
I.J. Intelligent Systems and Applications, 2018, 4, 29-40
Published Online April 2018 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijisa.2018.04.04

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 4, 29-40

Fuzzy-based User Behavior Characterization to

Detect HTTP-GET Flood Attacks

Karanpreet Singh and Paramvir Singh
Dr B R Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India

E-mail: karanpreet.13.cse@nitj.ac.in, singhpv@nitj.ac.in

Krishan Kumar
University Institute of Engineering & Technology, Panjab University, Chandigarh, India

E-mail: k.salujauiet@gmail.com

Received: 31 March 2017; Accepted: 14 July 2017; Published: 08 April 2018

Abstract—Internet was designed to serve the basic

requirement of data transfer between systems. The

security perspectives were therefore overlooked due to

which the Internet remains vulnerable to a variety of

attacks. Among all the possible attacks, Distributed

Denial of Service (DDoS) attack is one of the eminent

threats that target the availability of the online services to

the intended clients. Now-a-days, attackers target

application layer of the network stack to orchestrate

attacks having a high degree of sophistication. GET flood

attacks have been very much prevalent in recent years

primarily due to advancement of bots allowing

impersonating legitimate client behavior. Differentiating

between a human client and a bot is therefore necessary

to mitigate an attack. This paper introduces a mitigation

framework based on Fuzzy Control System that takes as

input two novel detection parameters. These detection

parameters make use of clients' behavioral characteristic

to measure their respective legitimacy. We design an

experimental setup that incorporates two widely used

benchmark web logs (Clarknet and WorldCup) to build

legitimate and attack datasets. Further, we use these

datasets to assess the performance of the proposed

through well-known evaluation metrics. The results

obtained during this work point towards the efficiency of

our proposed system to mitigate a wide range of GET

flood attack types.

Index Terms—GET flooding, application layer, anomaly

detection, denial of service.

I. INTRODUCTION

Defending against Denial of Service (DoS) attacks

have always been an arduous challenge for security firms

due to the stateless nature of the Internet [1]. DoS attack

targets the availability of the online services by flooding

a large number of unsolicited packets to overload victim's

network and transport layer resources. DoS attacks not

only targeted the working of traditional network stack but

also have threatened modern day cloud networks [2]. As

more and more solutions are being offered to confront

denial of service attacks, these attacks are continuously

adopting sophisticated methodologies to circumvent such

solutions. The intention of an attacker in DoS attack is to

forbid service access to legitimate clients in comparison

to some traditional network attacks, which primarily aim

at stealing and misusing the confidential data. During an

attack, the victims’ services become unavailable until the

attack terminates or is effectively mitigated. The attack

might last for a few seconds or even days which lead to

huge financial losses to the service providers. The

motives behind such types of attacks are generally

associated with financial gains, business competitions,

political gains, etc.

To exacerbate the situation, attackers came up with

Distributed Denial of Service (DDoS), which refers to

initiating an attack using a large number of bots

(compromised systems) simultaneously in contrast to a

single attack source in basic DoS attack, as illustrated in

Fig. 1. The attacker creates a network of compromised

systems over the Internet known as botnet [3]. This

network is controlled by the attacker hidden behind

several layers of bots known as stepping stones with the

intention to challenge its identification. The attacker

initiates the attack process by disseminating commands to

the compromised systems. These systems then further

launch the actual attack flow towards the victim in

accordance with the received commands. The damage

caused by such an attack is substantially greater than that

of a simple DoS attack as the amassing of traffic from

multiple sources guarantees a high amplitude attack.

(a) (b)

Fig.1. (a) DoS attack, (b) Distributed DoS attack.

30 Fuzzy-based User Behavior Characterization to Detect HTTP-GET Flood Attacks

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 4, 29-40

Typically, a DDoS attack falls into one of the following

categories: volume-based attacks, protocol attacks or

application layer attacks. Volume based attacks,

commonly known as flooding attacks direct a large

amount of unsolicited traffic towards the victim resulting

in exhausting either the network or the processing

capacity of the victim. These include attacks such as

ICMP flood, UDP flood, etc. Attacks that exploit the

vulnerabilities of protocols functioning at different layers

of TCP/IP stack are classified as protocol attacks. These

include attacks such as ping of death, teardrop, etc.

Finally, application layer attacks misuse configurations

and functionalities operating behind various applications

running on the Internet. Some common application layer

attacks are Slowloris, HTTP GET flood, etc. DDoS

attacks now-a-days are predominantly launched by

organized groups of hackers. Furthermore, there had been

cases where a decentralized group of hacktivists launched

a series of DDoS attacks to protest against any action

taken by the government or companies. Few major

attacks of the year 2016 is shown in Fig. 2 [4].

A. Motivation

Present-day attacks, instead of exploiting network and

transport layer vulnerabilities, have risen to the higher

layer of TCP/IP i.e., application-layer. In recent years,

attackers are now continuously exploring application

layer DDoS attacks as their detection requires security

firms to put on significant research efforts. HTTP-GET

flood DDoS attack is one of the most common form of

application layer abuses, where the bots attempt to mimic

browsing behavior of a legitimate client but with

amplified request rates [5]. The attacks launched on

network or transport layer are different from that of

application-layer attacks in the following ways:

• Network layer attack detection techniques are not

able to extract enough information from packets so

as to report an application layer DDoS attack.

• A successful TCP connection is required to launch

an application layer DDoS attack, thus, evading

the transport level detection mechanisms.

• Attackers use legitimate IP address, therefore the

anomaly detection schemes based on spoofed IP

addresses will also not work [6].

• Mimicking the client access behavior defies the

logic behind many of the existing attack detection

schemes.

A large part of online services provided by the

organizations are dependent on the working of HTTP for

interacting with their potential clients. Consequently,

“application layer DDoS attacks” generally refers to

HTTP-GET flood attacks in the present literature [7]-[10].

It may be noted that these two terms are used

interchangeably in this text. Our work aims at efficiently

detecting the bots that are responsible behind HTTP-GET

flood attacks.

B. Contribution

Initially, we carefully design a two detection

parameters that take into consideration behavioral aspects

of clients to quantify their browsing history. These

parameters depict the legitimacy of a client based on its

behavior when browsing a website. We propose a

complete mitigation framework that uses these

parameters to detect GET flood attacks. The detection

takes place at the client level i.e., every client is

individually monitored for possible anomalies. Due to the

absence of application layer DDoS attack traffic, we

make use of open source software tools and benchmark

datasets to fabricate the attack traffic on a specially

designed experimental setup.

The paper is structured as follows. Section II discusses

the related works on the detection of application layer

DDoS attacks. Section III introduces the proposed

detection parameters and mitigation framework. Section

IV discusses various phases of the experimental setup and

provides a brief summary on preliminary analysis of

benchmark datasets. Section V follows with a thorough

analysis and discussion of the results obtained from our

experiments. Finally, Section VI concludes this work

along with some comments on the possible future work.

Fig.2. Major DDoS attack incidents in the year 2016.

II. RELATED WORK

Based on our previous study [11], the literature on

detection of application layer DDoS attacks can be

classified according to their respective underlying

detection methodologies i.e, queue management,

popularity, challenge, score, etc. This section outlines the

work done in the area of application-layer DDoS attack

detection and its mitigation in chronological order.

 Fuzzy-based User Behavior Characterization to Detect HTTP-GET Flood Attacks 31

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 4, 29-40

Jung et al. [12] offered enhancement to Content

Distribution Networks (CDNs) in order to distinguish a

DDoS attack from a flash crowd. The authors identified

two key properties associated with a flash event – there is

an increase in number of clients in flash event as

compared to DDoS attack where the traffic is generated

from a small set of IP clusters; largely the old set of IP

clusters are responsible for traffic generation in case of

flash event whereas new IP clusters are formed during a

DDoS attack. Hopper et al. [13] and Kandula et al. [14]

proposed graphical puzzle based bots detection schemes

in 2003 and 2005 respectively. The clients are asked to

solve CAPTCHA before allowing any resource access.

Yen et al. [15] proposed statistical based approach in

which the server maintains the client’s recent request

history. The proposed system is divided into three phases.

Initially, a client is considered as suspicious based on the

frequency of repetitions in its request pattern. Then the

requested objects are identified based on which the

attackers are distinguished from legitimate clients.

Ranjan et al. [16] proposed a counter mechanism based

on deviation of a client session characteristics from the

legitimate behavior. A suspicion value is assigned to each

client session proportional to the deviation in terms of

session arrival, request arrival and workload

characteristics. The scheduler then decides when are

where to serve sessions based on their suspicion

measures.

Yu et al. [17] proposed a mechanism that integrates

detection and encouragement scheme into a Defense and

Offense Wall (DOW) model. The detection system is

based on K-means clustering algorithm to detect

anomalous connections that are dropped by the server

after characterization. The encouragement system

requests the clients to increase their session rate which

increases the probability of their requests being served by

the web server. Srivatsa et al. [8] integrated admission

and congestion control mechanisms to defend against

application-layer DDoS attack. They used JavaScript on

the client’s browser to embed a 16 bit value known as

authenticator in the port number field of TCP header.

Based on this value, the attack packets are filtered at the

network layer of the victim.

Mirkovic et al. [18] proposed a method to characterize

clients’ legitimate behavior based on request dynamics

like request inter-arrival time, etc. and content access

priority like request sequence, etc. The deviation of the

current client session from predefined legitimate behavior

characterizes it as an attack. Wen et al. [19] proposed an

architectural extension to distinguish surge from

recursive and repeated application-layer DDoS attacks

based on entropy of incoming source and target webpages.

The system initially detects for an anomaly against

normal behavior modeled using static autoregressive

model and Kalman filter.

Das et al. [20] identified different application-layer

DDoS attacks using three different detection modules.

The value of HTTP request arrival rate calculated in a

HTTP window signals one of the given scenarios-

random flooding, shrew flooding and flash crowd. In

2011, Ankali et al. [21] proposed two attack detection

mechanisms for HTTP and FTP based on HsMM. They

extracted various parameters like request rate, page

viewing time and requested sequence to model legitimate

behaviour. Ibrahim et al. [22] designed a threshold based

kernel level filter to detect URL based HTTP flood

attacks. The filtering takes place based on the number of

incoming requests from a particular client. Limkar et al.

[23] detected application layer DDoS attacks using

Hidden Markov Model (HMM). HMM is trained using

the legitimate sequence of requests that a human client

usually follows during browsing a website.

Sivabalan et al. [24] proposed a detection system in

which the server load level is divided into three parts

using two threshold values- low load threshold and high

load threshold. CAPTCHAs (Completely Automated

Public Turing test to tell Computers and Humans Apart)

and AYAHs (Are You A Human) are occasionally

generated during a session to create client signatures

before and during a session. Wang et al. [25] extended

their previous work [26] to support the modeling of

legitimate behavior even from noisy datasets i.e., web

traces mixed with traffic from web bots. The authors used

density based clustering to identify web crawler traces in

the training dataset. Giralte et al. [27] represented the

legitimate client behavior in terms of layer 4 and layer 7

parameters like number of GET requests, GETs mean,

mean of flows per client, standard deviation of flows per

client, etc. A three stage model was designed to detect a

variety of application-layer DDoS attacks wherein each

stage was able to capture some of the attacks. Xie et al.

[28] proposed a scheme that primarily detects web proxy

based DDoS attacks using Hidden semi Markov Model.

The authors captured temporal and spatial localities to

model web proxies’ access behavior using the server logs.

The popularity of a large website varies with time as

the contents are regularly updated and deleted. In 2014,

Wang et al. [29] proposed a dynamic popularity based

DDoS detection scheme based on their previous work

[26]. Large deviation principle characterizes the

difference in expected and actual popularity of webpages.

Zhou et al. [7] extended their previous work [19] to

sustain under heavy backbone traffic conditions. To

implement live detection, they used a real time frequency

vector based on target’s resource requests. Attack

detection module is only triggered in case of an anomaly

detected by the front end sensor which reduced the

probability of frequent computations.

Liao et al. [30] proposed machine learning-based

detection technique that used a support vector machine to

identify presence of any attacks. The rhythm-matching

algorithm is applied to identify similar patterns. Xiao et

al. [31] used K-nearest neighbors algorithm to identify

flows that may have occurred from same software or bots.

Kshirsagar et al. [32] provided ontology of HTTP

requested that could provide a means to detect GET flood

attacks. However, sophisticated bots with the capability

of producing request similar to a legitimate client can

easily evade such ontology based detection systems.

Kobayashi et al. [33] introduced a concept of fooling

32 Fuzzy-based User Behavior Characterization to Detect HTTP-GET Flood Attacks

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 4, 29-40

monitored attacks by installing normal and decoy servers

to respond to legitimate client and bot requests

respectively. This mechanism deceives an attacker by

providing false information about the server’s status.

Miu et al. [34] employed browsing behavior of users to

capture anomalous sources. The authors used the access

sequence of web pages by the users. The difference in

actual and expected transition probability among web

pages of every user is quantified. For this, the log

likelihood is computer for every session as a metric for

differentiating attack bots and legitimate users. The

advanced and sophisticated bots can evade their detection

scheme.

Web services are constantly under the threat of various

forms of application-layer DDoS attacks which can

anytime disrupt its normal functioning. An effective real-

time defense against these rising threats is need of the

hour that can ensure its continuous availability. It is

important to detect and respond to an on-going attack in

least possible time and keeping computational

complexities under tolerable limits.

Fig.3. Characteristics of humans and bots.

We represent some if the characteristics possessed by

humans and bots in Fig. 3. The primary objective of the

detection system is to identify clients that do not adhere

to normal browsing characteristics. Therefore,

researchers target exploring unique behavioral features to

allow discrimination among human and bot clients.

III. PROPOSED DETECTION FRAMEWORK

Our proposed work aims at efficiently detecting and

mitigating GET flood DDoS attacks against HTTP with

minimum collateral damage. The proposed framework is

represented in Fig. 4. Our work detects bots behind the

attack using two parameters, Request Index (IReq) and

Repetition Index (IRep), which operates on legitimate

browsing semantics to differentiate among legitimate and

bot clients. The values of these two detection parameters

IReq and IRep are used as input to our fuzzy control

system (FCS). Output from FCS is given to the request

scheduler of a web server. The scheduler uses the results

from FCS to decide whether to filter or process request of

a particular client. The scheduler also has the capability

of permanently blocking a client so as to reduce the load

incurred while receiving its requests.

A. Detection Parameters

After a comprehensive analysis of browsing behavior,

we propose two detection parameters to differentiate

among bots and legitimate clients. For this work, we

consider using two time windows small and large, with

30 seconds and 120 seconds durations respectively, for

computation of behavior parameters. A single long

window comprises four short windows. The detection

parameters and their definitions are discussed below.

1) Request Index (IReq)

Typical client browsing semantics can be divided into

two phases. In phase I, known as uptime, a client is

requesting for web pages from the server. There are no

requests created by the client during the second phase,

also known as downtime or viewing time. In second phase,

 Fuzzy-based User Behavior Characterization to Detect HTTP-GET Flood Attacks 33

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 4, 29-40

a client spends time viewing all the requested web pages.

The duration of these two phases varies differently for

different clients. In first case, a client will send a large

number of requests in one window following which it

will send less or no requests in the next. Contrariwise, in

other case, if a client sends fewer requests in one window,

then it has a high probability of sending large amount of

requests in the next window.

Request frequency (η) of each client in a short time

window is calculated to obtain the cumulative percentage

frequency distribution. Using the three sigma principle

[35], this distribution is divided into four classes namely

low, normal, high, and anomalous. These classes form a

set known as Request_Set (Ɍ). The request frequency of

every client during a short time window is then mapped

to the corresponding class from this set. Consider an

example where a client makes 5, 15, 25, and 35 requests

in four short consecutive windows. Additionally, assume

that the class limits are computed as follows:

If (η > 0 && η <= 10) Then Low,

If (η > 10 && η <= 20) Then Normal,

If (η > 20 && η <=30) Then High, and

Fig.4. Characterizing incoming clients based on the proposed parameters.

If (η > 30) then Anomalous.

This makes a sequence of the client as Low → Normal

→ High → Anomalous. This sequence consists of three

class shifts low to normal, normal to high, and high to

anomalous. We calculate the frequency of the

occurrences of all such class shifts. Each of the 12

possible class shifts is then assigned a score using Eq. (1)

and Eq. (2).

 

 

ln 0.1
λ =

max α
 (1)

 
 

1
λ α x,y

x, y = e
 

  (2)

λ is known as the relaxing factor, α(x,y) defines the

frequency of class shifts from class x to y. (,)x y

defines the score of class shift from class x to class y. The

value of (,)x y is normalized between a range of 0 and

11 to increase the scale of the values for easy

interpretation. The value of Request Index (IReq) is

averaged sum of four consecutive short windows.

      
1

3

1 1
Req

i i+
i=

i=

η T , η T
I =

l

 


 (3)

 (n) maps request frequency n to the corresponding

class and η(t) defines request frequency of a client in

short window.

2) Repetition Index (IRep)

Usually a legitimate client will rarely request the web

page that it has already visited a moment ago. Due to

high request rates of bots during an attack, the likelihood

of receiving repeated request for the same web pages by

the server highly increases. It may be noted that the

applicability of this scenario is limited to four short

windows i.e., a single long window. We define a

detection parameter Repetition Index (IRep) that actually

computes the extent of repeated requests made by the

clients. IRep is computed using the Eq. (10).

 

 
4

1

()

n

Rep

n

i=

i=

i T

W i

I =

η T

 




 (4)

()
n

T is the set of web pages requested in short

window. W(E) is 1 if web page E has already been

requested in a long window. Again, the value of IRep is

normalized between a range of 0 and 11.

B. Fuzzy Control System (FCS)

A fuzzy set is represented as (X, μ) where X is a set and

μ: X → [0, 1] is a membership function [36], [37]. For

every x ϵ X, the value μ(x) is known as the grade of

membership of x. We usually denote fuzzy set with

membership values as

     
1 1 2 2

/ / /
n n

{μ x x , μ x x ,……,μ x x }

Membership function μ maps each element in X to a

membership value between 0 and 1 [38]. There are three

operational modules that constitute FCS. These modules

are discussed below.

34 Fuzzy-based User Behavior Characterization to Detect HTTP-GET Flood Attacks

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 4, 29-40

1) Fuzzification

In this work, the fuzzy control system takes two crisp

inputs IReq and IRep. For every client connected to the

server, these values are fed to FCS after 120 seconds for

further classification. IReq and IRep can take any values

from ranging from 0 to 11. We use the membership

function given in Eq. (5).

 

1,

0,

A

x α

β x
μ x = ,α < x < β

β α

x β















 (5)

The values of α and β are different for IReq and IRep.

These values are estimated from the process of threshold

calibration through F-measure. Both the benchmark

datasets WorldCup and Clarknet, have different values

for α and β that is used to estimate the grade of each

client.

2) Inference Engine

The inference engine computes the output set for each

applied input based on a specific rule set. These rules are

usually designed using the knowledge base. We define

four rules shown in Table 1. Every entry in the table

associates an output corresponding to the inputs shown in

rows and columns (IReq and IRep).

Table 1. Inference rules

Rule Base
IRep

Low High

IReq
Low Bot Bot

High Bot Human

3) Defuzzification

The outputs from the inference engine are converted to

crisp values during defuzzification. There are number of

ways to perform defuzzification of a fuzzy quantity. We

have chosen center of gravity method, where centroid of

each membership function is initially computed.

Following this, the final crisp value is computed using Eq.

(6), which takes the weighted average of individual

centroids. We term this value as Legitimacy of every

client, which is fed to the scheduler that makes blocking

and processing decisions.

 

 

A

A

β

x=α

β

x=α

μ x X

Legitimacy =

μ x




 (6)

C. Scheduler

The scheduler is responsible to process requests

received from the clients. It processes a large number of

requests belonging to different clients within a single

time window. During an attack, a server receives a large

number of requests from bots. As a result, legitimate

requests are either discarded or eventually get less

computing time as compared to the latter.

We design a scheduler that uses the Legitimacy values

of clients from FCS to filter out badly behaving clients.

When under heavy load, the scheduler initially sorts the

Legitimacy values of clients in increasing order.

Following this, a set of clients that have very low

Legitimacy value are blocked by the scheduler from

further accessing the server. The proposed framework

filters out anomalous users after every 120 seconds

during an attack. This means that the attack mitigation is

started only after 120 seconds before which the server

continuously receives attack traffic.

IV. EXPERIMENTAL SETUP

This section provides overview of various phases of

the experimental analysis conducted under this work.

Initially, we discuss the steps taken for dataset pre-

processing in order to remove any irrelevant entries.

Following this, the experimental design to prepare attack

traffic traces is discussed. Finally, the attacks that have

been studied in this work are explored.

A. Dataset Pre-Processing

In our earlier study on application layer DDoS attacks

[11], it was observed that many works have used

benchmark dataset such as WorldCup and Clarknet to

model legitimate behavior. We also considered using

these benchmark datasets into our work. The details of

portions of benchmark datasets taken into consideration

are given below.

• WorldCup: This dataset contains traffic for a

period of 92 days (April 30, 1998 to July 26, 1998).

We extracted two hours portion contain 956898

records with 10509 unique clients from the 42
nd

day to model legitimate behavior.

• Clarknet: This dataset spans over seven days

(August 28, 1995 to September 3, 1995). We

extracted 251334 records with 22569 unique

clients from the complete dataset.

A web server maintains logs of each access made to its

resources. The entries in the logs are represented as

1234 - - [17/Jun/1998:06:11:33 +0000] "GET

/images/hm_score_border_r01.gif HTTP/1.0" 200 929

This record can be interpreted as follows. This server

received GET request from client ‘1234’ for an access to

‘score.html’ on 17
th

 June 1998 at 06:11 am.

The code value 200 signifies successful request

completion. We filter out the records with status code

other than 200. Other records with missing information

are eliminated to avoid influence on dataset analysis.

Clients active for less than 120 seconds are also filtered

out. Fig. 4 depicts the overall number of requests made

 Fuzzy-based User Behavior Characterization to Detect HTTP-GET Flood Attacks 35

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 4, 29-40

by clients for different datasets.

B. Design

Researchers often synthesize attack traces by making

use of various software tools. After that, these traces are

mixed with benchmark datasets in order to assess

detection performance of various detection techniques.

Based on our previous study [11], we designed an

experimental setup to fabricate attack traffic traces, as

shown in Fig. 5. This experimental setup consists of three

machines with Intel Core i7-4790 processor running at

3.60 GHz equipped with 4GB RAM. First machine uses

Apache JMeter
1
 to generate attack and legitimate traffic.

Second machine acts as an intermediate router and

creates random delays from the requests received from

the first machine before forwarding. Third machine uses

Apache Server
2
 to logs the accesses made by the clients

emulated on the first machine.

(a) WorldCup

(b) Clarknet

Fig.4. Number of requests in short time window.

Fig.5. Setup for fabricating attack datasets.

1 http://jmeter.apache.org/
2 https://httpd.apache.org/

During the pre-processing of benchmark datasets, we

extracted the web object names and their respective sizes

on the server. Using this information, the web pages and

other web objects were replicated into the database of

third machine using self-written script. This way, the

trace information collected from the accesses made by

legitimate clients and bots from the first machine is likely

to portray a real-world scenario. We took 150 bots, which

were assigned a pool of unique IP address, to generate the

bot traffic [39], [40]. This set of IP address is further used

to differentiate between legitimate and bot requests in the

access logs during processing. GET flood attack is

launched at inter-request delay of 100 ms, 200 ms, and

300 ms, chosen based on three renowned virus programs

Netsky.Q, BlueCode.Worm, and Trojan_Sientok [11].

C. Attack Strategies

We fabricate a total of 8 different attacks using

different configurations set in Apache JMeter. The details

of these attacks are represented below. Three high rate

attacks are generated (<H_100>, <H_200>, and

<H_300>) with varying inter-request delays. The delays

of these attacks were set to 100ms, 200ms, and 300ms

respectively. Apart from this, we also produce three

sophisticated attack types (<SP1_300>, <SP2_300>, and

<SP3_300>) for a comprehensive evaluation of the

proposed system. In these attacks, bots request only for

popular web pages (except <SP3_300>) i.e. the web

pages that are frequently accessed by the legitimate

clients. We assume that this set of popular web pages is

known to an attacker, which makes it possible to launch

complex attacks. In <SP1_300>, bots make requests in no

restricted sequence. In <SP2_300>, bots randomly

request popular web pages having very small size. In

<SP3_300>, bots request small sized web pages whether

or not they are popular or unpopular. We also produce

two asymmetric attacks (<AS_2500> and <AM_2500>)

that generate requests for heavy sized web pages but at a

low rate. Consequently, it becomes hard to detect such

attacks when the detection system solely relies on the

request rates of clients. In <AS_2500>, only single page

is requested in a short time window, whereas in

<AM_2500>, multiple heavy sized web pages are

requested in short window with inter-request delay of

2500ms.

V. RESULTS AND DISCUSSION

Table 2 represents the pseudo code that is used to

compute the detection parameter values for different

clients. In this section, we initially present the process of

optimal threshold calibration and then discuss the results

obtained from the experimental analysis.

A. Threshold Optimization

In order to compute the values of optimal thresholds,

we used F-measure. We initially compute the values of

the confusion matrix comprising four basic attributes true

negative (TN), false positive (FP), false negative (FN),

and true positive (TP). TNs are legitimate clients in

36 Fuzzy-based User Behavior Characterization to Detect HTTP-GET Flood Attacks

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 4, 29-40

legitimate zone, FPs are the legitimate clients in attack

zone, FNs are the bots in legitimate zone, and TPs are the

bots in attack zone. Fig. 6 represents the plot of F-

measure against different threshold values.

Table 2. Pseudo code for computation of detection parameters

Pseudo code to compute detection parameter values of clients

01: Initialize short and long time windows as 30 and 120 seconds

02: FOR EACH client session

03: Split each session into sub-session of 120 seconds

04: FOR EACH client sub-session

05: Split sub-session further into four part of 30 seconds each

06: FOR EACH sub-session of length 30 second

07: Map the request frequency to its respective class

08: Cumulatively add IReq using Eq. (3)

09: END

10: Average IReq by dividing it with four

11: Calculate IRep using Eq. (4)

12: END

13: END

(a) IReq threshold calibration

(b) IRep threshold calibration

Fig.6. Threshold calibration using F-measure.

(a) WorldCup

(b) Clarknet

Fig.7. IReq values of legitimate clients and bots.

 Fuzzy-based User Behavior Characterization to Detect HTTP-GET Flood Attacks 37

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 4, 29-40

(a) WorldCup

(b) Clarknet

Fig.8. IRep values of legitimate clients and bots.

(a) MF for IReq in WorldCup (b) MF for IRep in WorldCup

(c) MF for IReq in Clarknet (d) MF for IRep in Clarknet

Fig.9. Membership functions for different datasets.

Based on the optimal threshold values, the detection

parameter values were divided into two sections. The

values higher than the threshold fall in legitimate zone

and values lower than the threshold fall in attack zone, as

depicted in Fig. 7 and Fig. 8.

B. Membership Functions

The values of α and β are used in the Eq. (5) to grade

the detection parameter inputs corresponding to every

client. Based on the optimal threshold values calculated

above, we compute the values of α and β for different

datasets [41]. Fig. 9 shows the membership function (MF)

values for each detection parameter and benchmark

dataset.

C. Discussion

Fig. 7 and Fig. 8 represent the difference in the values

obtained by legitimate users and bots during an attack.

We plot boxes to represent the bot instances during

different attacks in the figure. High rate attacks having

the delay value of less than 300ms are easily identifiable

by the detection parameters. However, the attacking bots

involved in orchestrating asymmetric attacks are not

detectable by IReq as the inter-request delay is very high.

Requests in asymmetric attacks are generated at a very

slow pace as compared to the other attacks.

The attacks (<H_100>, <H_200>) with 100ms and

200ms delay values are easily detected as the parameter

values fall very below the optimal thresholds. The

parameter values for the attack instance (<SP1_300>,

<SP2_300>, and <SP3_300>) having delay value of

300ms fall nearly at the threshold edge, resulting in few

false positives. As the bots randomly request for web

pages from a large pool of resources in attacks like

<H_100>, <H_200>, <H_300>, and <SP1_300>, IRep

detection parameter classify these as legitimate instances.

In case of asymmetric attacks (<AS_2500> and

<AM_2500>), the values of IRep lie in the attack zone.

This is due to the fact that single web page is repeatedly

requested in <AS_2500> and a set of heavy sized

web pages are repeatedly requested in <AM_2500>

attack respectively. These attacks are not detectable by

IReq but are easily visible using IRep.

The low and high demarcation of fuzzy values of IReq

and IRep detection parameters is based on the threshold

values computed during threshold optimization. Rule

base that was applied by the inference engine of FCS to

38 Fuzzy-based User Behavior Characterization to Detect HTTP-GET Flood Attacks

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 4, 29-40

the inputs from fuzzification was also based on these

threshold values. After receiving the results from FCS

and scheduler, we observed a detection accuracy of

96.57% and 92.32%, for datasets WorldCup and Clarknet

respectively. As a result, the average accuracy of our

detection system becomes 94.45%.

Table 3. Comparison of proposed system with existing works

Works DR (%) FPR (%)
Attack

strategy*

Liao Q et al. [42] 99.80 0.33 3

Yadav S et al.[43] 98.99 1.27 2

Wang J et al.[29] 88.95 5.10 2

Liao et al. [30] 89.25 0.04 4

Xie Y et al. [9] 90.00 1.00 1

Our work 94.45 0.97 5
*Based on the taxonomy proposed in our previous work

In comparison to previous existing works, the

proposed system possesses the capability to identify a

higher number of GET flood attack types while

maintaining decent accuracy for both datasets (see Table

3). The number of attack types detected is calculated

based on our previously designed taxonomy [11]. The

values of Detection Rate (DR) and False Positive Rate

(FPR) for other works were estimated after averaging the

corresponding values given in the respective works.

VI. CONCLUSIONS

Modern day attackers make use of sophisticated bots

that mimic human browsing behavior to orchestrate

attacks on the application layer of the TCP/IP stack. Thus,

it becomes cumbersome for the security mechanisms

employed by the victim to discriminate between

legitimate and bot clients. Therefore, it is imperative for

an organization to employ strong protection systems in

order to eradicate the effect of such attacks.

As these attacks mainly rely on bots behaving as

legitimate clients, an effective detection is possible only

if we monitor browsing behavior of each and every client

over the time. This paper proposes a framework that

employs uses two parameters to quantify the behavior of

each client during a certain time window. These

parameter values are then fed to our designed fuzzy

control system that produces a legitimacy value for each

client. These legitimacy values are used by the scheduler

to filter out clients that score less than the designated

threshold values. Our work is able to detect more number

of GET flood attack types with 94.45% detection rate and

0.97 false positive rate. These results point toward the

effectiveness of the proposed detection system in

efficiently recognizing the presence of bots among the

legitimate client. We plan to extend this work to detect

more attack types by complementing the proposed system

with more behavioral specific detection parameters.

REFERENCES

[1] K. Kumar, R. C. Joshi, and K. Singh, “A Distributed

Approach using Entropy to Detect DDoS Attacks in ISP

Domain,” In Proceedings of the International Conference

on Signal Processing, Communications and Networking,

2007, pp. 331–337.

[2] “C2DF: High Rate DDOS filtering method in Cloud

Computing - Semantic Scholar.” [Online]. Available:

/paper/C2DF-High-Rate-DDOS-filtering-method-in-

Cloud-Shamsolmoali-

Hamdard/5171336c8b0a5e4fb79cb5721f83ee72f28ffb36.

[Accessed: 24-Feb-2017].

[3] A. Bhandari, A. L. Sangal, and K. Kumar, “Destination

Address Entropy based Detection and Traceback

Approach against Distributed Denial of Service Attacks,”

Int. J. Comput. Netw. Inf. Secur., vol. 7, no. 8, pp. 9-20,

Jul. 2015.

[4] “The 5 Most Significant DDoS Attacks of 2016,” The

State of Security, 29-Nov-2016. [Online]. Available:

https://www.tripwire.com/state-of-security/security-data-

protection/cyber-security/5-significant-ddos-attacks-2016/.

[Accessed: 27-Feb-2017].

[5] K. Singh, P. Singh, and K. Kumar, “Impact analysis of

application layer DDoS attacks: A simulation study,” Int. J.

Intell. Eng. Informatics, vol. 5, no. 1, pp. 80–100, 2017.

[6] K. Singh, P. Singh, and K. Kumar, “A systematic review

of IP traceback schemes for denial of service attacks,”

Comput. Secur., vol. 56, pp. 111–139, Feb. 2016.

[7] W. Zhou, W. Jia, S. Wen, Y. Xiang, and W. Zhou,

“Detection and defense of application-layer DDoS attacks

in backbone web traffic,” Future Gener. Comput. Syst.,

vol. 38, pp. 36–46, Sep. 2014.

[8] M. Srivatsa, A. Iyengar, J. Yin, and L. Liu, “Mitigating

application-level denial of service attacks on Web servers:

A client-transparent approach,” ACM Trans Web, vol. 2,

no. 3, pp. 15:1–15:49, Jul. 2008.

[9] Y. Xie and S.-Z. Yu, “Monitoring the application-layer

DDoS attacks for popular websites,” IEEE/ACM Trans.

Netw., vol. 17, no. 1, pp. 15–25, 2009.

[10] S. Lee, G. Kim, and S. Kim, “Sequence-order-independent

network profiling for detecting application layer DDoS

attacks,” EURASIP J. Wirel. Commun. Netw., vol. 2011,

no. 1, p. 50, Aug. 2011.

[11] K. Singh, P. Singh, and K. Kumar, “Application layer

HTTP-GET flood DDoS attacks: research landscape and

challenges,” Comput. Secur., vol. 65, pp. 344-372, Mar.

2017.

[12] J. Jung, B. Krishnamurthy, and M. Rabinovich, “Flash

Crowds and Denial of Service Attacks: Characterization

and Implications for CDNs and Web Sites,” In

Proceedings of the International Conference on World

Wide Web, New York, USA, 2002, pp. 293–304.

[13] L. von Ahn, M. Blum, N. J. Hopper, and J. Langford,

“CAPTCHA: Using Hard AI Problems for Security,” In

Advances in Cryptology — EUROCRYPT 2003, E. Biham,

Ed. Springer Berlin Heidelberg, 2003, pp. 294–311.

[14] S. Kandula, D. Katabi, M. Jacob, and A. Berger, “Botz-4-

sale: surviving organized DDoS attacks that mimic flash

crowds,” In Proceedings of the Symposium on Networked

Systems Design & Implementation - Volume 2, Berkeley,

USA, 2005, pp. 287–300.

[15] W. Yen and M.-F. Lee, “Defending application DDoS with

constraint random request attacks,” In Proceedings of the

Asia-Pacific Conference on Communications, 2005, pp.

620–624.

[16] S. Ranjan, R. Swaminathan, M. Uysal, and E. Knightly,

“DDoS-Resilient Scheduling to Counter Application

Layer Attacks Under Imperfect Detection,” In

Proceedings of the IEEE International Conference on

Computer Communications, 2006, pp. 1–13.

 Fuzzy-based User Behavior Characterization to Detect HTTP-GET Flood Attacks 39

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 4, 29-40

[17] J. Yu, Z. Li, H. Chen, and X. Chen, “A Detection and

Offense Mechanism to Defend Against Application Layer

DDoS Attacks,” In Proceedings of the Third International

Conference on Networking and Services, 2007, pp. 54–54.

[18] G. Oikonomou and J. Mirkovic, “Modeling Human

Behavior for Defense Against Flash-crowd Attacks,” In

Proceedings of the IEEE International Conference on

Communications, Piscataway, USA, 2009, pp. 625–630.

[19] S. Wen, W. Jia, W. Zhou, W. Zhou, and C. Xu, “CALD:

Surviving Various Application-Layer DDoS Attacks That

Mimic Flash Crowd,” In Proceedings of the 4th

International Conference on Network and System Security

(NSS), 2010, pp. 247–254.

[20] D. Das, U. Sharma, and D. K. Bhattacharyya, “Detection

of HTTP Flooding Attacks in Multiple Scenarios,” In

Proceedings of the International Conference on

Communication, Computing and Security, NY, USA, 2011,

pp. 517–522.

[21] S. B. Ankali and D. V. Ashoka, “Detection architecture of

application layer DDoS attack for internet,” Int J Adv.

Netw. Appl., vol. 3, no. 01, pp. 984–990, 2011.

[22] M. I. Ak, L. George, K. Govind, and S. Selvakumar,

“Threshold Based Kernel Level HTTP Filter (TBHF) for

DDoS Mitigation,” Int. J. Comput. Netw. Inf. Secur., vol. 4,

no. 12, pp. 31-39, Nov. 2012.

[23] S. Limkar and R. K. Jha, “An Effective Defence

Mechanism for Detection of DDoS Attack on Application

Layer Based on Hidden Markov Model,” In Proceedings

of the International Conference on Information Systems

Design and Intelligent Applications, 2012, pp. 943–950.

[24] S. Sivabalan and P. J. Radcliffe, “A novel framework to

detect and block DDoS attack at the application layer,” In

Proceedings of the IEEE TENCON Spring Conference,

2013, pp. 578–582.

[25] J. Wang, M. Zhang, X. Yang, K. Long, and C. Zhou,

“HTTP-sCAN: Detecting HTTP-flooding attaCk by

modeling multi-features of web browsing behavior from

noisy dataset,” In Proceedings of the 19th Asia-Pacific

Conference on Communications (APCC), 2013, pp. 677–

682.

[26] J. Wang, X. Yang, and K. Long, “Web DDoS Detection

Schemes Based on Measuring User’s Access Behavior

with Large Deviation,” In Proceedings of the IEEE

Global Telecommunications Conference , 2011, pp. 1–5.

[27] L. C. Giralte, C. Conde, I. M. de Diego, and E. Cabello,

“Detecting denial of service by modelling web-server

behaviour,” Comput. Electr. Eng., vol. 39, no. 7, pp.

2252–2262, Oct. 2013.

[28] Y. Xie, S. Tang, Y. Xiang, and J. Hu, “Resisting Web

Proxy-Based HTTP Attacks by Temporal and Spatial

Locality Behavior,” IEEE Trans. Parallel Distrib. Syst.,

vol. 24, no. 7, pp. 1401–1410, 2013.

[29] J. Wang, X. Yang, M. Zhang, K. Long, and J. Xu, “HTTP-

SoLDiER: An HTTP-flooding attack detection scheme

with the large deviation principle,” Sci. China Inf. Sci., pp.

1–15, Apr. 2014.

[30] Q. Liao, H. Li, S. Kang, and C. Liu, “Application layer

DDoS attack detection using cluster with label based on

sparse vector decomposition and rhythm matching,” Secur.

Commun. Networks, vol. 8, no. 17, pp. 3111–3120, Nov.

2015.

[31] P. Xiao, W. Qu, H. Qi, and Z. Li, “Detecting DDoS

attacks against data center with correlation analysis,”

Comput. Commun., vol. 67, pp. 66 – 74, 2015.

[32] D. Kshirsagar and S. Kumar, “HTTP Flood Attack

Detection Using Ontology,” In Proceedings of the

International Conference on Advances in Information

Communication Technology & Computing, NY, USA,

2016, pp. 15:1–15:4.

[33] R. Kobayashi, G. Otani, T. Yoshida, and M. Kato,

“Defense Method of HTTP GET Flood Attack by

Adaptively Controlling Server Resources Depending on

Different Attack Intensity,” J. Inf. Process., vol. 24, no. 5,

pp. 802–815, 2016.

[34] T. Miu, C. Wang, D. X. Luo, and J. Wang, “Modeling

User Browsing Activity for Application Layer DDoS

Attack Detection,” In Proceedings of the International

Conference on Security and Privacy in Communication

Networks, 2016, pp. 747–750.

[35] F. Pukelsheim, “The Three Sigma Rule,” Am. Stat., vol.

48, no. 2, pp. 88–91, 1994.

[36] Z. Hu, Y. V. Bodyanskiy, O. K. Tyshchenko, and V. M.

Tkachov, “Fuzzy Clustering Data Arrays with Omitted

Observations,” Int. J. Intell. Syst. Appl., vol. 9, no. 6, pp.

24–32, 2017.

[37] Z. Hu, Y. V. Bodyanskiy, O. K. Tyshchenko, and V. O.

Samitova, “Fuzzy Clustering Data Given on the Ordinal

Scale Based on Membership and Likelihood Functions

Sharing,” Int. J. Intell. Syst. Appl., vol. 9, no. 2, pp. 1–9,

2017.

[38] L. Abdullah and A. Otheman, “A New Entropy Weight for

Sub-Criteria in Interval Type-2 Fuzzy TOPSIS and Its

Application,” Int. J. Intell. Syst. Appl., vol. 5, no. 2, p. 25,

Jan. 2013.

[39] H. Beitollahi and G. Deconinck, “Tackling Application-

layer DDoS Attacks,” Procedia Comput. Sci., vol. 10, pp.

432–441, Jan. 2012.

[40] H. Beitollahi and G. Deconinck, “ConnectionScore: a

statistical technique to resist application-layer DDoS

attacks,” J. Ambient Intell. Humaniz. Comput., vol. 5, no.

3, pp. 425–442, Jul. 2013.

[41] T. Chaira and A. K. Ray, “Threshold selection using fuzzy

set theory,” Pattern Recognit. Lett., vol. 25, no. 8, pp.

865–874, Jun. 2004.

[42] Q. Liao, H. Li, S. Kang, and C. Liu, “Feature extraction

and construction of application layer DDoS attack based

on user behavior,” In Proceedings of the Chinese Control

Conference (CCC), 2014, pp. 5492–5497.

[43] S. Yadav and S. Subramanian, “Detection of Application

Layer DDoS attack by feature learning using Stacked

AutoEncoder,” In Proceedings of the International

Conference on Computational Techniques in Information

and Communication Technologies, 2016, pp. 361–366.

Authors’ Profiles

Karanpreet Singh received the masters’s

degree in computer science and engineering,

in 2013 and the bachelor’s degree in

information technology, in 2011 from

Punjab Technical University, Jalandhar,

Punjab, India. He is currently pursuing the

Ph.D. degree in computer science and

engineering at National Institute of

Technology Jalandhar, Punjab, India. His research interests

include network security, distributed networks, and cloud

computing. He is a student member of the IEEE and the IEEE

Communications Society.

40 Fuzzy-based User Behavior Characterization to Detect HTTP-GET Flood Attacks

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 4, 29-40

Paramvir Singh received the Ph.D. degree

in computer science and engineering from

Guru Nanak Dev University, Amritsar,

Punjab, India, in 2011 and the M.Tech.

degree in computer science and engineering

from Panjab University Chandigarh, India,

in 2005. He is currently with Department of

Computer Science and Engineering,

National Institute of Technology Jalandhar, Punjab. He has

published more than 20 papers in refereed international journals

and refereed international conferences proceedings. His

research interests include software engineering, secure systems,

and network security. He is a member of the IEEE and the IEEE

Computer Society, and a life member of ISTE.

Krishan Kumar received the Ph.D. degree

in electronics and computer engineering

from Indian Institute of Technology,

Roorkee, India. He is currently with the

Department of Information Technology,

University Institute of Engineering and

Technology, Panjab University, Chandigarh,

India. His research interests include

network security, network measurement/modeling, manets and

WSNs. He has published more than 70 papers in refereed

international journals and conference proceedings. He is on

editorial board of many reputed international journal and

conferences in the field of networking.

How to cite this paper: Karanpreet Singh, Paramvir Singh,

Krishan Kumar, "Fuzzy-based User Behavior Characterization

to Detect HTTP-GET Flood Attacks", International Journal of

Intelligent Systems and Applications(IJISA), Vol.10, No.4,

pp.29-40, 2018. DOI: 10.5815/ijisa.2018.04.04

