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Abstract—This paper illustrates the new structure of 

artificial neuron based on root-power means (RPM) for 

quaternionic-valued signals and also presented an 

efficient learning process of neural networks with 

quaternionic-valued root-power means neurons (ℍ-

RPMN). The main aim of this neuron is to present the 

potential capability of a nonlinear aggregation operation 

on the quaternionic-valued signals in neuron cell. A wide 

spectrum of aggregation ability of RPM in between 

minima and maxima has a beautiful property of changing 

its degree of compensation in the natural way which 

emulates the various existing neuron models as its special 

cases. Further, the quaternionic resilient propagation 

algorithm (ℍ-RPROP) with error-dependent weight 

backtracking step significantly accelerates the training 

speed and exhibits better approximation accuracy. The 

wide spectrums of benchmark problems are considered to 

evaluate the performance of proposed quaternionic root-

power mean neuron with ℍ-RPROP learning algorithm. 

 

Index Terms—Quasi-arithmetic means, Root-power 

means in quaternionic domain (ℍ), Quaternionic-valued 

multilayer perceptron, Quaternionic-valued 

backpropagation, Quaternionic resilient propagation, 3D 

face recognition. 

 

I.  INTRODUCTION 

The information processing in cell body is an 

important function of a neuron, which emulates the 

computational power of a neuron [1-4]. In last few years, 

various neuro-computing researchers have confirmed the 

computational capability of a neuron with nonlinear 

aggregation operations on synaptic inputs [1, 2, 5-8] and 

presented various higher order neurons based on the 

nonlinear correlation among different impinging signals. 

These attempts resulted in the various class of neural 

structure as pi-sigma [9, 10] second order neuron [11], 

compensatory neuron [12], and other higher order 

neurons [13-16, 54]. However, the higher order neurons 

have proved to be efficient, but they face the problem of 

explosion of terms as the number of inputs increases 

hence demanding sparseness in representation. The 

problem worsens when neurons are implemented in high 

dimension. It is highly demanding to investigate a neuron 

model like a conventional neuron in higher dimension but 

is free from the problem of higher order neurons. This 

paper presents a neuron model with a complete 

specification for quaternionic-valued that employs the 

nonlinear correlation among input components, but it is 

free from above problem even when there is an increase 

in the degree of approximation. The corresponding neural 

network with learning algorithm in the quaternionic 

domain (ℍ) provides a better learning and generalization 

opportunity for problems in three or four dimension. The 

weighted root-power mean covers the various classes of 

aggregation in the interval between minima to maxima 

operations [18, 19]. It provides the flexibility to 

approximate appropriate operation in the wide range of 

aggregation through variation of power coefficient. The 

weighted root-power mean as an aggregation function of 

the proposed neuron model with quaternionic-valued 

signals exhibits the natural and general model that 

presents the various existing neuron models as its special 

cases, depending on the domain of input signals and 

value of power coefficient. However, the quaternionic-

valued networks with conventional neurons are used in 

PolSAR Land classification [55] and spoken language 

understanding [53].   

The backpropagation (BP) learning algorithm has 

gained popularly due to its simplicity, but the slower 

convergence and getting stuck into local minima are the 

major weaknesses for degrading its performance. 

Therefore, some of other proposals have been given, like 

modified error function [20, 21], addition of variable 

learning rate [22, 23], addition of momentum [24, 25], 

delta-bar-delta algorithm [26, 27], Levenberg Marquardt 

(LM) algorithm [51],  GA-MLP hybrid algorithm [56],  

and quick prop [28], to overcome the above issues, but 

they have not accelerated the convergence to a significant 

amount. The fast convergence with efficacious 

performance along with less complexity of neural 

network is the important matter for the variety of 

applications. The resilient propagation algorithm 
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(RPROP) has been shown the extreme learning capability 

in real [29-31], complex domain [17, 32], and 

quaternionic domain [52]. The RPROP was developed for 

faster convergence which proved its learning and 

generalization capabilities in many applications such as 

weighted geometric dilution of precision and mobile 

location [33], speech quality prediction [34]. This 

algorithm eliminates the harmful influences of the size of 

the partial derivative of error function on weight update 

because adaptation depends on the signs of consecutive 

partial derivatives. 

The RPROP in the quaternionic domain (ℍ-RPROP) 

has been thoroughly investigated with proposed 

quaternionic-valued root power mean neuron (ℍ-RPMN) 

and compared with conventional neuron and BP learning 

procedure.  In the derivation of learning rules, a bounded 

but non-holomorphic activation function in the 

quaternionic domain is incorporated. The fusion of 

quaternionic domain efficient training algorithm (ℍ-

RPROP) with ℍ-RPMN demonstrates the drastic 

reduction in learning cycles along with better 

generalization in simulation results. This paper is 

organized as follows. Section II presents a new structure 

of neuron in the quaternionic domain that covers the 

many neuron models as its special cases. The weight 

update rules for a three layer network based on ℍ-RPMN 

are derived by quaternionic backpropagation (ℍ-BP). In 

Section III, the weight update rules for a three layer 

network based on ℍ-RPMN are derived by quaternionic 

backpropagation (ℍ-BP). Section IV presents the 

modified ℍ-RPROP algorithm with pseudo code. In 

Section V, the comparative performance capability the 

proposed algorithm over existing algorithms is 

demonstrated and also considered 3D human face 

recognition problem as a biometric application. Finally, 

the conclusion and future scope are presented in Section 

VI. 

 

II.  ROOT POWER MEAN NEURON MODEL 

In the variety of researches, it is observed that the 

approximation capabilities of an artificial neuron are 

governed through spatial aggregation input signals [1, 2, 

5-7]. This paper focuses on the design and assessment of 

a generalized artificial neuron whose aggregation 

operation provides a wide spectrum of approximation in 

between minima to maxima. The aggregation operation 

for proposed neuron is conceptually based on weighted 

root-power means of input signals, which belongs to the 

family of quasi-arithmetic means [35, 36] and expressed 

as: 
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monotonic function which is a generator of quasi-
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{0}   , thus weight root-power mean [18] is defined 
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This function models a compensative operation to 

adjust the degree of approximation by varying the power 

coefficient , from  (minimum) to  (maximum). 

The specific power coefficients determine various 

classical means. When 0   then converges to 

geometric mean and when 1,1,2    then  acts as 

harmonic, arithmetic, and quadratic means, respectively. 

Most of the common averaging operations come under 

the family of root-power mean (2), which motivated us to 

define new aggregation function for a neuron in a 

quaternionic domain (ℍ). This neuron is named as ℍ-

RPMN whose net potential (V ) is defined as follows: 
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where, , ,i iV w q  and   . The   symbol denotes 

the quaternion multiplication which satisfies Hamilton’s 

properties as 2 2 2 1i j k ijk     , ij ji k   , 

jk kj i   , and ki ik j    [37]. The net potential 

through quaternionic variables is further transformed 

through quaternionic-valued split activation function 

 :f f  . This presents the four-dimensional 

extension with the suitable real activation function f  

(‘split-quaternion’) [38]. This idea has been motivated 

from split-type action function in the complex domain 

whose approximation capabilities has been thoroughly 

justified [12, 17, 39]. The split-type activation function in 

the quaternionic domain is bounded but non-holomorphic 

since Cauchy–Riemann-Fueter (CRF) condition does not 

hold for it [40]. Let V  be a quaternionic variable, 

expressed as: 

 

       1 2 3V V V i V j V    , 

 

then  f V  is defined as: 
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where  , 1 , 2 , and 3  denote a real and other three 

imaginary components of a quaternionic variable 

respectively. The various types of nonlinear real valued 

activation functions f  have been defined in the various 
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literatures. The choice of a suitable activation function 

depends on the intended applications. The output of 

proposed ℍ-RPMN can be defined as: 
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where, the power coefficient   provides the wide 

ranging functionality of ℍ-RPMN. The many existing 

neuron models can be realized as special cases of (5) by 

substituting the specific value of power coefficient. Some 

special types of existing neuron models are extracted 

from (5). On substituting 1   in (5), then the outputs of 

neuron belong to the conventional type of neuron model 

proposed in the real [41], complex [39, 42], and 

quaternionic domain [43] as cases apply in consideration 

of imaginary components. If all the parameters are in the 

complex domain then the output of a neuron belongs to 

the ℂ-RPMN model in the complex domain, whose 

functional capabilities are investigated in [17]. The 

multiplicative neuron model [44], whose capability has 

been proven there, can be realized by (5) when 0  . 

The harmonic neuron model [45] can be obtained when 

substituting 1    in (5). Similarly, when 2   and all 

variables are in the real domain, then the output from (5) 

is conceptually similar to the quadratic neuron model 

proposed in [46]. 

 

III.  BACKPROPAGATION LEARNING OF ℍ-RPMN MODEL 

The multilayer network with proposed neuron model is 

similar to the network of the conventional neuron. 

Consider a three-layer (L-M-N) network of ℍ-RPMN 

where the first layer possesses L (l=1,…,L) inputs, and 

second and third layer contain M (m=1,…,M) and N 

(n=1,…,N) neurons respectively. All weights, biases, and 

input-output signals are quaternionic numbers. Let 

1 2[ , , , ]LQ q q q   be the vector of quaternionic input q  

and q  be the conjugate. Let f  be the real-valued 

activation function and 'f  be its derivative and  0,1  

be the learning rate. Let weight lmw  be from l th input to 

m th hidden neuron and mnw  be from m th hidden neuron 

to n th output neuron of the network. Let 0w  be the bias 

weight and 0q  be the bias input. Let V  be net internal 

potential of a neuron and output can be computed through 

the split-quaternion activation function f . For m th 

hidden neuron mV , then output 
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  and ( )muV  is the vector 

component of mu  then mu  can be expressed as a real and 

its vector part together as   ( )mm uu V   and it can be 

represented in the polar form of a quaternion [47] as 
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mu and ( )muV  denote the norm and the magnitude of 

the vector component ( ( )muV ) of mu  respectively. The net 

internal potential mV  of m th hidden neuron can be 

obtained by applying De Moivre’s theorem on mu  [48] as 
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The output of the n th neuron in output layer can be 

expressed as similar to (6) as 
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  and nV  be the net internal 

potential of n th neuron which can be derived as similar 

to (8) as 
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The gradient-descent-based error backpropagation 

learning scheme for the feed-forward neural network has 

been extended in the quaternionic domain. Let error 

n n ne D Y   be the difference between desired ( nD ) and 

actual ( nY ) output of n th neuron at the output layer. The 
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weight update formula can be derived by minimizing the 

real-valued error function ( E ) as 
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The real-valued error function does not follow the 

Cauchy-Riemann condition; therefore, it is not 

holomorphic. The error function is minimized by 

recursively altering the weight coefficients as: 
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where,  w E presents the gradient of the error function 

which is derived with respect to real and other three 

imaginary components of quaternionic weights. The 

weight update ( w ) is proportional to the negative 

gradient of the error function with respect to quaternionic 

weight as 
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For the weight ( mnw w ) that connects m th hidden 

neuron to n th output neuron, the weight update is 

obtained using chain rule of derivation as: 
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The weight update ( mnw ) depends on gradients of 

each component of the net potential ( nV ) of n th output 

neuron with respect to weight ( mnw ). The gradient of the 

real component of the net potential can be obtained using 

real part of (8) e.g. 
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and the gradients of three imaginary components of the 

net potential (   , 1,2,3i nV i  ) can be obtained as: 
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where, 
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The gradients of real and three imaginary components 

of nu  with respect to the weight ( mnw ) can be obtained 

as: 
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For the weight ( lmw w ) that connects l th input to 

m th  hidden neuron, the weight update 
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The weight update ( lmw ) between l th input and m th 

hidden neuron depends on gradients of each component 

of the net potential ( nV ) of n th output neuron with 

respect to weight ( lmw ). The gradient of the real 

component of the net potential can be obtained as: 
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and the gradients of three imaginary components of the 

net potential (   , 1,2,3i nV i  ) can be obtained as: 
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The gradients of real and three imaginary components 

of nu  with respect to the weight ( lmw ) can be obtained as: 
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The gradient of real component of mY  can be obtained 

as: 
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and the gradients of three imaginary components of the 

net potential (   , 1,2,3i mY i  ) can be obtained as: 
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The gradient of the real component of the net potential 

( mV ) can be obtained as: 
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and the gradients of three imaginary components of the 

net potential (   , 1,2,3i mV i  ) can be obtained as: 
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where, 
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The gradients of real and three imaginary components 

of mu  with respect to the weight ( lmw ) can be obtained 

as: 
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IV.  ℍ-RPROP LEARNING  OF ℍ-RPMN MODEL 

The resilient propagation (RPROP) learning algorithm 

in the real domain is very popular to exhibit fast and 

robust learning scheme because only the sign of the 

partial derivatives in successive steps is used to perform 

learning and adaptation. It accomplishes the local 

adaptation of weight updates ( w ) according to the 

nature error at each iteration to overcome the 

disadvantages of pure gradient descent approach [29]. 

The further improvement [30, 31] in this learning process 

has been obtained by associating error-dependent weight 

reversal step; it appears more logical on the evolution of 

error when error increases even weight updates have 

caused changes to the sign of partial derivatives. Thus, in 

improved RPROP algorithm the individual information 

about error surface (sign of gradient with respect to a 

weight) is combined with more global information to 

settle down for each weight, which individually modifies 

the real and imaginary components of complex weights 

by an amount   t   and   t   where   is update 

value) to decrease the overall error. 

The ℍ-RPROP algorithm in the quaternionic domain is 

investigated with a goal to modify the real and other three 

imaginary components of the quaternionic weights by an 

amount   t  ,   1 t  ,   2 t  , and   3 t   

with a view to decrease the overall error in learning 

cycles. Each update value determines the size of weight 
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update. The sign of the partial derivative of the error 

function with respect to each component of quaternionic 

weight determines the direction of weight update, where 

partial derivatives are the gradient summation over all 

patterns of the pattern set. Let the symbol   denotes the 

generalized notation for real and other three imaginary 

components of quaternionic weight. The weight updates 

for all components are determined as 
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If the sign of partial derivate changes in successive 

steps, the previous weight update will be reverted. But the 

important element is required to investigate whether the 

error is increasing or decreasing, caused by weight update. 

This important element has not considered in [29]. This 

backtracking step does not seem proper especially when 

the overall error has decreased. Hence, the previous 

weight update is reverted only when it has caused a 

change of sign in the corresponding partial derivative in 

the case of an overall error increase. The results of this 

algorithm demonstrate the excellent performance than ℍ-

BP algorithm. If the partial derivatives in successive step 

are opposite in sign and the overall error increases then 

only the previous weight update is reverted as: 
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The partial derivative of error is set to zero after weight 

reversal because it avoids the update of step size in the 

next iteration. The ℍ-RPROP algorithm defines various 

parameters to yield the global minimum of the error 

function with faster convergence. The parameters, initial 

step size ( 0 ), increase factor (  ), decrease factor 

(  ), minimum step size ( min ), and maximum step 

size ( max ), are set at the beginning of ℍ-RPROP. The 

step size (update value) is modifying according to 

gradient direction, as given in algorithm. The abstract 

pseudo code of ℍ-RPROP algorithm is presented as 

follows: 
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15. } until (completed all components of weight) 

16.  1;t t   

17. } until (converged). 

 

All components of quaternionic weights are modified 

individually according to the algorithm in each learning 

cycle and such cycle is repeated till error converges to 

designated level. In this algorithm, the weights and 

update values are changing every time for the new 

training set. 

 

V.  PERFORMANCE EVALUATIONS THROUGH  

BENCHMARK PROBLEMS 

In this paper, we present the effectiveness of proposed 

neuron ℍ-RPMN and algorithm ℍ-RPMN through a 

wide spectrum of benchmark problems. Comparative 

evaluation is done by networks designed by conventional 

neurons (MLP) and root-power-mean neurons along with 

BP and RPROP learning algorithms in the quaternionic 

domain. Four components of all quaternionic weights and 

biases for both networks are randomly initialized in the 

range -1 to 1. The quaternionic variable 

0 1q i j k    is assumed as bias input and the 

hyperbolic tangent function is used as the activation 

function. The comparison of training and testing 

performance through function approximation is 

thoroughly evaluated by statistical parameters like error 

variance, correlation, and AIC [49]. Another class of 

benchmark problem is the learning of linear 

transformations (rotation, scaling, and translation and 

their combinations) through few set of points lying on 

line whose generalization abilities are tested over the 

complicated 3D geometric structure. In the last 
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subsection, two primary experiments are presented for 3D 

face recognition which surely it will be stepping stone for 

prospective researchers. 

A.  Function Approximation of Model for Spread of 

Tuberculosis 

The spread of tuberculosis model [50] is the system of 

four differential equations with respect to time along with 

four variables that can be denoted together as a 

quaternion number instead of four real numbers. This 

model needs the intelligent behavior and automated 

analysis of bacterial effect to reach equilibrium from 

different initial conditions. A mathematical model aims to 

analyze the effect of the accumulation of bacteria which 

survive due to conducive ecological factors such as 

flower pots, plants, grasses, human clothes, etc. in the 

habitat, acting as a reservoir, on the spread of tuberculosis 

(TB) in the human population. The total population 

( ( )N t ) is categorized into classes, susceptible ( ( )S t ) and 

infective ( ( )T t ). ( )B t  governs the bacteria density in the 

environment and ( )E t  is the cumulative density of 

ecological factors which is conducive to the accumulation 

of bacteria population. All these factors of this model are 

treated as quaternion (  S t +  T t i +  B t j + ( )E t k ) 

with respect to time. In this model, it is assumed that TB 

is spread by direct contacts with infective in the 

population and indirect contacts with bacteria which is 

emitted by infective in the habitat. The dynamics of the 

spread of TB is governed by the system of nonlinear 

differential equations as: 

 

 

       

0 1

2
0 1

( )

0 0; 0 0; 0 0; 0 0

dS
A ST SB dS T

dt

dT
ST SB d T

dt

dB
sT s B s BE

dt

dE
E E S T E

dt

S T B E

  

   

  

    

    

  

   

   

          (38) 

 

where, A  is the immigration rate of susceptibles.   and 

  are the transmission coefficients of TB by contact of 

susceptibles with infectives and by inhalation of bacteria 

from the environment; d  is the natural death rate,   is 

the therapeutic treatment rate of infected individuals and 

  is the death rate due to TB infection. The parameter 

s is the release rate of bacteria from the TB infected 

individuals, 0s  is the decrement coefficient due to natural 

factors and 1s  is the rate of survival and accumulation of 

bacteria population due to conducive ecological factors in 

the habitat.   is the growth rate, 0  is the carrying 

capacity in the habitat and 1 is the increase coefficient 

due to the total human population. All these parameters in 

this model are assumed only for positive values. 

The TB model presented in (38) with parameters 

[ 500A  , 0.0003  , 0.0001  , 0.15d  , 0.01  , 

0.2  , 0.1s  , 0 0.3s  , 1 0.0001s  , 25  , 

0 0.1  , and 1 0.002  ] generates four datasets 

containing 200 data points in 100 hours with a time 

interval 0.5t  and four initial conditions are given as: 

 

(i)  0 1400S  ,  0 1600T  ,  0 358B  , 

 0 290E   

(ii)  0 200S  ,  0 1300T  ,  0 358B  ,  0 290E   

(iii)  0 2600S  ,  0 400T  ,  0 358B  , 

 0 290E   

(iv)  0 600S  ,  0 400T  ,  0 358B  ,  0 290E 
 

 

 

Fig.1. Comparison of testing result of ℍ-RPMN based network trained 

by ℍ-RPROP algorithm with normalized desired. 

The system (38) reaches to an equilibrium point from 

four different initial conditions. This system generates 

four datasets containing four components ( ( )S t , ( )T t , 

( )B t , and ( )E t ) using four initial conditions. All four 

components are encoded in a single quaternion. Datasets 

are further normalized between -0.9 to 0.9 and its 80 data 

points are used for training by ℍ-BP and ℍ-RPROP 

learning algorithms. The normalized datasets containing 

200 points are used for testing of networks trained by 

both algorithms. 

The comparative analysis of training and testing data 

through conventional and proposed neuron based 

networks performed by both the algorithms are presented 

in Table 1. It clearly shows that ℍ-RPROP with ℍ-

RPMN has significantly faster convergence and has better 

testing results in terms of error, variance, correlation, and 

AIC. Figure 1 demonstrates the testing results by ℍ-

RPROP with ℍ-RPMN and compares with the desired 

result in 3D for different initial conditions, where the 

normalized total human population ( ( ) ( )S t T t ), 

bacterial population density ( ( )B t ) and cumulative 
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population density ( ( )E t ) are in x, y, and z direction 

respectively. The overall training and testing performance 

infer the superiority of ℍ-RPROP algorithm with ℍ-

RPMN. 

Table 1. Comparison of Training and Testing Performance for the Spread of TB Model 

 ℍ-MLP ℍ-RPMN ( =0.94) 

Learning Algorithm 
ℍ-BP 

(η=0.001) 
ℍ-RPROP 

ℍ-BP 
(η=0.001) 

ℍ-RPROP 

Network 4-8-4 4-8-4 4-8-4 4-8-4 

Parameters 76 76 76 76 

MSE 

Training 
0.0005 0.0003 0.0004 0.0001 

Learning Cycles 6000 2100 5000 1200 

Average Training Time (in Minutes) 70 50 60 35 

MSE 

Testing 
3.4615e-04 2.1137e-04 2.9362e-04 1.5213e-04 

Error 

Variance 
5.8870e-04 6.0118e-04 5.0581e-04 4.9042e-04 

Correlation 0.9965 0.9978 0.9970 0.9983 

AIC -6.6409 -7.3517 -7.0640 -8.4503 

 

B.  Linear Transformations 

This experiment presents the capability to learn 3D 

motion patterns through a training set containing points 

on a line and motion or transformation generalization 

over complicated geometrical structures in space. As a 

benchmark problem, this section presents the learning 

and generalization of linear transformations (rotation, 

scaling, and translation and their combinations) through 

ℍ-RPROP and ℍ-BP algorithm for the network based on 

ℍ-RPMN and ℍ-MLP. This facilitates the viewing of 3D 

objects from different orientations as well as the 

interpretation of their motion in space. 

We have considered a three layer network (2-4-2) and 

its learning process for input-output mapping governed 

by a straight line containing a reference point (like mid of 

the line) in 3D space for all experiments. The first input 

receives a set of points that lies on a straight line and 

second input passes the reference point. The simulation 

results show that the ℍ-RPROP algorithm with ℍ-RPMN 

drastically reduces the number of training epochs and 

also able to generalize more accurately as compared to 

other algorithms. 

The learning of a three layer network is performed for 

the different class of transformations, which are as 

follows: The input-output mapping for scaling with factor 

½ is shown in Fig. 2(a); scaling with factor ½ followed 

by 0.3 unit translation along the positive z-direction is 

shown in Fig. 4(a); and scaling with factor ½ followed by 

0.3 unit translation along the positive z-direction and /2 

radian rotation around the unit vector ( i ) is shown in Fig. 

6(a). This mapping is defined by the straight line 

containing 21 points and referenced at (0, 0, 0), as shown 

in Figs. 2(a), 4(a), and 6(a). Figures 2(b), 4(b), and 6(b) 

show the faster learning capability of proposed ℍ-

RPROP as compared to ℍ-BP in all three classes of 

transformations. The network trained by ℍ-RPROP 

converges to MSE = 0.0007 after 5000 average epochs in 

case of scaling, 5050 average epochs in case of scaling 

and translation, and 6020 average epochs in case of 

scaling, translation and rotation of straight line, but the 

training through ℍ-BP with conventional neural network 

requires comparatively larger average epochs then ℍ-BP 

with ℍ-RPMN neuron to achieve similar MSE, as shown 

in Figs. 2(b), 4(b), and 6(b), and presented in Tables 2, 3, 

and 4 respectively. Thus, the convergence of proposed 

algorithm is extremely faster over conventional ℍ-BP. 

 

 
(a) 

 
(b) 

Fig.2. (a) Training with input-output mapping of straight line with 
scaling factor ½; (b) Convergence of MSE curves for scaling in the 

network with ℍ-BP (MLP) (red), ℍ-RPROP (MLP) (green), ℍ-BP 

(RPMN) (black) and ℍ-RPROP (RPMN) (blue) algorithms.
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(a) 

 
(b) 

 
(c) 

Fig.3. The generalization through ℍ-RPROP algorithm: 

Transformations with scaling factor ½; over (a) Sphere (b) Cylinder and 
(c) Torus. 

 

 
(a) 

 
(b) 

Fig.4. (a) Training with input-output mapping over straight line with 
scaling factor ½ and 0.3 unit translation in positive z-direction; (b) 

Convergence of MSE curves for scaling in the network with ℍ-BP 

(MLP) (red), ℍ-RPROP (MLP) (green), ℍ-BP (RPMN) (black) and ℍ-

RPROP (RPMN) (blue) algorithms. 

 
(a)
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(b)  

(c) 

Fig.5. The generalization through ℍ-RPROP algorithm: 
Transformations with scaling factor ½ and 0.3 unit translation in 

positive z-direction; over (a) Sphere (b) Cylinder and (c) Torus. 

Table 2. Comparison of Training and Testing Performance for Scaling 

 ℍ-MLP 
ℍ-RPMN 

( = 0.95) 

Algorithm ℍ-BP ℍ-RPROP ℍ-BP ℍ-RPROP 

Network 2-4-2 2-4-2 2-4-2 2-4-2 

Parameters 88 88 88 88 

MSE training 

through straight 
line 

0.0007 0.0007 0.0007 0.0007 

Average 

Learning cycles 
25000 11000 8000 5000 

Average Training Time 

(in Minutes) 
170 110 95 70 

MSE 
testing 

through 

Sphere 0.0052 0.0033 0.0017 0.0015 

Cylinder 0.0034 0.0027 0.0014 0.0011 

Torus 0.0098 0.0052 0.0033 0.0026 

Table 3. Comparison of Training and Testing Performance for Scaling and Translation 

 ℍ-MLP 
ℍ-RPMN 

( = 0.95) 

Algorithm ℍ-BP ℍ-RPROP ℍ-BP ℍ-RPROP 

Network 2-4-2 2-4-2 2-4-2 2-4-2 

Parameters 88 88 88 88 

MSE training through 

straight line 
0.0007 0.0007 0.0007 0.0007 

Average Learning Cycles 28000 12000 8040 5050 

Average Training Time 

(in Minutes) 
180 130 110 85 

MSE 
testing 

through 

Sphere 0.0063 0.0035 0.0021 0.0012 

Cylinder 0.0054 0.0031 0.0016 0.0009 

Torus 0.0095 0.0064 0.0041 0.0027 
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(a) 

 
(b) 

Fig.6. (a) Training with input-output mapping of straight line with 

scaling factor ½, 0.3 unit translation in positive z-direction, and /2 

radian rotation around the unit vector ( i ); (b) Convergence of MSE 

curves for scaling in the network with ℍ-BP (MLP) (red), ℍ-RPROP 

(MLP) (green), ℍ-BP (RPMN) (black), and ℍ-RPROP (RPMN) (blue) 
algorithms. 

 
(a) 

 
(b) 

 
(c) 

Fig.7. The generalization through ℍ-RPROP algorithm: 
Transformations with scaling factor ½, 0.3 unit translation in positive z-

direction, and /2 radian rotation around the unit vector ( i ); over (a) 

Sphere (b) Cylinder and (c) Torus. 

 

                   
(a)                                                      (b) 

                 
(c)                                                      (d) 
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(e) 

Fig.8. Five 3D faces of same person with different orientation and poses. 

The generalization of trained networks has been 

performed over complicated 3D objects like sphere (4141 

data points), cylinder (2929 data points) and torus (10201 

data points). The ℍ-RPROP with ℍ-RPMN (Figs. 3, 5, 

and 7) shows excellent generalization for all three cases 

of transformations over rest of the algorithms. Tables 3, 4, 

and 5 clearly demonstrate the superiority of ℍ-RPROP 

with RPMN in all experiments. 

Table 4. Comparison of Training and Testing Performance for Scaling, Translation and Rotation 

 ℍ-MLP 
ℍ-RPMN 

( = 0.95) 

Algorithm ℍ-BP ℍ-RPROP ℍ-BP ℍ-RPROP 

Network 2-4-2 2-4-2 2-4-2 2-4-2 

Parameters 88 88 88 88 

MSE training through 

straight line 
0.0007 0.0007 0.0007 0.0007 

Average Learning Cycles 30000 15000 8500 6020 

Average Training Time 
(in Minutes) 

195 143 118 103 

MSE 

testing 
through 

Sphere 0.0062 0.0058 0.0025 0.0016 

Cylinder 0.0035 0.0028 0.0018 0.0013 

Torus 0.0088 0.0069 0.0047 0.0025 

 

C.  3D Face Recognition 

3D face identification is used as biometrics application 

through proposed methodology and compared it with 

related methods. The two human face datasets of 3D 

points cloud containing variable head position, 

orientation, and facial expressions, have been considered 

for training and testing. The first set consists of five faces 

of the same person and other set have five faces of 

different persons. The two experiments are conducted for 

face identification and in both experiments, one face has 

been used for training of the 1-2-1 network and the rest 

for testing. Thus, it is a basic and primitive experiment 

that learns the complex geometrical surface of one face 

and classify the rest of the faces through quaternionic-

valued neural networks. 

The first experiment is performed on first dataset 

containing 05 faces of the same person with different 

orientation and poses; the learning of NN in quaternionic 

domain is done with one face (Fig. 8(a)) and testing with 

all faces where each 3D face consists of 4654 points 

cloud data. Table 5 presents the training and testing 

analysis of faces through learning algorithms of each face. 

Table 5 also presents the comparative analysis of 

threshold MSEs with respect to average epochs for all 

algorithms. The threshold MSE reaches significantly 

faster during training in case of RPMN model (power 

coefficient  = 0.90) in both ℍ-RPROP and ℍ-BP. This 

table shows that the testing error of all five faces are less 

comparable to each other for all algorithms which 

demonstrate they are faces of same person irrespective of 

minor variations in face orientation and poses. These 

results infer the learning and generalization capability of 

neural network in quaternionic domain. 

Similarly, the second experiment is performed on 

another dataset containing 05 faces of different persons; 

the learning of NN in quaternionic domain is done with 

one face (Fig. 9(a)) and testing with all faces where each 

3D face consists of 6397 points cloud data. Table 6 

presents the training and testing analysis of faces through 

learning algorithms. Table 6 also presents the 

comparative analysis of threshold MSEs with respect to 

average epochs for all algorithms. The threshold MSE 

reaches significantly faster during training in case of 

RPMN model (power coefficient  = 0.90) in both ℍ-

RPROP and ℍ-BP. For all algorithms, the table shows 

the testing error of all five faces but MSE of other four 

faces are much higher in comparison to the face (Fig. 9(a)) 

which is used in training of the network. This 

demonstrates that the network classifies the faces of same 

or different person with different orientation and poses. 

These results also infer the learning and generalization 

capability of neural network. 
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Table 5. Comparison of Testing Error of Each Face of Same Person with Different Orientation and Poses 

 ℍ-MLP 
ℍ-RPMN 

( = 0.90) 

Algorithm ℍ-BP ℍ-RPROP ℍ-BP ℍ-RPROP 

Network 1-2-1 1-2-1 1-2-1 1-2-1 

Parameters 28 28 28 28 

MSE training through Fig. 8(a) 0.0001 0.0001 0.0001 0.0001 

Average Epochs 28000 16000 12000 8000 

Average Training Time (in Minutes) 210 176 160 132 

MSE testing 
through Figure 

8(a) 2.7214e-04 2.3941e-04 2.4842e-04 1.5192e-04 

8(b) 3.5431e-03 8.1822e-04 3.8822e-04 1.9213e-04 

8(c) 5.1153e-03 1.7821e-03 3.13943-04 1.8628e-04 

8(d) 4.5212e-04 3.2961e-04 4.8824e-04 1.6781e-04 

8(e) 3.9148e-04 2.9016e-04 3.6904e-04 1.9937e-04 

Table 6. Comparison of Testing Error of Each Face of Different Person 

 ℍ-MLP 
ℍ-RPMN 

( = 0.90) 

Algorithm ℍ-BP ℍ-RPROP ℍ-BP ℍ-RPROP 

Network 1-2-1 1-2-1 1-2-1 1-2-1 

Parameters 28 28 28 28 

MSE Training through Fig. 9(a) 0.0001 0.0001 0.0001 0.0001 

Average Epochs 29000 16500 13000 8500 

Average Training Time (in Minutes) 228 186 174 145 

MSE testing 

through Figure 

9(a) 1.8521e-04 1.6883e-04 1.7721e-04 1.5817e-04 

9(b) 8.7296e-01 7.9562e-01 8.2840e-01 7.8825e-01 

9(c) 3.5742e-00 3.4861e-00 3.3772e-00 3.1930e-00 

9(d) 6.2996e-02 6.0299e-02 5.5721e-02 5.8551e-02 

9(e) 3.9274e-01 3.6462e-01 3.7327e-01 3.5332e-01 

 

                  
(a)                                         (b) 

                    
(c)                                          (d) 

 
(e) 

Fig.9. Five 3D faces of different persons. 

VI.  CONCLUSIONS 

This paper presents to design an efficient neuron model 

with nonlinear aggregation function of quaternionic-

valued signals. The modified resilient propagation 

(RPROP) learning algorithm is also presented in 

quaternionic domain. The proposed methodology is 

systematically evaluated and compared with convention 

summing neuron in quaternion domain through a wide 

spectrum of 3D and 4D problems. The root-power mean 

of quaternionic signal is conceptually used as an 

aggregation function of the proposed neuron and its 

performance is far better than quaternionic-valued 

conventional neuron in terms of convergence rate. The 

main drawbacks of backpropagation (BP) algorithm are 

slow convergence and getting stuck to local minima. This 

algorithm needs significant improvement in the training 

cycle to adjust synaptic weights as fast as possible. 

Therefore, the modified resilient propagation algorithm in 

quaternionic domain (ℍ-RPROP) has been developed to 

overcome the problems of ℍ-BP algorithm. The quicker 

convergence with better performance is the significant 

advantage of this algorithm which always reveals to 

reduce the training iterations. Its computational power is 

also demonstrated through various benchmark problems 

(function approximation, linear transformation, and 3D 

face recognition). The power coefficient (  ) has an 
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important parameter in the quaternionic-valued root-

power mean neuron (ℍ-RPMN), which exhibits the better 

approximation of the functional capabilities. The 

development of an algorithm to select power coefficient 

of ℍ-RPMN will be interesting problem for future work. 

The computational capabilities of the proposed neuron in 

quaternionic domain can also be verified by the 

theoretical proof. 

REFERENCES 

[1] B. W. Mel. Information processing in dendritic trees. 

Neural Comput., vol. 6, no. 6, pp. 1031–1085, Nov. 1994. 

[2] C. Koch and I. Segev. The role of single neurons in 

information processing. Nat. Neurosci., 3(Suppl), pp. 

1171–1177, Nov. 2000. 

[3] A. Polsky, B. W. Mel, and J. Schiller. Computational 

subunits in thin dendrites of pyramidal cells. Nat. 

Neurosci., 7, pp. 621–627, May, 2004. 

[4] K. Sidiropoulou, E. K. Pissadaki, and P. Poirazi. Inside 

the brain of a neuron. EMBO Rep., vol. 7, no. 9, pp. 886–

892, Sep. 2006. 

[5] M. Lavzin, S. Rapoport, A. Polsky, L. Garion, and J. 

Schiller. Nonlinear dendritic processing determines 

angular tuning of barrel cortex neurons in vivo. Nature, 

vol. 490, no. 7420, pp. 397–401, Sep. 2012. 

[6] Y. Todo, H. Tamura, K. Yamashita, and Z. Tang. 

Unsupervised learnable neuron model with nonlinear 

interaction on dendrites. Neural Netw., vol. 60, pp. 96–

103, Dec. 2014. 

[7] T Jiang, D. Wang, J. Ji, Y. Todo, and S. Gao. Single 

dendritic neuron with nonlinear computation capacity: a 

case study on XOR problem. in Proc. Int. Conf. on 

Progress in Informatics and Computing (PIC), pp. 20–24, 

Dec. 2015. 

[8] W. Chen, J. Sun, S. Gao, J.-J. Cheng, J. Wang, and Y. 

Todo. Using a single dendritic neuron to forecast tourist 

arrivals to japan. IEICE Trans. Inf. & Syst., vol. E100–D, 

no. 1, pp. 190–202, Jan. 2017. 

[9] Y. Xiong, W. Wu, X. Kang, and C. Zhang. Training pi-

sigma network by online gradient algorithm with penalty 

for small weight update. Neural Comput., vol. 19, no. 12, 

3356–3368, Jan. 2008. 

[10] C.-K. Li. A sigma-pi-sigma neural network (SPSNN). 

Neural Process. Lett., vol. 17, no. 1, pp. 1–19, Mar. 2003. 

[11] N. Homma and M. M. Gupta. A general second-order 

neural unit. Bull. Coll. Med. Sci. Tohoku Univ., vol. 11, no. 

1, pp. 1–6, 2002. 

[12] B. K. Tripathi and P. K. Kalra. The novel aggregation 

function-based neuron models in complex domain. Soft 

Comput., vol. 14, no. 10, pp. 1069–1081, Aug. 2010. 

[13] C. L. Giles and T. Maxwell. Learning, invariance, and 

generalization in high-order neural networks. Appl. Opt., 

vol. 26, no. 23, pp. 4972–4978, 1987. 

[14] M. Zhang, S. Xu, and J. Fulcher. Neuron-adaptive higher 

order neural network models for automated financial data 

modeling. IEEE Trans. Neural Netw., vol. 13, no. 1, pp. 

188–204, Jan. 2002. 

[15] S. Xu. Adaptive higher order neural network models and 

their applications in business. IGI Global, pp. 314–329, 

2009. 

[16] E. B. Kosmatopoulos, M. M. Polycarpou, M. A. 

Christodoulou, and P. A. Ioannou. High-order neural 

network structures for identification of dynamical systems. 

IEEE Trans. Neural Netw., vol. 6, no. 2, pp. 422–431, 

Mar. 1995. 

[17] B. K. Tripathi and P. K. Kalra. On efficient learning 

machine with root-power mean neuron in complex 

domain. IEEE Trans. Neural netw., vol. 22, no. 5, pp. 

727–738, May 2011. 

[18] H. Dyckhoff and W. Pedrycz. Generalized means as 

model of compensative connectives. Fuzzy Sets Syst., vol. 

14, no. 2, pp. 143–154, Nov. 1984. 

[19] R. R. Yager. Generalized OWA aggregation operators. 

Fuzzy Optim. Decis. Ma., vol. 3, no. 1, pp. 93–107, Mar. 

2004. 

[20] A. V. Ooyen and B. Nienhuis. Improving the convergence 

of the backpropagation algorithm. Neural Netw., vol. 5, no. 

3, pp. 465–472, 1992. 

[21] X. Chen, Z. Tang, and S. Li. An modified error function 

for the complex-value backpropagation neural network. 

Neural Inf. Process., vol. 8, no. 1, pp. 1–8, Jul. 2005. 

[22] G. D. Magoulas, N. V. Michael, and S. A. George. 

Effective backpropagation training with variable stepsize. 

Neural Netw., vol. 10, no.1, pp. 69–82, 1997. 

[23] T. P. Vogl, J. K. Mangis, A. K. Rigler, W. T. Zink, and D. 

L. Alkon. Accelerating the convergence of the back-

propagation method. Biol. Cybern., vol. 59, no. 4, pp. 

257–263, 1988. 

[24] C. C. Yu and D. B. Liu. A backpropagation algorithm 

with adaptive learning rate and momentum coefficient. in 

Proc. IEEE Int. Jt. Conf. Neural Netw., vol. 2, 2002, pp. 

1218–1223. 

[25] E. Istook and T. Martinez. Improved backpropagation 

learning in neural networks with windowed momentum. 

Int. J. Neural Sys., vol. 12, no.  3 and 4, pp. 303–318, Jan. 

2002. 

[26] R. A. Jacobs. Increased rates of convergence through 

learning rate adaptation. Neural Netw., vol. 1, no. 4, pp. 

295–307, 1988. 

[27] A. A. Minai and R. D. Williams. Back-propagation 

heuristics: a study of the extended delta-bar-delta 

algorithm. in Proc. Int. Jt. Conf. Neural Netw., June 1990, 

pp. 595–600. 

[28] S. E. Fahlman. An empirical study of learning speed in 

backpropagation networks. Tech. Rep. CMU-CS-88-162, 

Sep. 1988. 

[29] M. Riedmiller and H. Braun. A direct adaptive method for 

faster backpropagation learning: The RPROP algorithm. 

in Proc. IEEE Int. Conf. Neural Netw., San Francisco, CA, 

Apr. 1993. 

[30] C. Igel and M. Husken. Empirical evaluation of the 

improved Rprop learning algorithms. Neurocomputing, 

vol. 50, pp. 105–123, Jan. 2003. 

[31] C. Igel, M. Toussaint, and W. Weishui. Rprop using the 

natural gradient. in Trends and Applications in 

Constructive Approximation, Ed. by D. Mache, J. 

Szabados, and M. De Bruin (Int. Series Numerical Math. 

(ISNM), Birkhauser, Basel), vol. 151, pp. 259–272, 2005. 

[32] A. Kantsila, M. Lehtokangas, and J. Saarinen. Complex 

RPROP-algorithm for neural network equalization of 

GSM data bursts. Neurocomputing, vol. 61, pp. 339–360, 

Oct. 2004. 

[33] C.-S. Chen, J.-M. Lin, and C.-T. Lee. Neural network for 

WGDOP approximation and mobile 

location. Mathematical Problems in Engineering, vol. 

2013, Article ID 369694, 11 pages, 2013. 

[34] L. Orcik, M. Voznak, J. Rozhon, F. Rezac, J. Slachta, H. 

T. Cruz, and J. C.-W. Lin. Prediction of speech quality 

based on resilient backpropagation artificial neural 

network. Wireless Personal Communications, 

doi:10.1007/s11277-016-3746-2, Oct. 2016. 

[35] A. N. Kolmogoroff. Sur la notion de la moyenne. Acad. 



26 On the Root-Power Mean Aggregation Based Neuron in Quaternionic Domain  

Copyright © 2018 MECS                                                             I.J. Intelligent Systems and Applications, 2018, 7, 11-26 

Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez., vol. 12, 

no. 6, pp. 388–391, 1930. 

[36] M. Nagumo. Über eine klasse der mittelwerte. Jpn. J. 

Math., vol. 7, pp. 71–79, 1930. 

[37] W. R. Hamilton. On a new species of imaginary quantities 

connected with a theory of quaternions. in Proc. Royal 

Irish Academy, vol. 2, no. 1843, pp. 424–434, Nov. 1844. 

[38] B. C. Ujang, C. C. Took, and D. P. Mandic. Split 

quaternion nonlinear adaptive filtering. Neural Netw., vol. 

23, no. 3, pp. 426–434, Apr. 2010. 

[39] T. Nitta. An extension of the back-propagation algorithm 

to complex numbers. Neural Netw., vol. 10, no. 8, pp. 

1391–1415, Nov. 1997. 

[40] B. K. Tripathi. High dimensional neurocomputing: growth, 

appraisal and applications. India: Springer, 2015. 

[41] W. S. McCulloch and W. Pitts. A logical calculus of the 

ideas immanent in nervous activity. Bull. Math. Biophys., 

vol. 4, no. 4, pp. 115–133, Dec. 1943. 

[42] A. Hirose. Complex-valued neural networks: theories and 

applications. vol. 5., World Scientific, 2003. 

[43] T. Nitta. A quaternary version of the back-propagation 

algorithm. in Proc. Int. Conf. Neural Netw., vol. 5, Nov. 

1995, pp. 2753–2756. 

[44] M. Schmitt. On the complexity of computing and learning 

with multiplicative neural networks. Neural Comput., vol. 

14, no. 2, pp. 241–301, Feb. 2002. 

[45] P. K. Kalra, B. Chandra, and M. Shiblee. New neuron 

model for blind source separation. in Proc. Int. Conf. 

Neural Inf. Process., Auckland, New Zealand, Nov. 2008, 

pp. 27–36. 

[46] G. M. Georgiou. Exact interpolation and learning in 

quadratic neuralnetworks. in Proc. Int. Joint Conf. Neural 

Netw., Vancouver, BC, Canada, Jul. 2006, pp. 230–234. 

[47] S. J. Sangwine and N. L. Bihan. Quaternion polar 

representation with a complex modulus and complex 

argument inspired by the Cayley-Dickson form. Advances 

in Applied Clifford Algebras, vol. 20, no. 1, pp. 111–120, 

Mar. 2010. 

[48] E. Cho. De moivre's formula for quaternions. Appl. Math. 

Lett.,vol. 11, no. 6, pp. 33–35, Nov. 1998. 

[49] D. B. Foggel. An information criterion for optimal neural 

network selection. IEEE Trans. Neural Netw., vol. 2, no. 5, 

pp. 490-497, Sep.1991. 

[50] R. Naresh, S. Pandey, and J. B. Shukla. Modeling the 

cumulative effect of ecological factors in the habitat on 

the spread of tuberculosis. Int. J. Biomath., vol. 2, no. 3, 

pp. 339-355, Sep. 2009. 

[51] R. Kaur and A. K. Narula. Artificial neural network based 

design of modified shaped patch antenna. IJISA, vol. 9, no. 

4, pp. 32-38, Apr. 2017. 

[52] S. Kumar and B. K. Tripathi. Machine learning with 

resilient propagation in quaternionic domain. IJIES, vol. 

10, no. 4, pp. 205-216, Aug. 2017. 

[53] T. Parcollet, M. Morchid, and P. M. Bousquet, R. Dufour, 

G. Linarès, and R. De Mori. Quaternion neural networks 

for spoken language understanding. In Proc. IEEE Spoken 

Language Technology Workshop (SLT), San Diego, CA, 

2016, pp. 362-368. 

[54] S. C. Nayak. Development and performance evaluation of 

adaptive hybrid higher order neural networks for 

exchange rate prediction. IJISA, vol. 9, no. 8, pp. 71-85, 

Aug. 2017. 

[55] F. Shang and A. Hirose. Quaternion neural-network-based 

PolSAR land classification in Poincare-Sphere-Parameter 

space. IEEE Trans. on Geoscience and Remote Sensing, 

vol. 52, no. 9, pp. 5693-5703, Sep. 2014. 

[56] D. K. Choubey and S. Paul. GA_MLP NN: A hybrid 

intelligent system for diabetes disease diagnosis. IJISA, 

vol. 8, no. 1, pp. 49-59, Jan. 2016. 

 

 

 

Authors’ Profiles 

 
Sushil Kumar is pursuing his PhD in 

Computational Intelligence from HBTU 

Kanpur, India and completed M. Tech in 

Modelling and Simulation from DIAT-

DRDO Pune, India. He is currently research 

scholar in Department of Computer Science 

and Engineering of HBTU Kanpur, India. He 

is associated with the Nature-inspired Computational 

Intelligence Research Group (NCIRG) at HBTU. His areas of 

research include high-dimensional neurocomputing, 

computational intelligence, machine learning and computer 

vision focused on biometrics and 3D Imaging. He has published 

several research papers in these areas. 

 

 

Bipin K. Tripathi completed his PhD in 

Computational Intelligence from IIT Kanpur, 

India and M. Tech in Computer Science and 

Engineering from IIT Delhi, India. Dr. 

Tripathi is currently serving as a Professor 

in the Department of Computer Science and 

Engineering of HBTU Kanpur, India. He is 

also leading the Nature-inspired Computational Intelligence 

Research Group (NCIRG) at HBTI. His areas of research 

include high-dimensional neurocomputing, computational 

neuroscience, intelligent system design, machine learning and 

computer vision focused on biometrics and 3D Imaging. He has 

published several research papers in these areas in many peer 

reviewed journals including IEEE Transaction, Elsevier, 

Springer and other international conferences. He has also 

contributed book chapters in different international publications 

and patent in his area. He is continuously serving as PC for 

many international conferences and as a reviewer of several 

international journals. 

 

 

 

How to cite this paper: Sushil Kumar, Bipin K. Tripathi, "On 

the Root-Power Mean Aggregation Based Neuron in 

Quaternionic Domain", International Journal of Intelligent 

Systems and Applications(IJISA), Vol.10, No.7, pp.11-26, 2018. 

DOI: 10.5815/ijisa.2018.07.02 


