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Abstract—In this paper a new Quantum Tunneling 

Particle Swarm Optimization (QTPSO) algorithm is 

proposed and applied to the training of feedforward 

Artificial Neural Networks (ANNs). In the classical 

Particle Swarm Optimization (PSO) algorithm the value 

of the cost function at the location of the personal best 

solution found by each particle cannot increase. This can 

significantly reduce the explorative ability of the entire 

swarm. In this paper a new PSO algorithm in which the 

personal best solution of each particle is allowed to tunnel 

through hills in the cost function analogous to the 

Tunneling effect in Quantum Physics is proposed. In 

quantum tunneling a particle which has insufficient 

energy to cross a potential barrier can still cross the 

barrier with a small probability that exponentially 

decreases with the barrier length. The introduction of the 

quantum tunneling effect allows particles in the PSO 

algorithm to escape from local minima thereby increasing 

the explorative ability of the PSO algorithm and 

preventing premature convergence to local minima. The 

proposed algorithm significantly outperforms three state-

of-the-art PSO variants on a majority of benchmark 

neural network training problems. 

 

Index Terms—Particle Swarm Optimization algorithm, 

Quantum Tunneling, Artificial Neural Networks, Global 

Optimization, Nelder Mead, Feedforward Neural 

Networks. 

 

I.  INTRODUCTION 

Artificial Neural Networks (ANNs) are computational 

models inspired by the human brain and have been 

successfully applied to a wide range of pattern 

recognition, function approximation, classification and 

nonlinear regression problems [1]. A feedforward neural 

network is an inter connection of neurons arranged in 

layers. It consists of an input layer, an output layer and 

zero or more hidden layers. The input layers and the 

subsequent layers are connected by links with weights. 

The strength of the link depends on the weight of the link. 

The performance of the neural network depends on the 

number of neurons in each layer and also the weights [1].  

Training a neural network involves using an 

optimization algorithm to compute the weights thereby 

minimizing the mean squared error between the targets 

and actual network outputs [2]. Traditionally gradient 

descent based optimization schemes have been used to 

train neural networks. Due to the local and deterministic 

nature of the search performed by gradient based schemes 

the problem of convergence to a local minima near the 

initial random starting point is always an issue. Further 

the ANN error function is nonconvex and highly 

multimodal and finding the global minimum is a NP 

complete problem and exact solution is not practical [3]. 

Thus heuristic global optimization algorithms that 

compute a good local minimum for neural network 

training are of interest. 

 

II.  RELATED WORK 

In “Iris recognition using artificial neural networks” [4] 

the authors trained a feedforward neural network with 

Backpropagation (BP) algorithm for iris recognition. 

Backpropogation algorithm is a deterministic local search 

algorithm that converges to a local minimum close to the 

randomly chosen initial solution. The cost function is the 

average of the difference between the target and the 

neural network’s output over all the training samples. BP 

works in two phases. In the first phase, a forward pass 

calculates the network’s output for the randomly chosen 

weights. The error function then determines the error 

obtained by the network for the chosen weights and 

biases. The calculated error is then propagated backwards 

from the output layer to the hidden layers in the second 

phase. The weights are then adjusted to reduce the error 

[5, 6]. Since BP uses simple gradient descent to train 

ANNs it is very efficient but suffers from two 
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fundamental limitations. The learning time taken by the 

neural network increases with the increase in the size of 

the data. Since the weight update is proportional to the 

gradient in BP it does not perform well in the flat regions 

of the search space where the gradient is almost zero [7]. 

Biologically inspired optimization algorithms like 

Genetic Algorithm (GA) and Particle Swarm 

Optimization (PSO) on the other hand perform a random 

search and have the ability to escape from local minimum 

and locate a good approximation to the global minimum 

[8]. Thus training ANNs with stochastic global 

optimization algorithms which explore multiple local 

minima like GA and PSO can be advantageous because 

of the possibility of locating deep local minima compared 

to deterministic gradient based algorithms. 

GA is inspired by natural evolution and employs 

selection, crossover and mutation operations to refine an 

initial random population [9]. It is stochastic and 

derivative free and can be applied to both continuous and 

discrete optimization problems [10]. Different variants of 

the GA have been used to calculate the weights of the 

feedforward neural network. GA with crossover was used 

to train ANN in “Improvement of Real-valued Genetic 

Algorithm and Performance Study” by [11]. A new 

distributed GA reinforced by perceptron learning rule was 

used in “Design architectures and training of neural 

networks with a distributed genetic algorithm” [12], 

whereas a variation of GA known as soft algorithm which 

combines GA with backpropogation was used to train 

ANNs by Adawy et.al., in “A SOFT-backpropagation 

algorithm for training neural networks”[6]. Application of 

a parallel implementation of the GA for training 

feedforward neural networks was explored in [13]. The 

limitations of GA include slow convergence to the 

optimum solution; use of complex constructs such as 

crossover, mutation and selection and the use of large 

number of adjustable parameters that determine the 

performance of the algorithm.   

The PSO algorithm which is inspired by the social 

behaviour of a flock of birds was used for training neural 

networks by Gudise et al. in “Comparison of particle 

swarm optimization and backpropagation as training 

algorithms for neural networks” [14]. PSO algorithm is 

stochastic and derivative free algorithm like GA. 

However, it does not use complex constructs such as 

crossover, selection and mutation.  It involves 

interactions between a population of agents with their 

environment as well as each other [15]. The interaction of 

agents are constrained using very simple rules. The 

interaction between the particles results in complex 

behaviour and emergence of a collective intelligence and 

problem solving ability. 

The performance of the PSO algorithm was compared 

with the backpropogation algorithm on benchmark 

nonlinear function approximation tasks by Gudise et.al. It 

was found that the PSO was the faster of the two 

algorithms for function approximation tasks as it required 

smaller computational effort to attain the same error goal.  

PSO algorithm itself has certain limits in terms of 

convergence, precision and parameter selection [14]. The 

algorithm converges prematurely to a local minimum 

thereby produced lower precision. Therefore in “A novel 

hybrid Evolutionary Algorithm based on PSO and AFSA 

for feedforward neural network training” [16] Chen 

proposed an algorithm called Artificial Fish Swarm 

Algorithm (AFSA) - PSO parallel hybrid evolutionary 

algorithm (APPHE) for training feedforward neural 

networks. The authors tested the performance of the 

proposed APPHE algorithm with the Levenberg- 

Marquardt Back propagation (LMBP) algorithm by 

training the neural network for iris data classification. 

The neural network trained using the APPHE algorithm 

did better than LMBP in terms of faster convergence to 

the good local minimum and accuracy of the result [17]. 

The explorative ability of the classical particle swarm 

optimization (PSO) algorithm is reduced because the 

value of the cost function at the location of the personal 

best solution found by each particle cannot increase. In 

this paper a new PSO algorithm inspired by the quantum 

tunneling in which the personal best solution of each 

particle is allowed to tunnel through hills in the cost 

function analogous to the quantum tunneling effect in 

Quantum Physics is proposed. The introduction of the 

quantum tunneling effect increases the explorative ability 

of the PSO algorithm and prevents premature 

convergence to local minima. 

The paper is organized as follows: first the 

mathematical formulation of the problem is presented, 

secondly heuristic algorithms for global nonlinear 

optimization are discussed, thirdly a new PSO algorithm 

with enhanced exploration ability inspired by the 

tunneling phenomenon in Quantum Physics is proposed 

and finally the performance of the proposed algorithm is 

compared to three state-of-the-art PSO algorithms on 

benchmark neural network function approximation 

problems. 

 

III.  PROBLEM FORMULATION 

A feedforward neural network is a biologically inspired 

computation model that consists of a large number of 

processing nodes called neurons which are interconnected 

in layers [1, 2]. In a feedforward neural network, the 

information flows in one direction and does not support 

feedback. Therefore it is referred to as a feedforward 

neural network. Every neuron in a layer is connected with 

all the neurons in the previous layer. These 

interconnections have different strengths called weights. 

The weights help in encoding the knowledge of the neural 

network. The weights of these interconnections can be 

adjusted by a learning algorithm in order to match the 

desired output (target). A multi- layer perceptron with 

adequate number of neurons and one hidden layer can 

approximate any nonlinear function [1]. Fig. 1 shows the 

architecture of a feedforward neural network with one 

hidden layer, two inputs and one output neuron.In 

supervised learning the input pattern is given to the 

neurons in the input layer along with the expected output 

[2]. Each neuron computes the product of the 

interconnection weights and the input and adds it with the 
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bias and presents the output to a transfer function. The 

output generated by the neural network is compared with 

the target output. 

 

 

Fig.1. A feedforward ANN with one hidden layer, two inputs and one output neuron. 
 f1 and  f2 are tansig and  purelin activation functions respectively. 

In supervised learning, the learning is done with input 

and output pairs in the form of (X , )i iY , Where i = 1 to N, 

‘N’ the number of training samples, iX  is the input 

vector X for the i
th

 training sample and iY  is the target 

output for the i
th

 training sample. Let  ( )ih X  be the 

neural network output for an input iX and Ɵ is the 

activation function. The network’s output is presented in 

(1)  
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The mean square error can be calculated as follows 
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Equation (2) defines the cost function that measures 

the difference between the ANN outputs and targets for a 

given data set. The weights of the ANN are determined 

by minimizing the cost function with respect to the 

weights. Because each neuron applies a nonlinear 

function to its weighted input to calculate its output the 

overall function h(x) calculated by the neural network 

and hence the error function E(W) are highly nonlinear. 

Thus the problem of training the weights of an ANN is a 

nonlinear global optimization problem of great 

importance. In this paper a new heuristic global 

optimization algorithm is proposed and applied to the 

problem of training feedforward neural networks. 

 

IV.  GLOBAL OPTIMIZATION 

The goal in optimization is to minimize or maximize a 

real valued function by choosing the best solution from 

an available set of candidate solutions [18]. Solutions that 

satisfy the constraints are termed as feasible solutions. In 

the case of minimization of the ANN cost function the 

goal is to determine the value of the variables (weights) 

which minimizes the function [11, 19]. An optimization 

problem can be formulated as follows 

 

min ( )f x   

Subject to x  

 

Where : nf R R  is the function that is to be minimized 

and n is the dimensionality of the vector x. The set    is 

a subset of nR . The optimization problem above can be 

viewed as finding the vector 
*x   from the domain  such 

that that *( ) ( )f x f x . A point *x    is a local 

minimum of  f over   if there exists ε > 0 such that  
*( ) ( )f x f x  for all x   \ {

*x } and  
*x x  < ε .On 

the other hand a point  A point *x    is a global 

minimum of f over   if *( ) ( )f x f x for all x . In 

general, it is only practical to compute a good local 

minimum as the problem of nonlinear global optimization 

is known to be NP-complete. 

Optimization problems can be unimodal or multimodal 

[20]. A function is unimodal if it has one local minimum 

which is also the global minimum. Multimodal functions 

on the other hand may contain numerous local minima 

which makes the problem of locating the global minimum 

either very difficult or impossible. In many instances 

optimization algorithms get stuck in local minima 

without converging to the global minimum. Thus only 
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good local minimum can be computed in general. 

However a majority of important problems like training a 

neural network involves multimodal global optimization. 

Hence, heuristic random search algorithms inspired by 

biology like PSO and GA which can compute 

approximate optimal solutions are of interest [3].  

 

V.  PARTICLE SWARM OPTIMIZATION ALGORITHM 

Eberhart and Kennedy proposed the PSO algorithm 

inspired by the swarm behavior of a flock of birds and a 

school of fishes [15]. It has been shown to outperform 

other global optimization algorithms like the GAs [15, 

16]. PSO algorithms starts with a randomly generated 

population referred to as a swarm which move around the 

search space [21, 22]. Each generated particle computes 

its best solution. The particle moves in the direction of 

the best solution found by it and also the best solution 

found by the entire swarm of particles. The personal best 

solution is referred to as pbest and the best solution 

determined by the swarm is termed as gbest.  

In the PSO algorithm every generated particle moves 

towards the best position found by that particle so far and 

the best position found by the entire group swarm of 

particles [15]. The formula for the PSO algorithm is 

given in (3) and (4). 

 

( 1) ( ) ( ( ) ( ))i i i i

iVel j Vel j P j X j      

2 ( ( ) ( ))i

d dG j X j                           (3) 

 

( 1) ( ) ( 1)i i iX j X j Vel j                       (4) 

 

where 
1 2[ , ... ]i i i i

NVel Vel Vel Vel  denotes the velocity of 

the particle i; 1 2[X , ... ]i i i i

NX X X  denotes the position of 

particle i ;  1d  and 
2d  are random numbers which are 

uniformly distributed 
1 2[ , ... ]i i i i

NP P P P is the best 

position determined by the particle i , 
1 2[ , ... ]NG G G G  is 

the best position discovered by the whole group of 

particles. Dimension of the search space is denoted by N 

and j is the iteration number. The global best solution of 

the swarm is updated with the position 
iX   if the value of  

( ) ( )if X f G  [23, 24]. 

Numerous variants of the classical PSO algorithm have 

been proposed and applied to various problems. A variant 

of the PSO called CLPSO (Comprehensive Learning 

Particle Swarm Optimization Algorithm) was proposed 

by Liang et al [25]. In CLPSO a particle not only learns 

from its own experience but also on the best experiences 

of all the particles which helps the swarm from premature 

convergence to a local minimum [26]. Although the 

algorithm performed well in multi modal problems, it did 

not provide good solutions for unimodal problems. 

Another variant of the PSO algorithm is the Dynamic 

Neighbourhood Learning Particle Swarm Optimizer 

(DNLPSO) proposed by Nasi et al. In this variant each 

particle learns from its experience and also from the 

experience of a dynamically changing neighbourhood. 

Learning from a dynamically changing neighbourhood 

helps in diversifying the learning experience of each 

particle and prevents premature convergence [27]. 

However, since the particles learn from the 

neighbourhood which is chosen at random, the particles 

might not be guided correctly. The DNLPSO algorithm is 

used for comparison in this paper.  

A.  Improving accuracy with local search 

Stochastic algorithms like PSO are computationally 

expensive because they perform a random walk in the 

search space to explore multiple local minima and hence 

tend to converge slowly. On the other hand deterministic 

local search algorithms are computationally efficient but 

perform a local search [8]. Thus approaches that combine 

the advantages of global and local search algorithms are 

of interest [3]. The Nelder Mead Simplex method is a 

derivative free local optimization technique used to 

minimize or maximize an objective function in an 

unconstrained multidimensional space [28]. In the case of 

a bi-variable function, the simplex forms a triangle and 

the technique performs a pattern search which computes 

function values at every vertex. The vertex which has the 

largest value in the case of a minimizing problem will 

reinstated by a new vertex. A new triangle is formed and 

the search continues. The method results in a series of 

triangles, for which the values of the function at every 

vertex progressively reduces. The triangle size is then 

progressively decreased and the coordinates of the least 

points are determined. The NM-Simplex method is 

computationally efficient and robust [28, 29]. In this 

paper Nelder-Mead Simplex method is used to refine the 

solution found by the PSO for the ANN training problem. 

 

VI.  A NEW QUANTUM TUNNELING PARTICLE SWARM 

OPTIMIZATION ALGORITHM (QTPSO) 

The global exploration ability of the classical PSO 

algorithm is limited because the personal best solution 

found by each particle always moves down the surface of 

the cost function towards smaller values resulting in a 

greedy search heuristic. Since the personal best solution 

always moves downhill it will always converge towards a 

nearby local minima. In this paper the personal best 

solution of each particle is allowed to tunnel through 

peaks in the cost function surface analogous to tunneling 

of quantum mechanical particles. 

In classical mechanics a particle cannot cross a 

potential barrier if its total energy is less than that of the 

barrier. However, in quantum mechanics a particle 

without sufficient energy can still cross the potential 

barrier with a small probability. Fig. 2 depicts the 

quantum tunneling effect in QTPSO. The particle is 

allowed to tunnel through the peaks in the cost function 

surface. Thus the personal best solution can tunnel 

through peaks in the cost function to reach even lower 

values and avoid getting trapped in local minima. If the 

cost ( )pC x  at the newly computed position px  is less 
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than ( )C x , the cost at the current position x , the new 

position is accepted with a probability 1. However, if 

( )pC x is greater than ( )C x  the new position is not 

discarded but accepted with a probability that depends on 

the difference between the costs and distance between the 

two positions. Analogous to quantum tunneling it is 

proposed that the tunneling probability decrease with 

respect to barrier height and length. The probability of 

accepting the new position 
px  is given in (5). 

 

 

Fig.2 The quantum tunneling effect in QTPSO. The particle tunnels 
through the peaks in the cost function surface. 

THE PROPOSED QUANTUM TUNNELING 

PARTICLE SWARM OPTIMIZATION ALGORITHM (QTPSO) 

 
 

If 
( )( ) ( )p p
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( ) 1pP x x    
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p
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            (5) 

 

Where P  is the probability that the px   will be accepted 

as the new position; x  is the current position and px  is 

the new position computed by PSO algorithm; ( )C x is the 

cost function evaluated at x ; E  is the Tunneling field. 

To encourage exploration, E is kept large in the 

beginning, therefore the probability of transition to the 

new location is close to one. As the search progresses, E 

is reduced linearly to zero to avoid losing good solutions 

already computed.  Finally the global best solution found 

by the PSO is used as the initial solution for the Nelder-

Mead Simplex local search algorithm to refine the best 

solution found by the PSO. This is done to avoid wasting 
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computational effort doing a random search around the 

global minimum once it is approximately located. The 

nomenclature used in the proposed QTPSO algorithm is 

presented in Table 1.   

Table 1. Nomenclature used in QTPSO 

Symbol Description 

N Size of the swarm 

x(i) Position of the ith  particle in the swarm 

D Dimension of the search space 

vel(i) Velocity of the ith  particle 

pbest(i) Personal best solution of the ith particle 

gbest Global best solution 

 

VII.  RESULTS AND DISCUSSION 

The performance of the QTPSO algorithm was 

compared with three heuristic global optimization 

algorithms on benchmark feedforward neural network 

function approximation tasks. The architecture of the 

feedforward network consisted of two inputs, 10 hidden 

tansigmoidal hidden layer neurons and one linear output 

neuron. This feedforward network was trained to learn 

the 2D De Jong test suite of functions using different 

heuristic global optimization algorithms and the proposed 

QTPSO algorithm. The De Jong test suite of benchmark 

functions that are used to compare the performance of the 

proposed QTPSO and the PSO variants are listed in Table 

2. The De Jong test suite provides common challenges 

that the global optimization algorithms face, such as 

multiple local minima, flat regions and narrow ridge [5]. 

The performance of the QTPSO algorithm was compared 

with the classical PSO algorithm and hybrid PSO 

algorithms such as Nelder Mead Particle Swarm 

Optimization Algorithm (NMPSO), Dynamic Multi 

Swarm Particle Swarm Optimization Algorithm 

(DNLPSO). The mean square error obtained between the 

neural network’s output trained using the various 

algorithms and the ideal output was chosen as the 

performance metric in this paper. 

Table 2. De Jong’s test suite of functions 

Function Definition 

Sphere 
2 2

1( , )f x y x y   

Rastrigin 
2 2

2( , ) 20 10(cos2 cos2 )f x y x y x y       

Griewangk 
2 2

3

( )
( , ) (cos( )*cos( )) 1

4000 2

x y y
f x y x


    

Ellipsoid 
2 2

4( , ) 2*f x y x y   

Rosenbrock 
2 2 2

5( , ) 100*( ) ( 1)f x y y x x     

 

 

Fig.3. Plot of the ideal Sphere Test Function 

 

Fig.4. Approximation of sphere function learnt by an ANN trained 
with classical PSO algorithm. 

 

Fig.5. Approximation of sphere function learnt by an ANN trained 
with NMPSO algorithm. 
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Fig.6. Approximation of sphere function learnt by an ANN trained 
with QTPSO algorithm. 

 

Fig.7. Approximation of sphere function learnt by an ANN trained 
with classical DNLPSO algorithm. 

B.  BENCHMARK PROBLEM 2 

 
2 2

2 ( , ) 20 10(cos2 cos2 )f x y x y x y       

 

Benchmark problem 2 considers approximating the 

Rastrigin function. Rastrigin function is highly 

multimodal and tests the ability of the global optimization 

algorithm to escape from local minima. A plot of the 

ideal Rastrigin function is in fig. 8. Fig. 9 indicates that 

the approximation of the Rastrigin function learnt by an 

ANN trained with the QTPSO algorithm is superior to the 

other algorithms. 

 

 

Fig.8. Plot of the ideal Rastrigin Test Function 

 

Fig.9. Approximation of rastrigin function learnt by an ANN 
trained with QTPSO algorithm 

 

Fig.10. Approximation of rastrigin function learnt by an ANN 
trained with classical PSO algorithm 

 

Fig.11. Approximation of rastrigin function learnt by an ANN 
trained with NMPSO algorithm 

 

Fig.12. Approximation of rastrigin function learnt by an ANN 
trained with classical DNLPSO algorithm 
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C.  BENCHMARK PROBLEM 3 

 
2 2

3

( )
( , ) (cos( )*cos( )) 1

4000 2

x y y
f x y x


    

 
Benchmark problem 3 considers the approximating the 

Griewangk function. The function is highly multimodal 

and tests the algorithm’s ability to explore the search 

space and escape local minima.  

A plot of the ideal Griewangk test function is shown in 

fig. 13. The approximation of the Griewangk test function 

learnt by the neural networks trained with different global 

optimization algorithms is in figs.14 to 17. Fig. 16 

indicates that the approximation of the Griewangk 

function learnt by an ANN trained with the QTPSO 

algorithm is superior to the approximation learnt with 

PSO, NMPSO and DLNPSO algorithms. 

 

 
Fig.13. Plot of the ideal Griewangk Test Function 

 

Fig.14. Approximation of Griewangk function learnt by an ANN 
trained with classical PSO algorithm 

 

Fig.15. Approximation of Griewangk function learnt by an ANN 
trained with NMPSO algorithm 

 

Fig.16. Approximation of Griewangk function learnt by an ANN 
trained with QTPSO algorithm 

 

Fig.17. Approximation of Griewangk function learnt by an ANN 
trained with DNLPSO algorithm 

D.  BENCHMARK PROBLEM 4 

 
2 2

4 ( , ) 2*f x y x y 
 

 

Benchmark problem 4 considers approximating the 

Ellipsoid function. The function is continuous and 

unimodal. A plot of the ideal Ellipsoid function is shown 

in fig. 18. The approximation of the Ellipsoid test 

function learnt by the neural networks trained with 

different global optimization algorithms is in figs. 19 to 

22. Fig. 22 indicates that the approximation of the 

Ellipsoid function learnt by an ANN trained with the 

QTPSO algorithm is superior to the approximation learnt 

with PSO, NMPSO and DLNPSO algorithms. 
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Fig.18. Plot of the ideal Ellipsoid Test Function 

 

Fig.19. Approximation of Ellipsoid function learnt by an ANN 
trained with classical PSO algorithm 

 

Fig.20. Approximation of Ellipsoid function learnt by an ANN 
trained with NMPSO algorithm 

 

Fig.21. Approximation of Ellipsoid function learnt by an ANN 
trained with DNLPSO algorithm 

 

Fig.22. Approximation of Ellipsoid function learnt by an ANN 
trained with QTPSO algorithm 

E.  BENCHMARK PROBLEM 5 

 
2 2 2

5 ( , ) 100*( ) ( 1)f x y y x x     

 

Benchmark problem 5 considers the approximating the 

Rosenbrock’s function. Rosenbrock function has a very 

narrow ridge.  Algorithms that are not able to discover 

good directions underperform in this problem. An ideal 

plot of the function is shown in Fig. 23. The 

approximation of the Rosenbrock’s test function learnt by 

the neural networks trained with different global 

optimization algorithms is in figs. 24 to 27. Fig. 27 

indicates that the approximation of the Rosenbrock’s 

function learnt by an ANN trained with the QTPSO 

algorithm is superior to the approximation learnt with 

PSO, NMPSO and DLNPSO algorithms. 
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Fig.23. Plot of the ideal Rosenbrock’s Test Function 

 

Fig.24. Approximation of Rosenbrock’s function learnt by an 

ANN trained with classical PSO algorithm 

 

Fig.25. Approximation of Rosenbrock’s function learnt by an 
ANN trained with NMPSO algorithm 

 

Fig.26. Approximation of Rosenbrock’s function learnt by an 
ANN trained with DNLPSO algorithm 

 

Fig.27. Approximation of Rosenbrock’s function learnt by an 

ANN trained with QTPSO algorithm 

Table 3 presents the mean square function 

approximation error for a feedforward ANN trained with 

different PSO variants. Table 3 clearly indicates that the 

QTPSO algorithm proposed in this paper significantly 

outperforms the classical PSO and state-of-the-art PSO 

algorithm variants on benchmark ANN training problems. 

Table 3. Comparison of Mean Square Function Approximation Errors 

Test 

Function 
PSO NMPSO DNLPSO QTSPO 

SPHERE 0.006 0.001 0.0035 1.68E-04 

Rastrigin 0.094 0.005 34.5732 9.89e-04 

Griewangk 0.237 0.055 9.25e-04 2.29e-04 

Ellipsoid 0.016 0.001 0.0090 1.70e-03 

Rosenbrock 1.4e+03 967.6 4.11e+03 468.24 

VIII.  CONCLUSION 

In this paper a new quantum tunneling PSO algorithm 

was proposed and applied to the problem of training 

feedforward neural networks to learn the challenging De 

Jong’s suite of benchmark functions. The problem of the 

personal best solution in the PSO algorithm getting 

trapped in local minima is overcome by allowing the 

personal best solution to tunnel through peaks in the cost 

function analogous to the tunneling phenomenon in 

Quantum Mechanics. In this paper the final solution is 

also refined with local search to avoid wasting 

computational effort performing stochastic search once 

the global minimum is approximately located. Thus 
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inclusion of the quantum tunneling effect allows many 

local minima to be explored and local search allows each 

local minimum to be accurately calculated. Simulation 

results on benchmark feedforward ANN function 

approximation problems indicate that the QTPSO 

algorithm proposed in this paper outperforms the three 

state-of-the-art heuristic global optimization algorithms. 

Future work can explore the effect of allowing the 

individual particles to also tunnel or take random jumps 

according to different probability distributions to further 

improve the explorative ability of the QTPSO algorithm. 

The use of low cost GPU hardware to reduce execution 

time of different PSO algorithms can also be explored. 
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