas Dian Nuswantoro,

Semarang, Indonesia in 2010; also he had his Master (MSi) in

Environment Science from Universitas Sebelas Maret,

Surakarta, Indonesia in 2009.

Mr. Sukoco’s research areas of interest are game, animation

and simulation.

Retantyo Wardoyo. He had his

undergraduate (Drs) in Mathematics from

Universitas Gadjah Mada, Yogyakarta,

Indonesia in 1982, and Master (MSc.) in

Computer Science from the University of

Manchester, UK in 1990. He had his

Doctoral degree (PhD) in Computation

from University of Manchester Institute of

Science and Technology, UK in 1996.

Dr. Wardoyo’s research area of interests are database systems,

operating systems, management information systems, fuzzy

logics, and software engineering.

Agus Harjoko. He had his undergraduate

degree (Drs) in Electronics and

Instrumentation, FMIPA, Universitas

Gadjah Mada, Yogyakarta, Indonesia in

1986, and Master (MSc) in Computer

Science, University of New Brunswick,

Canada, in 1990. He had his Doctor (PhD)

from Faculty of Computer Science,

University of New Brunswick, Canada, in 1996.

10 Multi-Character Fighting Simulation

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 8, 1-10

Dr. Harjoko’s research area of interests are digital image and

video processing, machine vision, and pattern recognition.

Mochamad Hariadi. He had his

undergraduate degree (ST) in Electrical

Engineering from Institut Teknologi

Sepuluh Nopember, Surabaya, Indonesia

in 1995, and Master (MSc) in School of

Information Sciences, Dept. of Intelligent

Sciences, Tohoku University, Japan, in

2003. He had his Doctoral degree (PhD)

from School of Information Sciences,

Dept. of Computer and Mathematical Sciences, Tohoku

University, Japan, in 2006.

Dr. Hariadi’s research area of interests are computational

intelligence, computer vision, video and image processing,

game technology, big data and internet of think.

How to cite this paper: Sukoco, Retantyo Wardoyo, Agus

Harjoko, Mochamad Hariadi, "Multi-Character Fighting

Simulation", International Journal of Intelligent Systems and

Applications(IJISA), Vol.10, No.8, pp.1-10, 2018. DOI:

10.5815/ijisa.2018.08.01

