
I.J. Intelligent Systems and Applications, 2018, 2, 27-36
Published Online February 2018 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijisa.2018.02.03

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 2, 27-36

Automated Bug Assignment in Software

Maintenance Using Graph Databases

Satish C J
School of Computer Science and Engineering, VIT University, Vellore, 632014, India

E-mail: satish.cj@vit.ac.in

Anand Mahendran
School of Computer Science and Engineering, VIT University, Vellore, 632014, India

E-mail: manand@vit.ac.in

Received: 28 May 2017; Accepted: 21 July 2017; Published: 08 February 2018

Abstract—Processes involved in maintaining a system

play a crucial role in enhancing customer satisfaction and

longevity of the system. Maintenance engineers are the

most critical resources in Software Maintenance. They

play a significant role in fixing bugs and ensuring the

normal functioning of systems. Software maintenance is a

tedious task for novice engineers who are new to the

system domain. The lack of up-to-date documentation

makes system comprehension more challenging for

inexperienced engineers. Assignment of high priority

bugs to novice engineers may lead to inappropriate fixes

and delay in the revival of an impacted system. Such

issues may degrade customer satisfaction and also poor

fixes can have a severe impact on the functioning of the

system at a later stage. Our research is focussed on

identification of engineers with the right level of

experience to fix a given bug. We have used the concept

of page ranking and graph databases to compute the

importance of bugs and assignees in a graph. A newly

reported bug will be scored and matched with bugs that

have a similar score in the graph database. Assignees who

have fixed a bug that closely maps the score of the

reported bug will be assigned the task of fixing the bug.

We have implemented this methodology using bug

reports from QT framework on neo4j graph database. Our

results are promising and will definitely pave way for a

new bug assignment strategy in software maintenance.

Index Terms—Software maintenance, Software

engineering, Bug Assignment, Graph Databases.

I. INTRODUCTION

Novice engineers who are assigned to maintenance

tasks spend a lot of time and effort in understanding the

existing system before making changes to the system [1].

As documents get outdated and obsolete during the

maintenance phase, software change management and

comprehension becomes cumbersome for novice

engineers [2-3]. When such inexperienced engineers are

assigned high priority bugs there is a greater chance of

erroneous fixes or fixes getting delayed due to the meagre

domain knowledge.

High priority bugs should be handled with utmost care

and any delays or errors associated with high priority

bugs may have a severe impact on the business processes

of an organization. Such issues can be avoided if we are

able to identify or rank engineers based on their expertise

with bugs on a given domain. The expertise of the

engineers can be determined by associating them with the

types of bugs they have fixed in the past. Our research is

focused on identification of engineers with the right

expertise to fix a bug. By right expertise we mean the

experience gained by every engineer in fixing bugs of a

specific type in a specific component of a project. When a

new bug of a specific type arises from a specific

component in a project then that bug is assigned to the

next available engineer who has the maximum experience

in fixing such type of bugs from that component.

Manual identification of an engineer to fix a bug is a

time taking process [4]. For changing the status of a bug

from Unconfirmed to New in Mozilla took 26.1 days on

an average by managers. One of the main reasons for

such processing is found to be the time spent on manual

verification of bugs and identification of suitable

engineers to fix the bugs [5]. Hence faster identification

of suitable engineers for fixing bugs will be a great

performance booster for software maintenance [6].

Research has focused on application of Machine

learning techniques towards bug assignment strategies [7-

12]. The issues with machine learning techniques are they

are semi-automated techniques and they do not deal with

inactive developers and work load balancing while

assignment of bugs. Machine learning techniques make

bug assignment more complicated as they need special

tools and people with expertise for data pre-processing,

application and result analysis. Moreover the results

become inaccurate when the data gets older and there is a

constant need for data sync between the transaction

processing systems and the data warehouses.

There is a need for consistent update of data to the

training set to maintain accuracy of the prediction.

Moreover the number of classes is very large in the

datasets, for instance there are 584 assignees to which we

28 Automated Bug Assignment in Software Maintenance Using Graph Databases

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 2, 27-36

can assign bugs for QT open source software and

therefore we need separate machines, tools and resources

to export data and run our algorithms on the data as the Y

multiclass classification is a slow process. Identification

of engineers who can work on severe tickets using

machine learning is difficult as the number of severe

tickets reported for a component is comparatively less

when compared to normal tickets and the datasets

normally suffer from the class imbalance problem.

Khatun et al established that associating key words

extracted from bug reports of bugs fixed in the past with

engineers who fixed them can help determine the

expertise of the engineers [13]. An algorithm has been

proposed for extraction of keywords and identification of

developers who fixed the bugs. This approach will

require continuous refinement when new projects,

components are implemented and the list of keywords are

not static. Moreover the keywords of a bug cannot be

alone used to determine the engineer as the bugs with the

same keywords can have different priorities. A severe

bug should be handled by an experienced engineer and a

low priority bug should be assigned to a novice engineer.

To overcome all these issues we propose graph databases

as the solution towards maintenance of bug reports.

Our approach is unique and this is the first attempt

towards using graph databases for scoring and assigning

bugs to engineers. The method is preferable over the

machine learning techniques as there is no process of

extraction, parsing or syncing of data needed. The entire

database for bug management can be on the graph

database and our method can be effectively implemented

on the bug management tool directly. The proposed

method handles automated bug assignment along with

workload balancing for engineers. Graph databases

manage the data as graphs internally and hence make the

relationships available as readymade graphs in the

database. The identification of suitable maintenance

engineers is possible with a few cypher queries without

any specialized tools or extraction process. The method

also offers a greater flexibility with respect to

identification of engineers who map closely to the

domain of a reported bug. This paper is organized as

follows: in Section II, we have detailed our proposed

methodology, in Section III we have discussed the

implementation of the methodology and its results on an

open source bug repository, in Section IV we have

presented our conclusion and future work.

II. PROPOSED METHODOLOGY

The proposed methodology involves the following

steps

A. Conversion of Projects, Components, Bugs and

Assignees to Nodes in a graph using graph databases

The data on projects, components and their

corresponding bugs are converted to nodes in a graph

using a graph database. Separate nodes are created for

projects, components, bugs and assignees in the database.

Assignees are the engineers who are assigned bugs.

Project name, project id, project weight become

properties of the project node. Component name,

component id, component weight and project name

become properties of the component node. Bug id,

priority, assignee name, component name become the

properties of the component node. Assignee id, assignee

name become the properties of the assignee node. There

can be addition of any other properties to the nodes but

we recommend the addition of the properties mentioned

above as a minimum requirement for the creation of the

graph.

B. Assigning relationships between Projects,

Components , Bugs and Assignees in the database

Relationships should be established between all the

nodes created in the previous step. We have mapped all

the components for a project using the project name in

the project node and the project name in the component

node. Bugs are mapped to components using the

component name property in the bug node. Assignees are

mapped to bugs using the assignee name property in the

bug node.

C. Assignment of Initial Weights to Projects

Projects are created in every organization for

implementation of new systems or for releasing a major

revision to an existing system. Projects arise out of

business demands and significance of a project can be

determined by the importance of the business processes

that are being automated. Every project should be

assigned a weight based on the business processes

supported. Such weights can be determined by business

managers for an organization. We recommend the

assignment of initial project weight (IPiW - Initial Project

Weight for i
th

 project in the database)) to every project in

an organization

D. Assignment of Initial Weights to every Component in

a Project

A Project is normally created for automating several

business processes for an organization .Projects are made

of components. Each component can in turn handle

specific business functionality. Within a project each

component can be assigned a weight based on the

importance of the business functionality supported by the

component. The business functionalities can be assigned

weights after consulting the users of the functionality and

business managers. Every component should be assigned

initial component weights (ICiW- Initial Component

Weight for i
th

 component in the database) within a project.

E. Assignment of Initial Weights to Bugs based on their

Priority

Bugs can get their weight based on the priority they are

assigned. Bugs are normally categorized as blockers,

critical, important and low. Weights can be assigned to

the bugs based on the priority. A blocker can get more

weight than a critical bug. Every bug is assigned initial

bug weights (IBiW-Initial Bug Weight for i
th

 bug in the

database) based on the priority of the bug.

 Automated Bug Assignment in Software Maintenance Using Graph Databases 29

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 2, 27-36

F. Computing the Final Weights of Components, Bugs

and Assignees in the Graph

According to Page Rank algorithm, the page rank of a

page depends on the page ranks of the pages pointing to it

[14].Likewise the importance of a component can be

computed by using the importance of a project that

contains the component. The computation of the final

component weight for component 1(FC1W) is the sum of

the initial component weight assigned by business

managers for component 1 and the initial project weight

(IP1W) for the project pointing to component 1 in the

graph .The Final Component weights of two components

are shown in Figure 1.

Fig.1. Computation of Final Weights in the Graph.

The computation of final bug weights (FBiw) is done by

summation of initial bug weight assigned using the

priority of the bug with the final component weight

computed for the component. The initial bug weights for

bug1 and bug2 according to Figure 1 is 5 and 2.The final

bug weight for bug 1 is the summation of Final

component weight of component 1 and initial bug weight

of bug 1. Likewise the process is repeated for computing

the final bug weights for each bug in the database.

The weights are computed for assignees based on the

computed final weight of the bugs linked to them in the

graph. The weight for assignee 1 in Figure 1 is computed

by summation of final bug weight for bug1 and bug2.This

process is repeated for all assignee nodes in the graph.

The components are graded using the projects they

belong to along with their initial weights. The bugs are

graded using the components that contain those bugs and

the severity of the bugs. The assignees are graded using

the type of bugs they have fixed. The list of assignees can

be ordered by their weight to get a ranking of all

assignees.

G. New Bug Assignment using Final Bug Weights and

Final Assignee Weights in the graph

A new bug gets reported along with bug priority, the

project name and component that contain the bug. Using

the bug priority an initial bug weight (IBiw) can be

assigned to the bug. The project node and component

nodes can be used for computing the final bug weight for

the bug (FBiw).Using the final bug score for the reported

bug, the graph database should be scanned for bugs with

similar FBiw values belonging to the same component and

project as that of the reported bug.

If the Reported bug’s weight (FBiw) = Database bug’s

weight (FBiw)

a. Identify the assignee linked to the bug and assign

the reported bug to that assignee.

If the Reported bug’s weight (FBiw) > All Database

bugs weight (FBiw) for that component in the project then

a. Scan the bug database graph and find the bug with

the highest level of FBiw for the component

b. Identify the assignee linked to that bug

c. Assign the reported bug to that assignee

If the Reported bug weight (FBiw) < All Database bugs

weight (FBiw) for that component then

a. Scan the bug database graph and find the bug with

the lowest level of FBiw for that component in the

project

b. Identify the assignee linked to that bug

c. Assign the reported bug to that assignee

If the Reported bug’s (FBiw) falls between the Fbiw

range of Database bugs [for instance if FBiw of reported

bug is 12 and we have bugs with FBiw values ranging

from 11 to 14 for that component in the database] then

b. Scan the database graph to get the bug with an

higher level of FBiw than the reported bug for that

component

c. Identify the assignee for the bug in the graph

d. Assign the reported bug to that assignee

H. Handling assignment overload for assignees

The maximum number of bugs an assignee should be

assigned at any given time is denoted by Threshold Bug

30 Automated Bug Assignment in Software Maintenance Using Graph Databases

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 2, 27-36

Count (TBC). The TBC for all assignees will be

determined by the team managers. The number of open

bugs assigned to each assignee is denoted by the open

bug count (OBC).Bugs should be only assigned to

assignees whose OBC is less than TBC. If OBC is greater

than or equal to TBC for a matching assignee then the

next suitable bug in the list of database bugs that map to

the reported bug’s final bug weight can be determined.

The assignee linked to that bug can be assigned to the

reported bug after checking the TBC for that assignee.

The process is repeated until an assignee with open bug

count less than the threshold bug count is found. This

strategy will prevent overloading assignees but it may

lead to assignment of high priority bugs to inexperienced

assignees when the experienced assignees are overloaded

Consider the following graph database in figure 2 on

bug reports. Node P represents Project; Node C1

represents a component of the project. Node B1 and B2

represent closed bugs on component C1. Node A1 and

A2 represent assignees who have fixed the bugs B1 and

B2.The following weights are assigned to nodes in the

graph.

1 = (P) IP1w (1)

 2=)(C IC 11w (2)

3=)(CIC + (P) IP =)(C FC 1 1w1w11w (3)

3 =)(B IB 11w (4)

6 =)(B IB +)(C FC =)(B FB 11w11w11w (5)

 2 =)(B IB 22w (6)

 5 =)(B IB +)(C FC =)(B FB 22w11w22w (7)

 6 =)(B FB = FA 11w1w (8)

 5 =)(B FB = FA 22w2w (9)

 5 = TBC (10)

2 =)(A OBC 1 (11)

3 =)(A OBC 2 (12)

Case 1:

If Br is a newly reported bug with Final Bug weight

(FBrw) = 6 for project P and component C1 Then the

newly reported bug’s weight matches with weight of Bug

B2 in the database. assignee A2 is linked to bug B2. The

open bug count (OBC) of assignee A2 is less than

threshold bug count (TBC) and hence reported Bug Br is

assigned to assignee A2.

Case 2:

If the final bug weight (FBrw) of Br = 8 for project P

and component C1 then the bug with the highest FBiw for

that component in the database is found. The bug with the

highest FBiw in the graph for component C1 is bug B2 with

a weight of 6.The assignee mapped to bug B2 is assigned

bug Br

Fig.2. Sample Database Graph

If the OBC of assignee A2 is greater than or equal to

TBC then the bug with the next FBiw is scanned for. Here

bug B1 is the next bug with FBiw as 5.The reported Bug

Br is assigned to assignee of the bug B1 if the OBC (A1) is

lesser than TBC.If all assignees are having OBC greater

than or equal to TBC then the manager can take a

decision on the assignment of the bug

Case 3:

If FBrw of Br = 4 then the bug with the lowest FBiw for

that component in the graph is found. The bug with the

lowest FBiw in the graph for component C1 is bug B1 with

a weight of 5.The assignee mapped to bug B1 is assigned

bug Br. If OBC (A1) greater than or equal to TBC then the

bug with the next lowest FBiw is scanned for. Here bug

B2 is the next bug for component C1 with FBiw as 6.The

reported Bug Br is assigned to assignee of the bug B2 if

OBC (A2) is lesser than TBC. If all assignees are having

OBC greater than or equal to TBC then the manager can

take a decision on the assignment of the bug.

III. IMPLEMENTATION AND RESULTS

In this section we discuss about the implementation of

our proposed methodology. The methodology was

implemented using QT bug reports in neo4j graph

database. QT is open source software. Bug management

for QT is done using JIRA, a bug tracking tool developed

by Australian Company Atlassian [15].The

implementation was carried out using the steps mentioned

below

A. Extraction of Bug Reports from JIRA

The bug reports were extracted from bug tracking tool

JIRA as Excel Files. As JIRA was configured to allow

only downloads of thousand bugs per report, there was a

need to download many reports. Our approach was to

download bug reports for every month, as the number of

bugs reported for every month was lesser than thousand.

 Automated Bug Assignment in Software Maintenance Using Graph Databases 31

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 2, 27-36

Reports for the last five years [2011-2016] were extracted

as excel files from JIRA tool.

Using an excel macro to merge files; the individual

reports were merged as one single excel file. The merged

report had 43840 rows and 71 columns. Only bugs that

had the status closed were considered in our

implementation. There were a total of 28307 bugs with

the closed status. The extraction process is shown in

figure 3.

B. Loading Bug Report files in to Neo4j Graph database

The information on projects, components, bugs,

assignees were extracted from the excel file and loaded in

to neo4j graph database. We have assigned random initial

weights to all projects in the database. There were 20

projects and each project was assigned a random weight

between 1 and 10 as the initial project weight (IPiw).The

total number of components was 1875 for all projects.

Random weights between 1 and 10 was assigned to all

components as the initial component weight (ICiw).

QT Bug

Tracking

System

Bug
Reports Bug

Reports

Bug

Reports

 Bug

Reports

[Excel

Excel Macro

for Merging

files

Neo4j Graph

database

Assignment of

Initial Project

Component,

and bug weights

Computation of

Final Project,

Component, bug

and assignee

weights

Fig.3. Extraction and Load Process

The following cypher query was used for extraction of

project data and creation of project nodes in neo4j

 Load Csv With Headers From

'file:///project1.1.csv' AS Projects

create(p:project{label: Projects. Project,

id:Projects. Pid, pweight:Projects. Pweight})

The above query was modified and repeated for

creation of components, bugs and assignees in neo4j

C. Creation of relationships between nodes

The relationships are created between projects and

components using project name as a linking property in

both project and component nodes. The relationship is

named as contains. The cypher query for linking

components with projects is given below

 match (p:project),(c:component) where p.label =

c.project create (p)-[r:contains]->(c) return p,r,c;

Relationship between components and bugs is

established using the component name property as a

linking property for both the nodes. The relationship is

named as sourceof. The cypher query for the creation of

the relationship is given below

 match(c:component),(b:bug) where c.label =

b.component create (c)-[r:sourceof]->(b) return

b,r,c

The relationship established between a sample project

“Qt Creator” and all its components is shown in Figure

4(a).Relationship established between a component and

all its bugs are shown in Figure 4(b) Relationship

between bugs and assignees were created using the

assignee name property as the linking property in both the

bug and assignee nodes. The relationship is named as

assignedto.The cypher query for establishing this

relationship is given below

 match(b:bug),(a:assignee) where b.assignee =

a.assignee create (b)-[r:assignedto]->(a) return

b,r,a

Relationship established between bugs and assignees is

shown in figure 4(c). A subsection of the final complex

graph with all relationships is shown in Figure 4(d)

D. Computing Final Component Weights for

Components in the graph

The final weight of a component is the summation of

the initial component weight and the initial project

component weight .The summation is achieved using the

cypher query on the database.

 match (p:project)-[r1:contains]->(c:component) set

c.cweight = toint(p.pweight) + toint(c.cweight)

return p,r1,c;

32 Automated Bug Assignment in Software Maintenance Using Graph Databases

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 2, 27-36

E. Computing Final Component Weights for all bugs in

the graph

Initial bug weights (IBiw) were assigned to bugs using

the priority of bugs. Priority was maintained using the

following priority levels for bugs reported for QT

framework.

 P0: Blocker

 P1: Critical

 P2: Important

 P3: Somewhat important

 P4: Low

 P5: Not important

The initial bug weights assigned to bugs based on their

priority is given in Table 1. We have assigned weights

ranging from 0 to 6 in the descending order based on the

priority. The initial bug weights can be determined by

team leaders.

(a)

(b)

(c)

(d)

Fig.4. (a) - Relationship between Project and Component

(b) - Relationship between Component and Bug

(c) - Relationship between Bug and Assignee

(d) - Subsection of Final Graph with all Relationships

Table 1. Initial Bug Weights

Bug Priority
Initial Bug Weights

Assigned

P0: Blocker 6

P1: Critical 5

P2: Important 4

P3: Somewhat

important
3

P4: Low 2

P5: Not important 1

Not Evaluated 0

 Automated Bug Assignment in Software Maintenance Using Graph Databases 33

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 2, 27-36

The following Cypher queries were executed for

assigning Initial Bug Weights

 match (b:bug) where b.priority = 'Not Evaluated'

set b.bweight = 0

 match (b:bug) where b.priority = 'P5: Not

important' set b.bweight = 1

 match (b:bug) where b.priority = 'P4: Low' set

b.bweight = 2

 match (b:bug) where b.priority = 'P3: Somewhat

important' set b.bweight = 3

 match (b:bug) where b.priority = 'P2: Important'

set b.bweight = 4

 match (b:bug) where b.priority = 'P1: Critical' set

b.bweight = 5

 match (b:bug) where b.priority = 'P0: Blocker' set

b.bweight = 6

The final bug weight (FBiw) is calculated by summing

up the initial bug weight with the final component weight

of the component which is the source of the bug. The

following cypher query was executed on the database to

compute final bug weights

 match (c:component)-[r1:sourceof]->(b:bug) set

b.bweight=toInt(c.cweight)+toInt(b.bweight)

return c,r1,b

F. Computing Final Assignee Weights for all Assignees

in the Graph

The final weight for all assignees is computed as the

sum of the final weights of all bugs linked to them in the

graph .The following cypher query computes the weights

of all assignees

 match p=(b:bug)-[r:assignedto]->(a:assignee) set

a.aweight=toint(b.bweight)+toint(a.aweight) return

p

The assignees can also be ordered based on the

assignee weight using the cypher query below

 match (a:assignee) return a.aweight,a.assignee

order by a.aweight desc

Table 2. Assignee Ranking

a.aweight a.assignee

15877 Daniel Teske

11859 Tobias Hunger

10874 Friedemann Kleint

9221 Eskil Abrahamsen Blomfeldt

8779 Joerg Bornemann

8253 hjk

7893 Oswald Buddenhagen

6749 Thiago Macieira

6609 Eike Ziller

6021 J-P Nurmi

The ranking of the top 10 assignees that have the

highest weights is given in table 2 .This enables the

tracking of experienced assignees in an organization

The approach offers a lot of flexibility .The experience

gained by an assignee in a specific project or on a specific

component or bug type can be computed. This flexibility

allows identifying assignees with experiences from

different perspectives within the database. If we wish to

rank the assignees only based on the experience they have

gained by working on high priority tickets [P0: blockers]

in the database then we have to traverse through every

bug with priority has P0: blockers that are linked to the

assignee in the graph. The final assignee weight will be

the sum of all final bug weights of bug nodes with

priority as P0: blockers. We have executed the following

cypher query on the database to find the assignees

ordered by the experience they have gained by fixing

only P0: blockers bugs.

The cypher query below identifies assignees having a

relationship with blocker bugs in the graph and computes

the final assignee weight by summing up the final bug

weights of all blocker bugs linked to them. The final

assignee weight gained for fixing blocker bugs is stored

in the variable prweight for each assignee.

 match (b:bug{priority:'P0: Blocker'})-

[r3:assignedto]->(a:assignee) set a.prweight=

toInteger(b.bweight)+ toInteger(a.prweight) return

b,r3,a

The assignees can then by ordered by the prweights

using the cypher query below

 match (a:assignee) return a.prweight,a.assignee

order by a.prweight desc

The result of the query is given in table 3. Likewise the

ranking can be done for all assignees within a project, for

a component, for a specific bug priority and so on. This

method of ranking enables us to identify the candidates

with varying levels of experience on various components,

projects and types of bugs

Table 3. Assignee Ranking Based on Experience Gained by Fixing P0

Blocker Bugs

a.prweight a.assignee

243 Iikka Eklund

216 Kai Khne

195 Oswald Buddenhagen

168 Heikki Halmet

162 Simon Hausmann

156 Daniel Teske

149
Eskil Abrahamsen

Blomfeldt

145 Qt Release Team

144 Tor Arne Vestb

130 Sean Harmer

34 Automated Bug Assignment in Software Maintenance Using Graph Databases

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 2, 27-36

G. Assignment of New Bugs to Assignees using the

computed weights.

We have considered a specific project and component

for bug assignment from the database. The name of the

project is “Qt on Raspberry Pi (Obsolete)” and the name

of the component mapped to that project is mt-cross-tools.

The IPiw assigned for the project is 3 and the ICiw

assigned for the component is 6 in the database. There are

eight bugs mapped to the component as shown in figure

5.Assignee by name Rajiv M Ranganath has fixed and

closed all the bugs for this component. The lowest FBiw

for the bugs is 11 and the highest FBiw value is 15.

Case 1:

 If a new bug is reported for Component mt-cross-

tools in project “Qt on Raspberry Pi (Obsolete)”

with priority has P0: Blocker then the IBiw value

for the reported bug is 6 using table I values. The

FBiw for the bug is 15[FCiw+IBiw].

 As the reported bug’s FBiw value matches with

the FBiw bug in the database we retrieve the

assignee [Rajiv M Ranganath] linked to the bug

and assign the reported bug to Rajiv

The cypher query below retrieves the name of the

assignee who has fixed bugs for component 'mt-cross-

tools' that has a bug weight 15.The output of the query

retrieves Rajiv and thus it is able to track the right

assignee for the component.

 match (b:bug{bweight:15,component:'mt-cross-

tools'})-[r1:assignedto]->(a:assignee) return

a.assignee,a.aweight

Output of the query from neo4j is given in figure 6. We

have not used OBC and TBC checks in our

implementation as we have not loaded the bugs with the

open status in to neo4j.

Fig.5. Bug database graph

Fig.6. Assignee for Case 1 type Bug

Case 2:

If the reported bug has a bug weight greater than 15

then there will be no bugs matching the bug score of the

reported bug. The assignee who fixed the bug with the

highest final bug weight for the component will be

assigned the bug. Let us consider a FBiw of 18 for the

newly reported bug .The match for a bug with FBiw equal

to 18 using the cypher query below will not return any

nodes from the database

 match (b:bug{bweight:18,component:'mt-cross-

tools'})return b

We will scan the graph for bugs with weights lesser or

greater than the FBiw of the reported bug using the cypher

query given below. The output is given is figure 7.

 match (b:bug{component:'mt-cross-tools'}) where

b.bweight>18 or b.bweight<18 return

b.id,b.bweight

Since the reported bug has final bug weight greater

than all closed bugs for the component, the new bug will

be assigned to the assignee who fixed the bug with the

highest FBiw from the list. The assignee who fixed the

bug with bug id 11415 will be assigned the newly

reported bug. The cypher query below returns the

assignee who has fixed the bug with the highest FBiw in

the list given in figure 7

Fig.7. Bug weights < > 18

 Automated Bug Assignment in Software Maintenance Using Graph Databases 35

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 2, 27-36

 match (b:bug{component:'mt-cross-tools'})-

[r1:assignedto]->(a:assignee) return

max(b.bweight),a.assignee

The assignee is assigned the newly reported bug and

the output of the query is given in the figure 8 below

Fig.8. Assignee for Case 2 Scenario

Case 3:

If the reported bug has a bug weight lesser than 11 then

there will no bugs matching the bug score of the reported

bug. The assignee who fixed the bug with the lowest final

bug weight for the component in the graph will be

assigned the bug. Let us consider an FBiw of 10 for the

newly reported bug. The bug will be assigned to the

assignee who fixed the bug with the lowest FBiw from the

list given in figure 7 .The cypher query is given below

 match (b:bug{component:'mt-cross-tools'})-

[r1:assignedto]->(a:assignee) return

min(b.bweight),a.assignee

The output of the query is given below in figure 9.

Thus we were able to map the reported bugs to assignees

with the right levels of experience using the final bug

weights. The implementation of TBC and OBC checks

can be achieved easily by importing bugs with open

status in to the graph database and counting the number

of bugs with the open status that are linked to an

identified assignee. These checks can again be achieved

by a few simple cypher queries.

Fig.9. Assignee for Case 3 Scenario

IV. CONCLUSION AND FUTURE WORK

Maintenance engineers are the life line to a software

system. Reported bugs are assigned to engineers within a

team without actually considering their levels of

experience specific to the domain of the bug. This sort of

assignment of bugs can be really disastrous when high

priority bugs get assigned to novice engineers who are

new to the system. On the other hand low priority bugs

should be assigned to novice engineers so that they get

trained on the system without causing any major issues

by faulty fixes. It is highly recommended that bugs are

assigned to only engineers with the right levels of

experience in the domain of the bug. The current

assignment strategies do not consider the domain specific

experience gathered by an engineer before assignment of

the bug. Even an engineer who has gathered high levels

of experience in fixing high priority bugs for one specific

component in a project may not be suitable for fixing

blocker bugs in another component for another project.

Hence domain specific experience plays a very vital role

in efficient bug fixes.

Our strategy of bug assignment is unique because it

first assigns weights to projects, components and bugs

and then assigns weights to engineers based on the

experience they have gained by fixing bugs. We have

converted the bug reports to graphs and identified the

weights for every engineer using the weights of the bugs

linked to them in the graph. This strategy not only scores

engineers but also scores the bugs based on their sources

of origin. Such a strategy effectively identifies engineers

based on their bug fixes.

As we have utilized bug reports from open source

software the identification of initial weights for projects

and components was not done in consultation with

business managers. We have assigned random weights

for our projects and components and fixed weights for

bugs in our experiment. The random weights may impact

the correctness of the final results. Our approach also

proves very effective when the number of projects,

components, bugs and maintenance engineers are very

high. Such a scenario exists for open source software .QT

had 20 projects, 1875 components, 28307 bugs and 584

engineers. Such large data and relationships are very

effectively handled in graph databases. The identification

of domain specific expertise for such large number of

engineers is also done effectively using the given strategy.

Our future work will be on implementing a front end user

interface for the bug assignment tool and extending our

work to handle bug reassignment and reopening issues.

We were able to demonstrate that bug assignment can be

done using graph databases more effectively than the

traditional database models by using actual bug reports.

The results are highly promising and will definitely prove

to be an area of interest for software maintenance

engineers and researchers

REFERENCES

[1] Khan, A. S., & Mattsson, M. K. “Management of

documentation and maintainability in the context of

software handover.” In Computing Technology and

Information Management (ICCM), 2012 8th International

Conference on IEEE. Vol. 1, pp. 238-243,April 2012

[2] Satish, C. J, and T. Raghuveera. "Visualizing object

oriented software using virtual worlds." In: Proc. of the

4th WSEAS International Conf. on Software Engineering,

Parallel & Distributed Systems. World Scientific and

Engineering Academy and Society (WSEAS), 2005.

36 Automated Bug Assignment in Software Maintenance Using Graph Databases

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 2, 27-36

[3] Satish, C. J. and M. Anand. "Software Documentation

Management Issues and Practices: A Survey." Indian

Journal of Science and Technology Vol. 9, Issue 20,

2016.

[4] Banerjee, S., Syed, Z., Helmick, J., Culp, M., Ryan, K.

and Cukic, B.,”Automated triaging of very large bug

repositories.” Information and Software Technology,2016

[5] Jeong, G., Kim, S. and Zimmermann, T., “Improving bug

triage with bug tossing graphs.” In Proceedings of the the

7th joint meeting of the European software engineering

conference and the ACM SIGSOFT symposium on The

foundations of software engineering pp. 111-120.

ACM,2009

[6] Xia, Xin, et al. "Improving automated bug triaging with

specialized topic model." IEEE Transactions on Software

Engineering 43.3, pp 272-297, 2017.

[7] Jonsson, L., Borg, M., Broman, D., Sandahl, K., Eldh, S.

and Runeson, P., “Automated bug assignment: Ensemble-

based machine learning in large scale industrial contexts.”

Empirical Software Engineering, 21(4), pp.1533-

1578,2016

[8] Bhattacharya, P., Neamtiu, I. and Shelton, C.R.,

“Automated, highly-accurate, bug assignment using

machine learning and tossing graphs.” Journal of Systems

and Software, 85(10), pp.2275-2292,2012

[9] Zhang, T. and Lee, B., March. “A hybrid bug triage

algorithm for developer recommendation.” In

Proceedings of the 28th annual ACM symposium on

applied computing pp. 1088-1094. ACM,2013

[10] Nagwani, N.K. and Verma, S., January. “Predicting expert

developers for newly reported bugs using frequent terms

similarities of bug attributes.” In ICT and Knowledge

Engineering (ICT & Knowledge Engineering), 2011 9th

International Conference on IEEE, pp. 113-117,2013

[11] Tian, Y., Lo, D., Xia, X. and Sun, C.”Automated

prediction of bug report priority using multi-factor

analysis.” Empirical Software Engineering, 20(5),

pp.1354-1383.2015

[12] Zhang, W., Wang, S. and Wang, Q.,”KSAP: An approach

to bug report assignment using KNN search and

heterogeneous proximity. Information and Software

Technology, 70, pp.68-84. 2016

[13] Khatun, Afrina, and Kazi Sakib. "A bug assignment

technique based on bug fixing expertise and source

commit recency of developers." Computer and

Information Technology (ICCIT), 2016 19th International

Conference on. IEEE, 2016.

[14] Page, L., Brin, S., Motwani, R. and Winograd, T.,“The

PageRank citation ranking: Bringing order to the web”.

Stanford InfoLab ,1999

[15] QT issues download page

https://bugreports.qt.io/browse/QTWEBSITE-745?jql=,

Nov 2016

Authors’ Profiles

Satish C J is currently pursuing his Ph.D.

degree with the School of Computer Science

and Engineering, VIT University, Tamilnadu,

India. He received his Master of Engineering

degree from Anna University and Bachelor

of Engineering degree from Madras

University Tamilnadu, India. He was with

Tata Consultancy Services for five years

developing and maintaining software systems. His research

interests include Software Maintenance, Software Visualization

and Software Documentation Management

Dr. Anand Mahendran received his Ph.D

(Computer Science and Engineering) degree

from VIT University, India in the year 2012,

M.E (Computer Science and Engineering)

degree from Government College of

Engineering, Tirunelveli (Anna University),

India in the year 2005 and B.E (Computer

Science and Engineering) degree from VIT

University, India in the year 2003. His

research interests include formal language theory and automata,

bio-inspired computing models. He has published more than 35

papers in refereed international journals and refereed

international conferences. He is currently working as an

Associate Professor in School of Computer Science and

Engineering, VIT University, Vellore, India.

How to cite this paper: Satish C J, Anand Mahendran,

"Automated Bug Assignment in Software Maintenance Using

Graph Databases", International Journal of Intelligent Systems

and Applications(IJISA), Vol.10, No.2, pp.27-36, 2018. DOI:

10.5815/ijisa.2018.02.03

