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Abstract—The concept of entropy as a measure of 

information has been extensively applied in information 

theory and related fields. The complex nature of 

information has resulted in some proposed entropy 

definitions. In image processing, the entropy concept has 

been used in developing thresholding techniques based on 

maximum entropy principles for image segmentation, 

enhancement and object detection purposes. In this article, 

entropy definitions are analysed to establish their 

relationship and after that evaluate their performance in 

image thresholding. Static simulated data from Electrical 

Capacitance Tomography measurement system for 

annular and stratified flows in multiphase hydrocarbons 

production has been used. Performance evaluation results 

of thresholding algorithms using Renyi entropy has 

shown to improve the measurements, particularly for 

stratified flow regimes. The improvement is solely based 

on the entropy definition, and it has been observed the 

introduced controlling parameters do not affect its 

performance. Renyi entropic thresholding algorithm is 

relatively robust as it is independent of the controlling 

parameter q and the grey level resolution. Therefore, 

there is the potential possibility of using Renyi entropic 

thresholding to improve measurements in hydrocarbons 

flow measurement using Electrical Capacitance 

Tomography measurement system. 

 

Index Terms—Image segmentation, Thresholding, 

Entropy, Electric capacitance tomography, multiphase 

flows. 

 

I.  INTRODUCTION 

The Electrical Capacitance Tomography (ECT) is one 

of the imaging system developed for monitoring and 

measurement of industrial processes [1-6]. The system 

has been extensively evaluated for applications in 

hydrocarbons multi-phase flow measurement and 

monitoring [7-15]. In this application, one of the 

requirements for ECT system is to be able to generate at 

least 100 frames per second. As a result, the most 

commonly used reconstruction algorithm is the Linear 

Back Projection (LBP), a crude but simple and fast 

algorithm suitable for fast flowing industrial processes. 

However, the problem with the LBP algorithm is that it 

generates poor quality images, which are mostly used for 

qualitative analysis only. Improving the quality of the 

reconstructed images from these systems has attracted the 

attention of researchers. Some reconstructions algorithms 

have been proposed to address the problem [16-24]. 

Others have improved images from LBP by further 

preprocessing the images using different approaches such 

as filtering [25], segmentation[26] and curve fitting [27].  

One of the investigated image pre-processing 

segmentation techniques is thresholding [28-31], the 

simplest method of image segmentation, enhancement 

and object detection. Entropy-based thresholding 

techniques have been applied to images generated from 

ECT system for multiphase flow imaging applications in 

hydrocarbons industry [26, 32]. However, in their work, 

only two definitions of entropies as proposed by Shannon 

[33] and Pal [34] were used with Shannon entropy 

emerging as relatively better entropy for the application. 

The problem with the Shannon entropy definition is that 

it does not guarantee the best generalisation of results, 

and assume implicit control of trade-offs in the grey level 

distributions under considerations. A more generalised 

definition of entropy with the potential of revealing 

additional unique information and explicit control of the 

trade-offs between the grey level distributions was 

desirable to accommodate the existing complexity of the 

concept of information [35].  

Ref.[36], proposed a generalised entropy definition that 

is an extensive quantity for statistically independent 

systems. Ref. [37], extended the generalisation of Renyi 

entropy by adding an extra controlling parameter. 
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Independently, Ref.[38], proposed another generalised 

entropy definition that is a nonextensive quantity for 

statistical mechanics systems. In the case of images, 

Tsallis entropy assumes the presences of non-additive 

information in some class of images, not like Renyi. 

However, Tsallis definition has been shown by ref. [39] 

to be the un-normalized definition of a previous 

definition proposed by Havrda and Charvat [40] which 

was extending the generalisation of Renyi entropy 

definition. 

In this contribution, the evaluation work on entropic 

thresholding in ECT applications is extended to include 

other definitions of entropy; the Renyi entropy that 

generalises the Shannon entropy, the Kapur entropy, 

which further generalises the Renyi entropy and the 

Havrda-Charvat-Tsallis entropy for online measurement 

of the component fraction in the hydrocarbon industry. 

Results show that both Renyi and Havrda-Charvat-Tsallis 

entropies produce the same results. The extra controlling 

parameters introduced in Renyi and Kapur entropies do 

not influence the performance of the thresholding 

algorithms. On comparing with the Shannon entropy 

thresholding algorithms, Renyi entropy thresholding 

algorithms are flow regime dependent, improving 

performance for stratified flow regime only. Renyi 

entropy algorithms are relatively robust as they are grey 

level resolution independent, a feature that can reduce 

computation cost. 

 

II.  ECT SYSTEMS 

ECT is one of the non-invasive measurement systems 

for imaging industrial processes. Its goal is to generate 

instantaneous images of dielectric material component 

permittivity distributions inside a vessel using external 

capacitance measurement [41, 42]. The imaging 

technique is capable of distinguishing between different 

components or phases in a multiphase mixture based on 

the permittivity distribution in the mixture. 

The ECT system is mainly composed of three sub-

systems; the sensor, sensor electronics and a computer 

were image processing take place (see Fig. 1). The focus 

of this work is on the image processing sub-system, 

which has three basic functions; to control the sensor 

electronics, to process capacitance data and to provide the 

user interface to the system. Processing of capacitance 

data, in its basic form, involves capacitance data 

normalisation, image reconstruction from projection and 

filtering. Thresholding was added to data processing for 

this work. 

A.  Reconstruction Algorithm. 

The reconstruction algorithm has a role of converting 

measured capacitance data into an image showing the 

permittivity distribution in a vessel. The commonly 

implemented reconstruction algorithm is the Linear Back 

Projection (LBP), which owes its success because it is 

direct, fast and reasonably simple to implement. A brief 

theoretical consideration is as follows; 

Capacitance and permittivity distribution are related 

using the equation (1) 
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where 𝜀 is the permittivity distribution in the sensing field, 

𝑉  the potential difference between two electrodes 

forming the capacitance, 𝜙  the potential difference 

distribution, and Ω  the electrode's surface. In the 

linearized and discrete state, the LBP reconstructed image 

grey levels can be represented by the following equation 

[16]. 
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where S is the sensitivity map and C the normalised 

capacitance vectors.  

The reconstruction algorithm has a role of converting 

measured capacitance data into an image showing the 

permittivity distribution in a vessel. The commonly 

implemented reconstruction algorithm is the Linear Back 

Projection (LBP), which owes its success because it is 

direct, fast and reasonably simple to implement. A brief 

theoretical consideration is as follows; 

 

 

Fig.1. Basic building blocks for an ECT system
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B.  Filtering. 

Images generated by LBP reconstruction algorithm, 

however, are severely blurred. To avoid excessive 

smoothing and suppress aliasing, filtering is employed in 

the data after reconstruction [25]. 
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where  

 

𝛽 = (1 − 𝛾)𝛼                                (4) 
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Average values of the reconstructed permittivity 

 

III.  ENTROPIC THRESHOLDING. 

The goal of thresholding is to select a set of optimal 

thresholding grey levels that can be used to discriminate 

objects from the background pixels in an image. The 

selection techniques can be classified into two groups 

such as bi-level and multi-level. In bi-level thresholding, 

only one thresholding value is used in thresholding 

process. The challenge is to develop cost functions that 

can be derived directly from data without further 

assumptions to capture as much information as possible 

within the data probability density function, upon which 

the selection will be based. 

Shannon, [43] proposed such cost functions based on 

an information-theoretic concept of entropy. The 

principle of entropy is to use uncertainty as a measure to 

describe the information contained in the image. The 

maximum information is achieved when no apriori 

knowledge is available, in which case, it results in 

maximum uncertainty. 

Entropy-based thresholding technique considers an 

image grey levels histograms as the probability 

distribution, analyse the profile characteristics of the 

histograms, and then select optimal thresholding grey 

level values that yield Maximum Entropy (ME). 

Thresholding techniques using ME as optimal criteria for 

image thresholding was first introduced by Pun [44], 

whose theoretical work was corrected and improved by 

Kapur et al. [45]. Pal and Pal [34] addressed the 

inadequacy of Shannon’s entropy when it comes to image 

data by proposing an alternative entropy definition. 

Generated interest in the work of Kapur et al. [45] has 

resulted in some thresholding techniques addressing 

different issues and limitations such as spatial 

information, entropy correlation, cross entropy and fuzzy 

logic applications [46]. A comprehensive review can be 

found somewhere else in the literature [47-49].  

The concept of information is so rich that perhaps, 

there is no single definition that will be able to quantify. 

Further, estimating entropy from data is in not a trivial 

matter. Therefore, the information-theoretic approach 

based on Shannon's entropy concept has received 

considerable interest resulting in other alternative 

measures of information or entropy. One of the problems 

with Shannon's entropy is that it does not guarantee the 

best generalisation of results, and assume implicit control 

of trade-offs in the distributions under considerations. 

Renyi [36] introduced parametric families of entropies as 

a mathematical generalisation of Shannon’s entropy. 

Tsallis [38] also did the same albeit from a statistical 

physics point of view. Both introduced a parameter q in 

the definition of entropy which offers explicit control of 

some tradeoffs involved when ME thresholding and help 

to make the definitions of entropy less sensitive to the 

shape of the probability distribution. In both cases, it has 

been shown that when the parameter q → 1, they reduce 

to Shannon’s entropy. 

A.  Shannon’s Entropy Based Thresholding. 

According to Shannon [43], the entropy of an image is 

defined as 
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Where 𝑝𝑖  is the probability of occurrence of the 𝑖𝑡ℎ grey 

level and 𝑖 ∈ [1, 𝑛]n the total number of grey-levels. In 

Kapur et al. [45], also synonymously referred to as Kapur, 

implementation of the ME thresholding based on 

Shannon’s entropy, the object and background are 

considered as separate signal sources and the thresholding 

grey level that maximises their additive combined 

entropy is the most optimal one. 
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where 𝑃𝑇 = ∑ 𝑝𝑖
𝑇
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cumulative probability 

 

𝑇𝑜𝑝𝑡 = arg max [𝐻𝑜
𝑆(𝑇) + 𝐻𝑏

𝑆(𝑇)]              (11) 
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B.  Renyi’s Entropy Based Thresholding. 

According to Renyi [36], a more generalised definition 

of entropy of an image is defined as 
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where 𝑞 ≠ 1 and 𝑞 > 0. The definition is an extensive 

quantity for statistically independent sub-systems and has 

a concave distribution only for 0 < 𝑞 > 1. It has been 

shown that Renyi entropy reduces to Shannon entropy as 

a limiting case when 𝑞 → 1.  

Kapur [37] extended the generalisation of Renyi 

entropy by adding another parameter 𝛽. 
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where 𝑞 ≠ 1and 𝑞 > 0 ; 𝛽 > 0  and 𝑞 + 𝛽 − 1 > 0 . The 

definition reduces to Renyi entropy when 𝛽 = 1. Further, 

it reduces to Shannon entropy when 𝛽 = 1  and as a 

limiting case when 𝑞 → 1. In this case, the two entropy 

definitions yield the same results, hence treated as the 

same. 

The first use of Renyi entropy in image thresholding 

was introduced by Sahoo et al. [50]. Their 

implementation follows a similar approach of maximum 

entropy as proposed by Kapur (see equation 11). 
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𝑇𝑜𝑝𝑡 = arg max [𝐻𝑜
𝑅(𝑇) + 𝐻𝑏

𝑅(𝑇)]              (17) 

 

 

As it turns out, this approach makes the entropy 

correlation approach suggested by Yen et al. [51] its 

special case when 𝑞 = 2. 

C.  Tsallis’s Entropy Based Thresholding. 

Independently, Tsallis (1988) proposed a more 

generalised Shannon’s entropy of an image defined as 
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where 𝑞 ≠ 1 and 𝑞 ≥ 0. The definition is a non-extensive 

quantity of the systems in statistical mechanics. It is used 

due to the presence of non-additive information in some 

classes of images, unlike Renyi entropy.Tsallis entropy 

reduces to Shannon entropy as a limiting case when 

𝑞 → 1. 

It turns out that this Tsallis entropy is the un-

normalized case of a previously reported definition of 

Havrda and Charvat entropy [40] which was normalised 

to 1. Otherwise, they are essentially the same expressions 

[39].  
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In Albuquerque et al. [52], the first implementation of 

the ME thresholding based on Tsallis entropy, follow a 

similar approach as Kapur but replaces the pure addition 

expression (equation 11) by pseudo-additive expression. 
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𝑇𝑜𝑝𝑡 = arg max [
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The use of Maximum Entropy principles in these 

algorithms yields the same results for both Renyi and 

Tsallis entropic thresholding. It can be shown that the two 

entropy definitions are monotonic functions of each other 

[53]. 

 

𝐻𝑛
𝑅 = 𝑙𝑛[1 + (1 − 𝑞)𝐻𝑛

𝑇](1 − 𝑞)−1            (24) 

 

IV.  METHODS 

The main objective of this work was to analyse and 

evaluate the performance of the suggested thresholding 

algorithms based on the new definitions of entropies in 

measuring component volume fraction in a two-

components multiphase mixture of oil and gas. After that, 

compare the results with the previously evaluated 

Shannon based thresholding algorithms. 

Computer simulated data were used in the evaluation 

process to establish static properties of the algorithms 

under considerations over the full component volume 

fraction range. Static image and capacitances data were 

generated from an 8 - electrodes ECT sensor unit 
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simulator [54]. The simulator is capable of generating 

multi-component permittivity distributions of annular and 

stratified flows in a circular pipe, herein referred to as 

true or reference distribution. After that related simulated 

capacitance measurements were obtained from the 

capacitance forward problem solver implemented using 

2D Finite Element Methods (FEM). These simulated 

capacitance measurements were used by the capacitance 

inverse problem solver, also referred to as reconstruction 

algorithm to try to generate the original true distribution.  

In this work, the generated images from an ECT 

system is a result of a combination of signal processing 

techniques such as image reconstruction, filtering, 

quantization and thresholding. The LBP is the 

implemented reconstruction algorithms. Filtering 

technique as proposed by Xie et al. also referred as Xie 

has been implemented. Three quantizing resolutions, 16, 

256 and 512 have been used for evaluation. Two 

thresholding techniques based on maximum entropy and 

maximum correlation thresholding have been used. 

Entropy definitions by Shannon, Renyi, and Tsallis have 

been implemented in the ME thresholding, with 

maximum correlation as a special case of Renyi 

thresholding implementation. As a result, some 

algorithms implemented for  evaluation, are summarised 

in table 1. 

Table 1. Algorithms evaluated and associated abbreviations. Q, X and G 

stands for quantization, Xie filtering and gas as an object to be searched, 

respectively. 

Algorithms Description 

LBP_XQ Conventional Quantized filtered LBP algorithm. 

SHA_XG Thresholding algorithm with Shannon entropy 

REN_XG Thresholding algorithm with Renyi entropy 

TSA_XG Thresholding algorithm with Tsallis entropy 

YEN_XG Maximum correlation thresholding algorithm 

 

V.  PERFORMANCE EVALUATION CRITERIA. 

The performance evaluation criteria for the proposed 

algorithms can be summarised based on accuracy, 

robustness under the various combination and operating 

environment and usability to the hydrocarbon industry 

applications. 

A.  Accuracy. 

Accuracy refers to the capability of the algorithm to 

produce reconstructed images close to the original images, 

both spatially and volumetrically. The similarity metrics 

used include qualitative visual inspection and quantitative 

Mean Square Error (MSE) and Gas Volume Fraction 

Error (GVFE).  
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B.  Robustness. 

The performance of the thresholding algorithms is 

influenced by; the reconstruction algorithm used, filters 

applied, the quantizer resolution, the components 

distribution in the mixture, the object to be searched and 

flow regime nature. Therefore, robustness refers to the 

capability of the algorithm to consistently perform over 

full component volume fraction range and under various 

combination and conditions. A good algorithm should be 

independent of the factors mentioned above. 

C.  Usability. 

Usability refers to practical applicability of the 

algorithm in measuring component volume fraction of 

two components multiphase flow in hydrocarbons 

industry (see Table 2). 

Table 2. Accuracy requirements for a typical multiphase meter in 

hydrocarbons production over the full component volume  

fraction scale [55] 

OIL INDUSTRY 

APPLICATION 
DESIRED VOLUMETRIC 

ACCURACY 

Reservoir management ~  10% for all flow phases 

Fiscal -Custody transfer  2-5% for all flow phases 

Fiscal -Taxation/royalty 

 0.25% for oil 

 2% for water 

 1% for gas 

 

VI.  RESULTS AND DISCUSSION 

Qualitative evaluation through visual inspection shows 

clear differences between LBP reconstructed and 

thresholded images (Fig.2). Further, there is a notable 

difference between images generated by Shannon and the 

rest of the entropic thresholding algorithms. Shannon 

algorithm tends to overestimate the reference images 

whereas the rest of the entropic algorithm tends to 

underestimate the reference image, particularly for 

annular flows. There are no visible differences among 

Renyi, Tsallis and maximum correlation entropic 

thresholding unless the quantitative evaluation is 

considered. 

Quantitative evaluation using MSE show a relatively 

poor average performance of the Shannon algorithm to 

the rest of the entropic thresholding algorithms (Table 3), 

particularly for annular flows tested. Also, it can be seen, 

that Renyi, Tsallis and maximum correlation entropic 

thresholding generates the same MSE results suggesting 

that they are the same. Maximum cross correlation is a 

special case of Renyi entropic thresholding (q = 2). Under 

maximum entropy principle implemented in the 

thresholding process, Renyi and Tsallis will generate the 

same results always [53]. As a result, of this, the 

discussion that follows on algorithms performance 

evaluation will be focusing on Shannon and Renyi 

entropic thresholding algorithms only. 
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Quantitative evaluation has been extended to cover the 

whole component volume fraction range to see a broader 

picture of the performance of the thresholding algorithms 

for both annular and stratified flows. Plots of MSE and 

reference component fraction range have been used for 

these purposes. 

Renyi introduced the parameter q in his entropy 

definition to generalise it. The performance of maximum 

entropy thresholding technique using Renyi’s entropy 

produces the same results irrespective of the value of q 

for both annular and stratified flows (Fig. 3 & 4). This 

indifference to q value suggests that the definition is 

solely responsible for the difference in performance when 

compared to their counterpart algorithms using 

Shannon’s entropy.  

 
REFERENCE 

IMAGE 
LBP 

ENTROPIC THRESHOLDING 

SHANON RENYI TSALLIS YEN 

1      

2      

3      

Fig.2. Qualitative visual inspection performance evaluation of algorithms for selected samples of annular and stratified flow 

Table 3. Quantitative spatial accuracy performance evaluation results for algorithms for selected samples in  

Fig.2 using Minimum Square Error (MSE) criteria. 

REF. LBP 
ENTROPIC THRESHOLDING  

SHANON RENYI TSALLI YEN 

1 0.1882 0.2733 0.4289 0.4289 0.4289 

2 0.1517 0.1167 0.0822 0.0822 0.0822 

3 0.2379 0.1244 0.1078 0.1078 0.1078 

 

 

Fig.3. The performance of entropic thresholding algorithms based on Renyi entropy (REN_XG) relative to Shannon entropy 

 (KAP_XG) definitions for annular flows 

 

Fig.4. The performance of entropic thresholding algorithms based on Renyi entropy (REN_XG) relative to Shannon entropy  

(KAP_XG) definitions for stratified flows. 

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0 5

1
1

2
2

2
8

3
5

4
5

5
0

6
3

6
8

7
6

7
8

8
5

9
1

1
0

0

M
SE

 

Reference component  volume fraction (%) 

Annular Flow 
REN_XG
KAP_XG
CUSTODY
RESEVOIR

0.000

0.050

0.100

0.150

0.200

0 2 6

1
2

1
8

2
5

3
1

4
5

6
3

7
0

7
7

8
4

9
1

9
6

1
0

0

M
SE

 

Reference component volume fraction (%) 

Stratified Flow REN_XG

KAP_XG

CUSTODY

RESEVOIR



 Comparative Performance Evaluation of Entropic Thresholding Algorithms Based on Shannon, Renyi and 47 

Tsallis Entropy Definitions for Electrical Capacitance Tomography Measurement Systems 

Copyright © 2018 MECS                                                             I.J. Intelligent Systems and Applications, 2018, 4, 41-49 

The algorithm is independent of the grey level 

resolution used. In this case, 16, 256 and 512 grey levels 

resolution were used for evaluation. No changes on the 

performance were observed for all the tested resolutions. 

This feature is attractive when it comes to speeding up 

the process as lower resolution can be used without any 

penalties. This resolution independence is another 

departure from what has been observed in the previous 

work using Shannon entropy definition. 

Renyi entropic thresholding algorithms are dependent 

on the object being searched; in this case, the object is 

either oil or gas. Reasonable accurate results were only 

obtained when the gas was the object to be searched. 

When the object to be searched is oil the algorithm fails 

to distinguish the two-component distribution in the 

mixture. This failure is a departure from what has been 

observed using Shannon entropic thresholding algorithm. 

The algorithm is flow regime dependent with the 

stratified flow being the best multiphase flow application 

to be used relative to annular flow. It can be seen from 

Fig.2 that REN_XG measurements qualify for not only 

reservoir management but also fiscal-custody transfer 

purposes. Whereas in Fig 1, annular flow measurement 

does not qualify even for reservoir management purposes. 

However, the overall performance results are better for 

Renyi entropy than for Shannon entropy. 

Renyi entropic thresholding seems to favour filtered 

data. Reasonably accurate measurements were obtained 

when filtered LBP algorithm is used. The results suggest 

that for better results this algorithm prefers filtered data.   

The Renyi entropic thresholding algorithm like 

Shannon algorithm fails to perform over full component 

fraction range consistently. The problem is more visible 

or pronounced for annular flow regimes tested.  

 

VII.  CONCLUSION 

In this paper, comparative analysis and performance 

evaluation of the entropic thresholding algorithms based 

on maximum entropy principle has been presented. The 

comparative discussion presented was between the 

previously evaluated Shannon entropy definition and the 

new Renyi entropy definition. Performance evaluation of 

maximum entropy thresholding algorithms using Renyi 

entropy has shown to improve the measurements, 

particularly for stratified flow regimes. The improvement 

is solely based on the entropy definition, and it has been 

observed the introduced controlling parameters do not 

affect its performance. Renyi entropic thresholding 

algorithm is relatively robust as it is independent of the 

controlling parameter q and the grey level resolution. 

Therefore, there is the potential possibility of using Renyi 

entropic thresholding to improve measurements in 

hydrocarbons flow measurement using ECT measurement 

system.  
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