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Abstract—Time-frequency and time dependence of the 

output signal morphology of nonlinear oscillator neuron 

based on Van der Pol model using analytical and 

numerical methods were investigated. Threshold effect 

neuron, when it is exposed to external non-stationary 

signals that vary in shape, frequency and amplitude was 

considered. 

 

Index Terms—Nonlinear oscillator neuron, frequency 

modulation, morphology of the information signal, 

resonance effect, encoding and decoding of information. 

 

I.  INTRODUCTION 

At present, intensive research on the application of 

neural networks is being conducted to solve a wide range 

of Data Mining tasks (identification of non-stationary 

chaotic processes, clusterization, classification, 

intellectual management, biosystems states diagnostics, 

prediction, emulation and recognition of multispectral 

input images). Considerable interest in the study of 

modern neurodynamics lies in the processes of 

information encryption, decryption and processing that is 

transmitted by neurons. In the early stages of sensory 

information processing Wavelet analysis is an effective 

tool to study the information component of the neural 

signals that are registered. Traditionally such research 

demands to analyze the structure of point processes, i.e. 

the time-frequency dynamics analysis of neural reviews 

[1]-[6], in which information carriers are times of pulses 

(spikes) generating, but not their form [7]. The 

mechanisms that lead to the spikes generation are 

partially known [8]. But how neurons and their ensembles 

transmit information about around world, so far has 

practically been unexplored. 

In the wavelet-neurophase network, the wavelet-

neuron is structurally close to the standard formal neuron 

with N inputs, but instead of the usual synaptic 

weights ik , there are wavelet-synaptic weights iWS

ik  

( 1,2,..., )i N , in which the adjustable parameters are not 

only the weights ik , but also the scaling and offset 

wavelets. It should be noted that in all of the above-

mentioned artificial neural networks, neurons were 

considered without their own dynamics (their own 

frequency of oscillations of the neuron 0 0i  ) and 

without taking into account the accumulation of 

impulses 0kN  in the neurons that triggered when 

0k ckN N  ( ckN
 
is the threshold value of the k-th neuron 

pulses). The main advantages of self-developing artificial 

nonlinear neural networks is the ability to adapt to 

dynamic conditions and the speed of functioning, which 

is especially important when operating in real-time. In 

order to provide the highest class of efficiency (speed of 

operation) and the quality of the recognition of input 

spectral images, it is proposed to develop the architecture 

of self-developing artificial nonlinear neural networks 

and an algorithm for their training based on evolutionary 

simulation methods that can adapt to dynamic conditions 

when working in real-time. 

Accordingly, to above-mentioned there is necessity to 

solve the following problems: 

 

 It is necessary to suggest the method of 

inhomogeneous nonlinear differential equations 

with quadratic non linearity of the unknown 

function at the first derivative.  

 It is necessary to define that nonlinear oscillator 

neuron can act as a frequency modulator, which 

can modulate the input information of non-

stationary signal. 

 It is necessary to determine that nonlinear 

oscillator neuron with threshold effect 

significantly alters the structure of the input 

information non-stationary signal different in 

shape, frequency and amplitude. 
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 It is necessary to determine the existence of 

resonance effects in nonlinear oscillator neuron 

when frequency of the external non-stationary 

signal and dynamics of the natural frequency of 

the neuron are equal. 

 It is necessary to suggest information coding with 

nonlinear oscillator neuron on the basis of 

frequency modulation and decoding using an 

inverse operator, which acts on the output signal 

vector. 

 

II.  RELATED WORKS 

In [2], [3], [6], the authors analyzed the case of signals 

conversion by sensory neurons (threshold device), but its 

own dynamic neuron was not taken into consideration. 

Using classical models threshold systems such as 

―integrate-and-fire‖ [2] and ―threshold crossing‖ [3], [6], 

it has been shown that various characteristics of complex 

dynamics at the entrance sensory neuron are stored in the 

point process structure [2]-[6], [9]-[11], [17]-[33]. 

Computer neurons dynamics modeling when exposed 

to constant external signal was conducted in Van der Pol 

approaching [12]. The authors [13] investigated 

frequency-temporal dynamics of sensory neuron 

(threshold device) using the technology of double wavelet 

analysis and taking into account the interaction of its own 

dynamics and the dynamics that was caused by the 

influence of external non-stationary signal. In this 

sensory neuron was modeled as a threshold device that 

converts the input signal to pulse sequence output. This 

pulse sequence was described by the sequence of Dirac 

delta functions, each of which corresponds to the pulse 

(adhesions) generation moment. These model pulses have 

the same shape and amplitude, that’s why information 

about the external effect of dynamic signal appears only 

in the time intervals between the moments of their 

generation. 

 

III.  SETTING OBJECTIVES 

The aim of this work is to study the analytical and 

numerical method of time-frequency and time-

dependence of the output signal morphology for 

nonlinear oscillator neurons based on Van der Pol model 

taking to account threshold effect neurons when it is 

exposed to different in shape, frequency and amplitude of 

external non-stationary signals. 

 

IV.  MATHEMATICAL MODEL 

Nonlinear oscillator sensory neuron type Van der Pol 

(threshold device) with its own dynamics 0k , which can 

generate pulses in the absence of external non-stationary 

signals ( ( ) 0)kV t  , when the number of available sensory 

neuron impulses 0kN  reaches a threshold value ckN  

0( )k ckN N was considered. Thus, such neuron can be 

considered as a threshold device that converts the input 

non-stationary signal ( )kV t  into a sequence of pulses 

output (Fig.1) due to the ―imposition‖ of the dynamics of 

input non-stationary signal ( )kV t  on its own neuron 

dynamic. Consequently, the signals conversion process 

analysis by nonlinear oscillator sensory neuron is 

complicated. The complex dynamics of transformation of 

input non-stationary signal received by biological sensor 

with its own dynamics shows an experimental record 

signal (Fig.1b) [13]-[16]. This signal generated by a 

biological neuron without external signal action (interval 

0< t <110s with a low-δ-pulse sequence). At the time 

interval 110s< t <200s shown on (Fig. 1b) the result of 

external signal interaction with the biological sensor with 

its own dynamics which leads the formation of high-order 

δ-pulses sequence.  

To illustrate, let us consider encoding information by 

touch nonlinear oscillator k-neuron which describes the 

nonlinear equation of the form 

 
2 2 2

0 0[ ( ; )] ( )k k k k k ck k k k kX X p N N X X V t         (1) 

 

where 2 2 0

0 0 2
( ; ) tanh( )k ck

k k ck k

k

N N
p N N p




   setting the 

amplitude of the k-th neuron; 0k  ; 

0kN , ckN , 2

k  are the number of pulses that come to 

k-th neuron, threshold pulse k-th neuron and variance 

respectively; 
2

0k  is natural frequency k-th nonlinear oscillator 

neuron; 

( )kV t  is non-stationary input signal goes to k-th 

neuron. 

Nonlinear oscillator neuron has its own dynamics and 

generates pulses in the absence of external signals at 

0k ckN N , because under this condition 

0

2
tanh( ) 0k ck

k

N N




  and accordingly 2

0( ; ) 0k k ckp N N   

[14]. Mathematical model (1) can also be used to study 

the collective behavior of ensembles of neurons 

interconnected synaptic connections jk . For this purpose 

the second and third terms are necessary to replace 

k kX X where 
1

;
N

k k jk j

j

X X X 


  1,2,..., N.   

Solution to equation (1) with the analytical numerical 

method and consistent approximation method in the form 

 
( ) ( ) ( )( ) ( )sin ( )n n n

k k kX t a t t                   (2) 

 

where n = 1, 2, 3, …, N  is an iteration number; 

 
( ) ( )

0( ) ( )n n

k k kt t t                          (3) 
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Fig.1. a – Schematic representation of process for the input signal ( )kV t  conversion by non-linear oscillator sensory neuron (threshold device). Pulses 

generating times on the output of threshold device ( )kX t  correspond to the crossing moments of the threshold level; b – An experimental sample 

recording of signal which is generated by biological neurons [13]. 

( ) ( )n

ka t  and ( ) ( )n

k t  – functions of time, which are 

selected so that the ratio (2) satisfies the equation (1). In 

addition we impose the condition that ( ) ( )n

ka t  is a slowly 

variable function, i.e.  

 
( )

( )

( )
lim 1.

( )

n

k k k

nt
k k

a p t

a p t




                         (4) 

 

But since there are two functions ( ) ( )n

ka t  and ( ) ( )n

k t , 

and one equation, this condition ambiguous defines the 

function. We demand that the condition was fulfilled 

 
( ) ( ) ( )

0 ( )cos ( )n n n

k k k kX a t t                  (5) 

 

where 
( )

( ) ( )
.

n

n k

k

dX t
X

dt
  

Substituting (2) in (1) and given the condition (5) we 

obtain the system of equations ( ) ( )n

ka t   and ( ) ( )n

k t : 

 
( )

( 1) ( 1) 2 2 ( 1) 2 2 ( 1) ( 1)

0

( ) ( 1)

( 1) 2 2 ( 1) 2 ( 1) ( 1)

0 0

( )
( ) ( ) sin ( ) ( ; ) cos ( ) ( )cos ( )

( ) ( )sin
( ) sin ( ) ( ; ) sin ( )cos ( )

n

n n n n nk

k k k k k k ck k k k

n n

n n n nk k k

k k k k k k ck k k

da t
a t a t p N N t V t t

dt

d t V t
a t p N N t t

dt

   

 
    

    



   

     

      ( 1)

( )

( )n

k

t

a t






           

 (6) 

 

The right side of the equation system (6) for the period 

2π at ( ) 0kV t   for the rule [15] was averaged: 

 

2
( ) ( )

0

1
( ) .

2

n n

k kd


 


                        (7) 

 

In zero approximation expressions for (0) ( )ka t  and 

(0) ( )k t  are found from the system of equations: 

 
(0) (0)

(0) (0)( ) ( )
( ( )), ( ( ))k k

k k

da t d t
A a t B a t

dt dt


          (8) 

where 
(0) 2 2

(0) (0) (0)

0

( )
( ( )) ( ) , ( ( )) .

8 2

k k

k k k k k

a p
A a t a t B a t 

 
    

 

 

Integrating the equation (8), a zero approximation 

expressions for (0) ( )ka t  and (0) ( )k t  were worked out: 

 

2

(0) 2
( ) ,

1 k k

k

k
p t

p
a t

e






                       (9) 

 
(0)

0( )k kt t                             (10) 
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where (0) ( )ka t  satisfies the criterion (4) of slowly variable 

function. To find expressions (1) ( )ka t  and (1) ( )k t  in the 

first approximation (n = 1) we should substitute the 

expression (9), (10) into the system of equations (6). As a 

result of integrating we obtain first approximation 

expressions for (1) ( )ka t  and (1) ( )k t . The process of 

iteration stops when the conditions are fulfilled: 

 
(n) (n 1)

(n)

( ) ( )
1,

( )

k k

k

a t a t

a t




(n) (n 1)

(n)

( ) ( )
1.

( )

k k

k

t t

t

 




  

 

V.  RESULTS 

For modeling example, in this problem external non-

stationary signal ( )kV t  is chosen as a sum of N ordinary 

non-stationary signals, each of which is centered at the 

point Lt t  and characterized by system parameters L 

[16] 

 

0

1

0( ) ( ) .
N

k Lk Lk L k

L L

V t v t t 




                  (11) 

 

By selecting system parameters L, we can to construct 

mathematical models of complex non-stationary signal 

( )kV t , spectral properties of which change over time. The 

mathematical model of unsteady external signal ( )kV t  

will reflect the dynamics of the real signal that 

characterizes a physical (biological) process. 

An example of a simple non-stationary signal 

( )Lk Lv t t  is an expression: 

 
2

2

( )1
( ) exp cos( ( ) ),

42

L

Lk L L L L

LL

t t
v t t t t 

 

 
     

 
 

(12) 

 

which is a product of the envelope Hauss form to 

oscillating function and is described by five parameters L 

 

( , , , , )Lk L L L LL t                        (13) 

 

where Lk  denotes weight connections of inputs v1,…,vN 

of the k-th neuron; 0k is weight shift signal of 

communication with the k-th neuron; 2L Lf   is 

external carrier frequency oscillation in hertz (Hz), Lt  is 

center localization signal by the time in seconds, L  is 

typical localization signal time interval in seconds, L  is 

the initial phase in radians.  

Equation (11) with (12) describes all inputs, including 

offset signal, coming with weights Lk  the adder k-th 

neuron (incoming operator inf ). Input operator inf  

converts weighted weights Lk  inputs and presents them 

to the operator activation af  (fig.2). For nonlinear 

oscillator sensory neuron activation operator af  looks 

like, this input operator 

 
2

2 2 2

0 02
( ; ) .a k k k k ck k

d d
f X p N N

dtdt
                (14) 

 

0 1v 

1v

Nv

inf

0K

0L K

0L K N

af outf
 kV t  kX t

 

Fig.2. The structure of artificial nonlinear oscillator neuron 

The output signal of nonlinear oscillator neuron ( )kX t  

(Fig.2) is transformed by the source operator 
outf  the 

output signal of service activation. Output operator outf  

is required to represent the state of the neuron in the 

desired field values. In most studies, this operator is not 

isolated, and under output signal the neuron to understand 

the signal after activation operator af . However, during 

the analysis and synthesis of artificial neural networks 

(ANN), which have different activation functions of the 

various regions and areas of value determination, is 

necessary taking into account the output operator. 

Consequently, nonlinear operator transformation of input 

signals ( )kV t  vector in the vector output signal ( )kX t  

can be written as 

 

( ) ( ( ( ( ), )))k out a in k LkX t f f f V t  .                (15) 

 

By selecting different combinations of 

( , , , , ),Lk L L L LL t     we can construct a theoretical 

model that adequately describes the real physical 

(biological) processes in the interaction of external non-

stationary signal ( )kV t  with its own dynamic physical 

(biological) nonlinear neuron. 

 

VI.  DISCUSSION 

Figs. 3-4 shows a first term (N = 1) non-stationary 

external signal ( )kV t  ((11), (12)) depending on the time 

 

0 0

0 0 0 0 0

00

2

2

( )
( ) exp cos( ( ) ),

42

L k L

L k L L L L

LL

t t
v t t t t


 

 

 
     

  

  (16) 

 

applied to nonlinear oscillator sensory neuron for two 

parameter values 0L : 0L = (3, 4  , 12, 3, 0); 0L = (1, 

6 , 21, 1, 0) in accordance. In the first case the signal  

0 0
( )L k Lv t t  (Fig.3) has an amplitude 

0
3L k  , and the 
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second – 
0

1L k   respectively, in the first case, the signal 

has a frequency 
0Lf = 2Hz, centered at a point in time 

0Lt =12s with time-lapse localization signal 
0L =3s and 

the initial phase 
0L =0, and the second – 

0Lf =3Hz; 

0Lt =21s, 
0L =3s; 

0L =0.  

 

 

Fig.3. Morphology of the external information signal 
0 0

( )L k Lv t t  (16) with parameter values 0L = (3, 4  , 12, 3, 0); 0.4kp   and 0.1k  . 

 

Fig.4. Morphology of the external information signal 
0 0

( )L k Lv t t  (16) with parameter values L0= (1, 6 , 21, 1, 0); pk=0.4 and 0.1k  . 

In numerical calculations, signals ( )kX t  the output of 

the nonlinear oscillator neuron with input signals (Figs. 3-

4) parameters 0.4kp   and 0.1k   match.  

Figs. 5-6 present graphs of frequency modulation 
( )

( ) ( )n

n k

k

d t

dt


  , which changes the instantaneous 

frequency of the carrier oscillation information ( )kV t  

(11), which consists of a simple non-stationary signal  

0 0
( )L k Lv t t  (16), in accordance with a change in signal 

caused by the interaction of an external signal carrying 

information with its own dynamics 0 0.2k   (Fig. 5) 

and 0 2k   (Fig. 6) nonlinear oscillator neuron.  

s 
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Fig.5. The time dependence of the instantaneous frequency of the carrier signal information 
0 0

( )L k Lv t t  (16) with parameter values  

0L = (3, 4  , 12, 3, 0); 0.4kp   and 0.1k  , 0 0.2k  . 

 

Fig.6. The time dependence of the instantaneous frequency of the carrier signal information 
0 0

( )L k Lv t t  (16) with parameter values 

0 (1, 6 ,21,1, 0)L  ; 0.4kp   and 0.1k  , 0 2k   

Figs. 7-8 present graphs of morphology signal at the 

output of the nonlinear oscillator neuron ( )kX t  defined 

by the nature of the interaction of dynamics neuron with 

frequencies 0 0.2k  ; 0 2k   and dynamic, caused by 

external influence 
0 0

( )L k Lv t t  (16).  

 

 

Fig.7. Schedule of morphology signal at the output of the nonlinear oscillator neuron ( )kX t  with parameter values  

0L = (3, 4  , 12, 3, 0); 0.4kp   and 0.1k  , 0 0.2k  .
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Fig.8. Schedule of morphology signal at the output of the nonlinear oscillator neuron ( )kX t  with parameter values  

0 (1, 6 , 21,1, 0)L  ; 0.4kp   and 0.1k  , 0 2k  . 

Figs. 9-10 present graphs of morphology signal at the 

output of the nonlinear oscillator neuron ( )kX t , defined 

by the nature of the interaction of dynamics neuron with 

frequencies 0 0.2k  ; 0 2k   and dynamic, caused by 

external influence 
0 0

( )L k Lv t t  (16).  

 

 

Fig.9. Schedule of morphology signal at the output of the nonlinear oscillator neuron ( )kX t  with parameter values  

0L = (3, 4  , 12, 3, 0); 0.4kp   and 0.1k  , 0 0.2k  . 

 

Fig.10. Schedule of morphology signal at the output of the nonlinear oscillator neuron ( )kX t  with parameter values  

0 (1, 6 , 21,1, 0)L  ; 0.4kp   and 0.1k  , 0 2k  . 
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The interaction of external signal 
0 0

( )L k Lv t t  with 

parameters 0L = (3, 4  , 12, 3, 0); 0 (1, 6 , 21,1, 0)L   

with its own dynamics of nonlinear oscillator neuron 

0 4k   or 0 6k   a sharp increase in the amplitude 

of the output signal ( )kX t  (Fig. 11) compared to the 

output signal in Fig.9. That is a resonance effect in the 

external signal frequency which matches the natural 

frequency of oscillation of the nonlinear neuron, 

(
0 0L k  ). Graph of modulation frequency ( ) ( )n

k t  if a 

resonance effect is shown in Fig.12. 

 

 

Fig.11. Schedule of morphology signal at the output of the nonlinear oscillator neuron ( )kX t  if a resonance effect with parameter values  

0L = (3, 4  , 12, 3, 0); 0.4kp   and 0.1k  , 0 4k  . 

 

Fig.12. The time dependence of the instantaneous frequency of the carrier signal information 
0 0

( )L k Lv t t  (16) if a resonance effect with parameter 

values 0L = (3, 4  , 12, 3, 0); 0.4kp   and 0.1k  , 0 4k  . 

To decode the structure of output signal ( )kX t , it is 

important to know the code of program, which describes 

the inverse operator acting on a vector output, i.e. 

 
1 1 1( ( ( ))) ( , ).in a out k k Lkf f f X t V t                    (17) 

 

Thus, the received results allow hypothesizing that the 

process of encoding information of nonlinear neurons can 

be considered in terms of modulation frequency as we 

know in radio physics that modulation frequency is one 

way of information transmitting. 

 

 

 

VII.  CONCLUSIONS 

The method of inhomogeneous nonlinear differential 

equations with quadratic non linearity of the unknown 

function at the first derivative was suggested.  

It was defined that nonlinear oscillator neuron can act 

as a frequency modulator, which can modulate the input 

information of non-stationary signal. 

It was determined that nonlinear oscillator neuron with 

threshold effect significantly alters the structure of the 

input information non-stationary signal different in shape, 

frequency and amplitude. 

 

 

 

s 
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The existence of resonance effects in nonlinear 

oscillator neuron when frequency of the external non-

stationary signal and dynamics of the natural frequency 

of the neuron are equal is determined. 

Information coding with nonlinear oscillator neuron on 

the basis of frequency modulation and decoding using an 

inverse operator, which acts on the output signal vector 

were suggested. 
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