
I.J. Intelligent Systems and Applications, 2018, 1, 58-68
Published Online January 2018 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijisa.2018.01.07

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 1, 58-68

Performance of Medical Image Processing

Algorithms Implemented in CUDA running on

GPU based Machine

T. Kalaiselvi
Department of Computer Science and Applications,

The Gandhigram Rural Institute - Deemed University, Tamilnadu, India.

E-mail: kalaiselvi.gri@gmail.com

P. Sriramakrishnan and K. Somasundaram
Department of Computer Science and Applications,

The Gandhigram Rural Institute - Deemed University, Tamilnadu, India.

E-mail: sriram0210@gmail.com, ka.somasundaram@gmail.com

Received: 10 May 2017; Accepted: 06 July 2017; Published: 08 January 2018

Abstract—This paper illustrates the design and

performance evaluation of few algorithms used for

analysing the medical image volumes on the massive

parallel graphics processing unit (GPU) with compute

unified device architecture (CUDA). These algorithms

are selected from the general framework, devised for

computer aided diagnostic (CAD) system. The CAD

system used for analysing large medical image datasets

are usually a pipeline processing that includes a variety of

image processing operations. A MRI scanner captures the

3D human head into a series of 2D images. Considerable

time spent in pre and post processing of these images.

Noise filters, segmentation, image diffusion and

enhancement are few such methods. The algorithms are

chosen for study requires local information, available in

few pixels or global information available in the entire

image. These problems are best candidates for GPU

implementation, since the parallelism is naturally

provided by the proposed Per-Pixel Threading (PPT) or

Per-Slice Threading (PST) operations. In this paper

implement the algorithms for adaptive filtering,

anisotropic diffusion, bilateral filtering, non-local means

(NLM) filtering, K-Means segmentation and feature

extraction in 1536 core’s NVIDIA GPU and estimated

the speed up gained. Our experiments show that the GPU

based implementation achieved typical speedup values in

the range of 3-338 times compared to conventional

central processing unit (CPU) processor in PPT model

and up to 30 times in PST model.

Index Terms—Medical images, image processing, GPU,

CUDA, parallel processing.

I. INTRODUCTION

Graphics processing units (GPUs) are evolving at a

rapid rate in recent years, partly due to the increasing

needs of active computer graphics designing community

and parallel computing [1]. GPU is a multi-core computer

chip that performs rapid mathematical calculations,

making very efficient transfer of large blocks of data,

primarily for rendering images for games, animations and

video on a computer screen. GPU’s have lot of

computational hardware resources. Most of the time the

large resource of GPU are unused when graphics

applications like games are not running. Computation

using GPU has a huge edge over CPU in speed. Hence it

is one of the most interesting areas of research in the field

of modern medical research and development for

accelerating computing speed. In the medical domain,

GPU used to process the huge volumes of data for the

medical diagnosis to reduce computational cost.

Image processing algorithms in general are good

candidates for exploiting GPU capabilities. The

parallelism is naturally provided by per-pixel (or per-

voxel) operations. MRI processing of human head scans

is one such area to effectively utilize the GPU resources.

A MRI of human head scans are a stack of two

dimensional images from a 3D volume. To process these

slices, parallel processing capabilities in GPU can be used.

By developing appropriate parallel algorithms, MRI

processing can be accelerated to a greater extent. Some

other languages or programming interfaces to support the

parallel computing are OpenCL (Open Computing

Library), DirectX Compute and FORTRAN. Some

parallel models are available for parallel computation like

bulk synchronous parallel model (BSP) and field

programmable gate array (FPGA) [2] [3].

In this paper, we implement few commonly used image

pre-processing algorithms and operations needed for MRI

brain volume analysis pipeline using GPU programming

in CUDA and estimate speedup in GPU and CPU. In

CPU architecture, the algorithms are implemented in a

sequential manner using C++ language. The parallelism

in GPU is achieved by creating individual threads to a

 Performance of Medical Image Processing Algorithms Implemented in CUDA running on GPU based Machine 59

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 1, 58-68

pixel or a slice. We propose two parallel models and

process all the threads simultaneously in a GPU. First one

is Per-Pixel Threading (PPT) model and the second one is

Per-Slice Threading (PST) model. This classification is

based on the nature of information, local or global,

required to process the image. Local processing involves

only a single pixel and its neighbors. Global processing

involves all the pixels in the image. The implementation

of adaptive filter, anisotropic diffusion, bilateral filter and

non-local means (NLM) filter falls under the first

category, as these algorithms mainly deal with local

neighborhood information of each pixel and thus

independent. Here a thread for every pixel of the image is

created to execute the algorithms with the neighbors or

relative pixels. When PPT model is invoked it executes

all the threads in parallel and produces the results for the

image in a single run. K-Means segmentation and feature

extraction falls under the second category. They need the

global information from the entire pixels in a slice to

produces the results. Here a thread is created for every

slice of MRI volume to execute the algorithm. When this

PST model is invoked, it processes all the slices in

parallel by their respective threads and produces the

result for the entire MRI volume in a single run. The

speed performance of all algorithms using conventional

processor CPU and GPU are computed respectively and

compared.

The remaining part of this paper is organized as

follows. Detailed survey of GPU implementations on

various fields are given in the section II. Section III

describes the feature of GPU-CUDA programming model.

Section IV explains the implementation details of the

algorithms in GPU. Section V discusses the results and

section VI concludes the paper.

II. RELATED WORKS

Recently a huge research over the performance

comparison among CPU and GPU for complex computer

algorithms is actively going on. Ghorpade et al., gave an

analysis on the architecture of CUDA and done a

performance comparison on CPU and GPU [4]. Harish

and Narayanan had implemented breadth first shortest

path and single source shortest path algorithm in GPU [5].

Their result showed that GPU is 20-50 times faster than

CPU. Yadav et al., implemented texture based similarity

function using GPU [6]. They achieved the GPU 30 times

faster than the CPU. Das repeatedly computed the square

root of values in array N using both CPU and GPU [7]. It

is showed speed up range from 56 to 197 times.

Almazrooie et al. proposed a fast Fuzzy C Means

algorithm using GPU [8]. The GPU based FCM tested in

the brain simulated dataset to segment the brain tissues

and achieved 245 fold speedup than the sequential

processor. Hemert and Dickerson implemented CUDA

based application which performs high-precision

randomization tests using Monte Carlo sampling [9].

They performed experiments with large number of

variables, such as microarrays, next generation

sequencing read counts and chromatographical signals.

They achieved 12X speedup in GPU than with CPU.

Nowadays, few more researches are going on testing

the performance of these architectures over medical

image analysis. In MRI processing, Somasundaram and

Kalaiselvi showed that more time is required to

implement an algorithm for automatic segmentation of

brain [10]. Eklund et al., gave a valuable survey on

implementing various medical image processing

algorithms like filtering, interpolation, segmentation,

registration, noise removal and reconstruction [11]. They

stated that there still exists no freely available library for

separable and non-separable convolution in 2D, 3D and

4D. They mention that any work is yet done on

interpolation. Pratx et al., did a survey about GPU

computing in medical physics like image reconstruction

in CT and MRI images [12]. This article mentioned few

GPU based image processing registration and

segmentation. Smistad et al., presented a review about

medical image segmentation on GPU [13]. They gave

some basics of CUDA model and explain various

segmentation methods like thresholding, region growing,

watershed and active contours on GPU. Shams et al.,

discussed medical image registration process on a CPU

and a GPU [14].

ELEKS software has developed for post processing of

MRI images using GPU [15]. Additionally they used

parallel imaging methods to reduce the scan time. Parallel

imaging methods involve mathematical operation called

singular value decomposition (SVD). SVD is an iterative

algorithm and parallelization of a single iteration does not

give any significant benefits, especially for smaller image

sizes. Therefore, the only realistic way to accelerate this

operation is to run SVD processing over all frames and

coils in parallel. The developers solved this problem by

porting SVD algorithm to GPU programming model and

running it over all frames and coils in parallel. They

achieved 155X speedup on GPU than with CPU.

In 2015, Jing et al., developed a fast parallel

implementation of group independent component analysis

(PGICA) for functional magnetic resonance imaging

(fMRI) [16]. Their proposed work demonstrated the

speed accuracy of their experiments. But they realized

that the device memory constraints for large amounts of

subject’s data processing. Eklunda et al., implemented

various preprocessing operations on fMRI like slice

timing corrections, motion compensation and smoothing

on GPU [17]. They described GPU implementation of

two statistical approaches, the general linear model and

canonical correlation analysis (CCA) for fMRI data. Zhu

et al., implemented the perfusion image analysis on GPU

in CT and MRI [18]. They reduced the processing time of

6 minutes in CPU to 65 seconds in GPU for CT images,

and 35 minutes to 10 minutes in MRI images. The final

speedup factors are 5.56X and 3.5X for CT and MR

images respectively.

III. GPU- CUDA PROGRAMMING

There are varieties of GPU programming models

available in the market for accelerating computational

60 Performance of Medical Image Processing Algorithms Implemented in CUDA running on GPU based Machine

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 1, 58-68

capability of a complex system. CUDA is one such model.

It is a parallel computing platform and programming

model developed by NVIDIA in late 2006. CUDA is a

new hardware and software architecture for issuing and

managing computations on the GPU as a data-parallel

computing device without the need of mapping them to a

graphics API. CUDA programming model is specified in

the document released by NVIDIA [19]. CUDA is an

open source and extension of the C programming

language.

Fig.1. CUDA Execution Flow

The CUDA model supports collection of threads

running in parallel. A kernel is a function or routine that

executes on the GPU device [20]. A kernel executes in

parallel across a set of parallel threads. The programmer

organizes these threads into a hierarchy of grids of thread

blocks. A thread block is a set of concurrent threads that

can cooperate among themselves through barrier

synchronization and shared access to a memory space

private to the block. A grid is a set of thread blocks that

may each be executed independently and thus may

execute in parallel. When invoking a kernel, the

programmer specifies the number of threads per block

and the number of blocks making up the grid. Each thread

is given a unique thread ID number threadIdx within its

thread block, numbered 0, 1, 2, ..., blockDim–1, and each

thread block is given a unique block ID number blockIdx

within its grid. CUDA supports thread blocks containing

up to 1024 threads. For convenience, thread blocks and

grids may have one, two, or three dimensions, accessed

via .x, .y, and .z index fields. The execution flow of

CUDA is a five step process see in Fig.1.

i) Allocate required memory in GPU device

ii) Transfer data from CPU to GPU

iii) Execute threads in parallel by GPU - CUDA

iv) Transfer results from GPU to CPU

v) Release the GPU device memory

IV. GPU IMPLEMENTATION OF MEDICAL IMAGE

ALGORITHMS

CPU and GPU implementations are done using C++

and CUDA 7.5 respectively. Here we used single

precision operations on both CPU and GPU

implementation. In GPU implementation we used scalar

based single instruction multiple threads (SIMT) model

[20]. In SIMT, each thread has its own registers access

those instructions that process different data

simultaneously. One disadvantage of using a GPU

coprocessor to accelerate computations is the cost of

transferring data between main memory on the host

system and the GPU’s memory. This takes place over a

PCI-Express bus, which having maximum transfer rate of

2GB/s, a factor of 87X less than the memory bandwidth

of the on-board QUADRO GPU memory.

Image processing algorithms used for MRI volume

analysis are parallel in nature. They can be implemented

in local per-pixel or global per-slice operations. Hence we

implemented the medical image algorithms in the

following two models.

A. Per-Pixel Threading (PPT) Model

B. Per-Slice Threading (PST) Model

Fig.2. Per-Pixel Threading (PPT) model

Data transfer from CPU to GPU

Parallel execution by GPU threads

Allocate memory in GPU device

 Results transfer from GPU to CPU

Release the GPU device memory

 Performance of Medical Image Processing Algorithms Implemented in CUDA running on GPU based Machine 61

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 1, 58-68

Fig.3. Results of image filtering techniques for MRI image (a) Original image, (b) Image with Gaussian noise (σ=0.005), (c) Adaptive filter,
(d) Anisotropic Diffusion filter, (e) Bilateral filter, (f) Non-Local Means Filter

A. Per-Pixel Threading (PPT) Model

In PPT model, a thread is created for each pixel as

shown in Fig. 2 and each thread have a unique thread ID.

Each thread executes the algorithm in parallel and

produces the results. We implemented few popular pre-

processing filter algorithms for image enhancement.

Image enhancement is used to improve the quality of the

original image. Image filters are generally concentrate on

a group of pixels in a neighborhood of each pixel. This

process is known as convolution method. Here we take

computationally challenging filters like adaptive filter,

anisotropic diffusion filter, bilateral filter and non-local

means filter for GPU implementation. All the arrays are

defined in GPU is 1D pattern, which helps to calculate

the number of CUDA blocks and threads. For the

qualitative analysis, a sample slice was taken from a MRI

dataset and Gaussian noise with σ =0.005 was introduced

as shown in Fig. 3(a) and 3(b).

Adaptive Filter

Adaptive filter is a linear filter applied on a degraded

image that contains noise. Adaptive filters are very

effective in removing additive white noise, speckle noise

and impulse noise. This filter depends on three statistical

measures, mean and local variance with a defined M × N

neighborhood region and a global variance on entire

image. Adaptive filter done as [21]:

]),([))/()((),(),(22
LLn Myxgyxgyxf (1)

where,),(yxg is the noisy pixel,

),(yxf is the filtered

pixel,
LM and 2

L are local mean and variance computed

for a window of size M×N and 2

n

is the global variance

for the entire pixels in the image. For our experiment we

have taken window of size 5×5. The filtered image using

adaptive filter is shown in Fig. 3(c). The proposed CUDA

implementation of Adaptive Filtering algorithm is given

in the following Algorithm 1.

Algorithm 1: CUDA_ Adaptive_Filter

CUDA_Adaptive_Filter (NOI_IMAGE, DE_IMAGE, L_MEAN,

L_VAR, W, ROW, COL)

Create a one dimensional intensity array NOI_IMAGE with the size of
ROW × COL
Read the MRI noisy image pixel and store it into the NOI_IMAGE in

row wise

Create zero valued arrays DE_IMAGE, L_MEAN and L_VAR with the
size of ROW × COL pixels

Allocate GPU global memory for all parameters
Transfer all parameters from CPU to GPU memory

Create ROW × COL number of threads and call the kernel for parallel

execution

for all ROW × COL number of threads do in parallel

tid=get thread ID

 if tid<ROW × COL then do
 Invoke code for Adaptive filter algorithm to each pixel.

 Reduction sum technique used for G_VAR calculation
 Filtered pixel value stored into DE_IMAGE

 end

end
Transfer DE_IMAGE from GPU global memory to CPU host memory

Anisotropic Diffusion Filter

Anisotropic diffusion filter is a technique introduced

by Perona and Malik aimed at reducing image noise

without removing significant parts of the image content,

typically edges, lines or other details that are important

for the interpretation of the image using non-linear partial

differential equation [22]. Anisotropic diffusion is useful

for edge detection, image smoothing, image segmentation

and enhancement. The basic idea by Perona and Malik

62 Performance of Medical Image Processing Algorithms Implemented in CUDA running on GPU based Machine

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 1, 58-68

was that diffusion is maximal within uniform regions and

stopped across edges. The kernel used for diffusion is:

2

1
()

1

g I
I

K

 (2)

Perona and Malik discretized their anisotropic

diffusion as:

 1 , ,() ()
St t p S P S P

S

I S I S g I I

 (3)

where, g

is the conductance function, I is a the input

noisy image, symbol

which in the continuous form is

used for gradient operator, K is the gradient threshold

parameter, t denotes the iteration step, S denotes the pixel

position in the discrete 2D grid,)1,0(is rate of

diffusion and
S is 8 neighborhood of pixel S,

S = {E, W,

N, S, NE, SE, NW, SW}. Here it represents a scalar

defined as the difference between neighboring pixels in

each direction:

 , , , , , , , , ,S P t t SI I P I S P E W N S NE SE NW SW

(4)

In our implementation, Eq.(2) is chosen for)(xg with

K=30, iterations t=8, integration constant
S

 =1/8. The

filtered image using anisotropic diffusion is shown in Fig.

3(d). The proposed CUDA implementation of

Anisotropic Diffusion algorithm is given in the following

Algorithm 2.

Algorithm 2: CUDA_ Anisotropic_Diffusion

CUDA_Anisotropic_Diffusion (NOI_IMAGE, DE_IMAGE,
NUM_ITER, K, INT_CONS, ROW, COL)

Create a one dimensional intensity array NOI_IMAGE with the size of

ROW × COL

Read the MRI noisy image and store it into the NOI_IMAGE in row
wise

Create zero valued arrays DE_IMAGE with the size of ROW × COL

pixels
Define NUM_ITER, K and INT_CONS values

Allocate GPU global memory for all parameters
Transfer all data from CPU to GPU memory

Create ROW × COL number of threads and call the kernel for parallel

execution
 for all ROW × COL number of threads do in parallel

 tid=get thread ID
 if tid < ROW × COL then do

 Invoke code for diffusion algorithm to each pixel.

 Filtered pixel value stored into DE_IMAGE
 end

 end
Transfer DE_IMAGE from GPU device memory to CPU host memory

Bilateral Filter

Bilateral filter is initially presented by Tomasi and

Manduchi in 1998 [23]. A bilateral filter is a non-linear,

edge-preserving and noise-reducing filter. The bilateral

filter takes a weighted sum of the pixels from the local

neighborhood. The weights depend on both the spatial

distance and the intensity distance. The spatial and

intensity distances are done by the domain and range

filter respectively. Bilateral filter is combination of both

domain and range filters. Intensity difference between

center and neighborhood pixels is calculated based on

Euclidean distance. In this way, edges are preserved well

while noise is averaged out. Mathematically, at a pixel

location x, the output of a bilateral filter combined form

of shift invariant domain filter with Gaussian range filter

is given by [21]:

2 2

2 2

() ()

2 2

()

1
() ()d r

y x I y I x

y N x
I x e e I y

C

 (5)

where,
d and

r are domain and range variance, N(x) is

a spatial neighborhood of pixel I(x) and C is the

normalization constant. In our implementation, we set the

value of the parameters are 3d , 1.0r and C = 1.

The filtered image using bilateral filter is shown in Fig.

3(e). The proposed work of CUDA implementation of

Bilateral filtering algorithm is given in the Algorithm 3.

Algorithm 3: CUDA_ Bilateral_Filter

CUDA_ Bilateral_Filter (NOI_IMAGE, DE_IMAGE, W, SIGMA_D,

SIGMA_R, ROW, COL)

Create a one dimensional intensity array NOI_IMAGE with the size of

ROW × COL
Read the MRI image and store it into the NOI_IMAGE in row wise

Create zero valued arrays DE_IMAGE with the size of ROW × COL
pixels

Define W, SIGMA_D, and SIGMA_R

Allocate GPU global memory for all parameters
Transfer all variables from CPU to GPU memory

Create ROW × COL number of threads and call the kernel for parallel
execution

for all ROW × COL number of threads do in parallel

tid=get thread ID
 if tid<ROW × COL then do

 Invoke code for bilateral filter algorithm to each pixel.
 Denoise image stored to DE_IMAGE

 end

end
Transfer DE_IMAGE from GPU global memory to CPU host memory

Non-Local Means Filter

Non-local means (NLM) is a nonlinear filter, takes a

mean of all pixels in the image, weighted by how similar

these pixels are to the target pixel [24]. Each pixel p of

the NLM filtered image is computed with the following

formula:

 ,NL p w p q v q (6)

where, v is the noisy image, and weights w(p, q) meet the

following conditions 1,0 qpw and ,
q

w p q .

 Performance of Medical Image Processing Algorithms Implemented in CUDA running on GPU based Machine 63

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 1, 58-68

The weights are based on the similarity between the

pixels p and q. The Euclidean distance used to calculate

similarity between the pixels p and q is given by:

2

2,
, () ()p q F

d p q v N v N (7)

where, F > 0 is a standard deviation of Gaussian kernel

and Nk denotes a square neighborhood of fixed size and

centered at a pixel k.

The weights are computed as:

2

,
1

,

d p q

hw p q e
Z p

 (8)

 Z p is the normalizing constant defined as

2

,d p q

h

q
Z p e

 and h is the weight-decay control

parameter. We used parameter values h=20, F=2 and

search window size 5 × 5 to check the similarity between

p and q. The filtered image using NLM filter is shown in

Fig. 3(f). The proposed of CUDA implementation of

NLM algorithm is given in the Algorithm 4.

Algorithm 4: CUDA_ Non-Local_Means

CUDA_ Non-Local_Means (NOI_IMAGE, DE_IMAGE, H, F, W,

ROW, COL)

Create one dimensional intensity array NOI_IMAGE and DE_IMAGE

with the size of ROW × COL
Read the MRI image and store it into the NOI_IMAGE in row wise

Create zero valued array DE_IMAGE with the size of ROW × COL

pixels
Allocate GPU global memory for all parameters

Transfer all parameters NOI_IMAGE, DE_IMAGE, H, F and W from
host to device memory

Create ROW × COL number of threads and call the kernel for parallel

execution
for all ROW × COL number of threads do in parallel

 tid=get thread ID
 if tid< ROW× COL then do

 Invoke code for NLM algorithm to each pixel.

 Denoise pixel value stored into DE_IMAGE
 end

end
Transfer resultant DE_IMAGE from GPU device memory to CPU host

memory

Fig.4. Per-Slice Threading model

B. Per-Slice Threading (PST) Model

In PST model, thread is created for each slice of the

MRI brain volume and all thread is executed in parallel.

The PST model is shown in Fig. 4. Each thread executes

the algorithm in the kernel function. The kernel executes

the algorithms by taking the pixels in serial manner. We

implemented this model to K-Means for image

segmentation and feature extraction for image

classification.

Image Segmentation

Image segmentation is a process to split a digital image

into meaningful multiple regions. Segmentation is mostly

used to separate the object from background [25].

Segmentation techniques are broadly classified into two

types: supervised and unsupervised. Supervised methods

require the user interaction and are known as semi-

automatic. Unsupervised techniques are completely

automatic and segment the regions in feature space with a

high density. The popular unsupervised classification

techniques are K-Means (KM), Fuzzy C-Means (FCM)

and Expectation - Maximization (EM) methods.

K- Means (KM) Algorithm

KM is one of the simplest unsupervised algorithms to

classify a given data set through a certain number of

clusters (assume k clusters) fixed a prior. KM is a hard

segmentation procedure that generates a sharp

classification [26]. It assigns each data either to a class or

does not.

This algorithm consists of the following steps with a

data set jx , i=1, 2, … , n.

64 Performance of Medical Image Processing Algorithms Implemented in CUDA running on GPU based Machine

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 1, 58-68

Step 1: Initialize the centroids jc , j=1, 2, …., k.

Step 2: Assign each data point to the group that has the

closest centroids.

Step 3: When all points have been assigned, calculate

the positions of the k centroids.

Step 4: Repeat Steps 2 and 3 until the centroids no

longer move. This produces a separation of the data

points into groups from which the metric to be minimized

can be calculated.

This algorithm aims at minimizing an objective

function, in this case a squared error function. The

objective function is given by:

2
()

1 1

k n
j

i j

j i

J x c

 (9)

where,
2

()j
i jx c is a measure of intensity distance

between a data point jx and the cluster centre jc . For

simplicity, the Euclidean distance is used as the

dissimilarity measure. The proposed work of CUDA

implementation of K-Means algorithm is given in the

Algorithm 5.

Algorithm 5: CUDA_K-Means for 4 tissue segmentation of MRI Image

CUDA_K-MEANS (IN, S1, S2, S3, S4, ROW, COL, n)

Create a one dimensional intensity array IN with the size of n ×ROW ×
COL

Read n MRI images with ROW × COL pixels
Create zero valued arrays S1, S2, S3 and S4 with the size of ROW ×

COL pixels

Copy all pixel details in a size of n × ROW × COL to IN in row wise
Transfer the IN, S1, S2, S3 and S4 arrays from CPU to GPU device

memory
Create n threads and call the kernel for parallel execution

for all n threads do in parallel

 tid = get thread ID
 if tid < n then do

 Invoke code for K-Means algorithm to each image.
 Four segments results are stored into S1, S2, S3, and S4.

 end

end
Transfer S1, S2, S3 and S4 from GPU device memory to CPU host

memory

Image classification

Image classification is perhaps the most important part

of digital image analysis. Image classification analyses

the numerical properties of various image features and

organizes data into categories. One of the famous image

classification methods is feature extraction.

Feature Extraction

Feature extraction plays a major role in classification

systems [27]. The image based classification system

depends on certain features of images ranging from

simple statistical properties to complex shape properties.

We demonstrate the extraction of few simple statistical

features for an image. Histogram of the image gives

summary of the statistical information about the image.

So first order statistical information of the image can be

obtained using histogram of the image. Mean (µ) is the

average value of the intensity of the image. Variance (2)

tells the intensity variation around the mean. Skewness

(µ3) is the measure which tells the symmetries of the

histogram around the mean. Kurtosis (µ4) is the flatness

of the histogram. Energy (E) is defined based on a

normalized histogram of the image. Energy shows how

the gray levels are distributed. Uniformity of the

histogram is represented by the entropy (H).

Probability density ip can be obtained by dividing

the value of intensity level histogram ih with total

number of pixels in the image.

()

, 0,1, ,
h i

p i i G
XY

 (10)

where, X is number of pixels in the horizontal spatial

domain and Y is the number of pixels in the vertical

spatial domain. G is the total gray level of an image.

Following is the list of features obtained using histogram

of the image.

Mean:
1

0

G

i

i p i

 (11)

Variance:
1

22

0

G

i

i p i

 (12)

Skewness:
1

33
3

0

G

i

i p i

 (13)

Kurtosis:
1

44
4

0

G

i

i p i

 (14)

Energy:
1

2

0

G

i

E p i

 (15)

Entropy:
1

2

0

log

G

i

H p i p i

 (16)

 Performance of Medical Image Processing Algorithms Implemented in CUDA running on GPU based Machine 65

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 1, 58-68

The proposed work of CUDA implementation of

feature extraction algorithm is given in the Algorithm 6.

Algorithm 6: CUDA_1Dim features

CUDA_1Dim _FEATURES (IN, OUT, n, ROW, COL)

Create a one dimensional intensity arrays IN and OUT with the size of
n ×ROW × COL

Read n MRI images with ROW × COL pixels
Copy all pixel details in a size of N × ROW × COL to IN in row wise

Transfer the IN and OUT arrays from host to device

Create n threads and call kernel for parallel execution
for all n images do in parallel

 tid = get thread ID
 if tid < n then do

 Calculations of the formulae for each image.

 Store six outputs to OUT array.
end

 end
Transfer OUT array from GPU device memory to host memory

V. RESULT AND DISCUSSIONS

The image dataset used for the testing purpose were

collected from whole brain atlas (WBA) maintained by

Harward medical school. The configurations of CPU and

GPU system used in our experiment are given in Table 1.

We carried out our experiments by executing the

algorithms explained in the section IV. First we carried

out PPT model given in Algorithms 1 to 4. The execution

time taken by each filtering algorithm is recorded and is

given in Table 2 for three different sizes of images 256 ×

256, 512 × 512 and 1024 × 1024 pixels. The plot of

image size versus execution time for PPT model is shown

in Fig. 5. From the Table 2 and Fig. 5 we observe that the

GPU is 3-338 times faster than CPU. Further it shows

that the speed up in GPU increases as the image size

increases.

The performance of adaptive filter showed in Fig. 5(a)

shows very less speedup because this algorithm needs

global variance of pixels in the entire image. This global

variance is calculated by using sum reduction technique

such as sum the adjacent thread value using thread ID. It

is a reduction process and stopping criteria depends on

image size. This increases the execution time in GPU

when image size increases. Fig. 5(b) and 5(c) shows the

performance of anisotropic diffusion and bilateral filter.

The time taken by GPU is almost constant and by CPU it

is increasing exponentially when the image size increases.

Table 1. Configurations of CPU and GPU Hardware

Features CPU GPU

Processors name

Speed

Count
Number of cores

Intel - I5 2500

3.4 GHZ

1
4

NVIDIA Quadro K5000

1.4GHz

8
1536 (8 × 192)

Memory 4 GB 4GB

Threads 4 1024 per Block

Operating system Windows 8 64 bit Windows 8 64 bit

Programming language C++ CUDA 6.5

Graphics clock 810MHz 706MHz

Memory bandwidth 21GB/s 173GB/s

Power consumption 95W 122W (Auxiliary power required)

Transistor count 1400 million 3540 million

Others ----

Compute capability Version 3.0

Memory clock 5.4GHZ

Max grid dimension (2147483647, 65535, 65535)
Max thread dimension (1024,1024,64)

Register per block 49152

Table 2. Execution Time in PPT Model for Various Image Sizes

Algorithm

Execution Time in sec

Image size= 256 × 256 = 512 × 512 = 1024 × 1024

Processor

Speed

up

Processor Speed
up

Processor Speed
up CPU GPU CPU GPU CPU GPU

Adaptive

filter
0.0050 0.0016 3X 0.0190 0.0051 3.8X 0.0800 0.0152 5.2X

Anisotropic

Diffusion
0.1720 0.0048 35.X 0.7020 0.0125 56X 3.0250 0.0480 62.7X

Bilateral

filter
0.1330 0.0780 1.7X 0.5140 0.0940 5.5X 2.1570 0.1100 19.6X

Non Local

means
1.9030 0.0072 264X 7.7200 0.0240 322X 31.2310 0.0924 338X

The NLM filter is very computationally challenging

algorithm in CPU as value of the central pixel is

calculated from its neighborhood pixels in a serial

manner. In GPU, this computation is done simultaneously.

Hence the performance of NLM algorithm in GPU gives

very high speed up to 338X as shown in Fig 5(d). The

66 Performance of Medical Image Processing Algorithms Implemented in CUDA running on GPU based Machine

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 1, 58-68

peak signal to noise ratio (PSNR) value of all four filters

are given in Table 3. The PSNR values are computed

between the original image and filtered image by each

filtering algorithm. The NLM filter gives higher PSNR

value than by other filtering techniques.

Fig.5. Results for PPT model a) Adaptive filtering, (b) Anisotropic diffusion, (c) Bilateral filtering, (d) Non-Local Means.

Table 3. PSNR Value of Sample MRI Brain Slice

Filter name PSNR

Adaptive filter 28.90

Anisotropic diffusion 28.42

Bilateral filter 29.18

Non-local means 30.12

Table 4. Execution Time in PST Model for Various MRI Volume Sizes

Algorithm

Execution Time in sec

No of slices= 1 = 10 = 20 = 50 = 100 = 180

Processor Speed

Up

Processor Speed

up

Processor Speed

up

Processor Speed

up

Processor Speed

up

Processor Speed

up CPU GPU CPU GPU CPU GPU CPU GPU CPU GPU CPU GPU

Segmentation 0.017 0.29 17X CPU 0.17 0.30
1.8X

CPU
0.345 0.305 1.1X 0.898 0.321 2.8X 1.98 0.343 5.7X 3.252 0.365 8.9X

Feature

Extraction
0.012 0.02 1.6X CPU 0.134 0.022 6X 0.268 0.024 11.2X 0.684 0.0289 23.7X 1.37 0.057 24.2X 2.488 0.083 30X

We then carried out experiments by implementing

Algorithm 5 and 6 in PST model. The experiments were

done with MRI volumes of size 1, 10, 20, 50, 100 and

180 slices. Table 4 shows the CPU and GPU performance

on K-Means segmentation and feature extraction for

various MRI volume sizes. The plot of number of slice

per volume versus execution time for PST model is

shown in Fig. 6. Table 4 shows that GPU performance is

up to 30 times faster than CPU. But for a single image or

volume with less slices, CPU yields better result than

GPU as shown in Fig. 6(a) and 6(b). The time taken for

transfer of data between CPU and GPU is an overhead in

total computation time. When the slices are less, the

overhead time is higher than the CPU. Hence the

advantage of GPU cannot be realized. This shows that

PST model of GPU is not suitable for parallel processing

with less number of slices. PST model is well suited for

large dataset.

 Performance of Medical Image Processing Algorithms Implemented in CUDA running on GPU based Machine 67

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 1, 58-68

Fig.6. Results for PST model a) K-Means segmentation, b) Feature extraction

VI. CONCLUSION AND FUTURE WORK

In this paper we have proposed per-pixel threading

(PPT) for processing a slice and per-slice threading (PST)

for an MRI volume that can be implement in a GPU.

Using these models, we have implemented some of the

general and advanced image pre-processing algorithms

for accelerating the CAD systems in MRI volume

analysis using GPU CUDA model. The adaptive filter,

anisotropic diffusion, bilateral filter and non-local means

filter depend on neighborhood information and thus

implemented in PPT model. The algorithms like K-

Means and Feature extraction are usually depend on

entire slice information and thus implemented in PST

model. The GPU based coding yielded speedup values in

the range of 3-338 times compared to conventional

processor CPU for PPT model and up to 30 times to PST

model. Further work is under progress for classification

of brain abnormality and tumor detection in MRI using

GPU.

ACKNOWLEDGEMENT

We gratefully acknowledge the support of NVIDIA

Corporation Private Ltd, USA with the donation of the

QUADRO K5000 GPU used for this research.

REFERENCES

[1] S. Tariq, “An Introduction to GPU Computing and CUDA

Architecture”, Computing and CUDA Architecture,

NVIDIA Corporation, vol. 6, no.5, 2011.

[2] A. Mohan and G. Remya, “A Review on Large Scale

Graph Processing using Big Data Based Parallel

Programming Models”, International Journal of

Intelligent Systems and Applications, vol. 9, no. 2, pp. 49-

57, 2017.

[3] T. Praveen T and P. Arun Raj Kumar, “Multi-Objective

Memetic Algorithm for FPGA Placement using Parallel

Genetic Annealing”, International Journal of Intelligent

Systems and Applications, vol. 8, no. 4, pp. 60-66, 2016.

[4] J Ghorpade, J. Parande, M. Kulkarni and A. Bawaskar,

“GPGPU Processing in CUDA Architecture”, Advance

Computing: An International Journal, vol. 3, no.1,

pp.105-120, 2012.

[5] P. Harish and P. J. Narayanan, “Accelerating large graph

algorithms on the GPU using CUDA”, Proceedings of the

International Conference on High Performance

Computing, pp. 197-208, 2007.

[6] K. Yadav, A. Srivastava and M. A. Ansari, “Parallel

Implementation of Texture based Medical Image

Retrieval in Compressed Domain using CUDA”,

International Journal on Computer Applications, vol. 1,

pp. 53-58, 2011.

[7] A. Das, “Process Time Comparison between GPU and

CPU”, Tech. Report, 2011.

[8] M. Almazrooie, R. Abdullah, and M. Vadiveloo, “GPU-

Based Fuzzy C-Means Clustering Algorithm for Image

Segmentation”, CoRR, abs/1601.00072, 2016.

[9] J. L. Van Hemert and J. A. Dickerson, “Monte Carlo

randomization tests for large-scale abundance datasets on

the GPU”, Computer Methods and Programs in

Biomedicine, vol. 101, pp.80-86, 2011.

[10] K. Somasundaram and T. Kalaiselvi, “Automatic Brain

Extraction Methods for T1 magnetic Resonance Images

using Region Labelling and Morphological Operations”,

Computers in Biology and Medicine, vol. 41, no. 8,

pp.716-725, 2011.

[11] A. Eklund, P. Dufort, D. Forsberg and S. M. LaConte,

“Medical image processing on the GPU- Past, present and

future”, Medical Image Analysis, vol. 17, no.8, pp.1073-

1094, 2013.

[12] G. Pratx and L. Xing, “GPU computing in medical

physics: A review”, The International Journal on Medical

Physics and Practice, vol. 38, no. 5, pp. 2685-2697, 2011.

[13] E. Smistad, T. L. Falch, M. Bozorgi, A. C. Elster and F.

Lindseth, “Medical image segmentation on GPUs – A

comprehensive review”, Medical Image Analysis, vol. 20,

no. 1, pp. 1-18, 2015.

[14] R.Shams, P. Sadeghi, R. A. Kennedy and R. I. Hartley, “A

Survey of Medical Image Registration on Multicore and

the GPU”, IEEE Signal Processing Magazine, vol. 27, no.

2, pp. 50-60, 2010.

[15] ELEKS, “CUDA-Accelerated Image Processing for

Healthcare”, http://www.eleks.com. Last accessed on 19th

June 2016.

[16] Y. Jing, W. Zeng, N. Wang, T. Ren, Y. Shi, J. Yin and Q.

Xu, “GPU-based parallel group ICA for functional

magnetic resonance data”, Computer Methods and

Programs in Biomedicine, vol. 119, no. 1, pp.9-16, 2015.

[17] A. Eklunda, M. Andersson and H. Knutsson, “fMRI

analysis on the GPU - Possibilities and challenges”,

Computer Methods and Programs in Biomedicine, vol.

105, vol.2, pp. 145-161, 2012.

[18] F. Zhu, D. R. Gonzalez, T. Carpenterb, M. Atkinsona and

J. Wardlaw, “Parallel perfusion imaging processing using

GPGPU”, Computer Methods and Programs in

68 Performance of Medical Image Processing Algorithms Implemented in CUDA running on GPU based Machine

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 1, 58-68

Biomedicine, vol. 108, pp. 1012-1021, 2012.

[19] CUDA C Programming Guide, Version 8.0, Tech. report,

NVIDIA, June 2017.

[20] D. B. Kirk and W. W. Hwu, Programming Massively

Parallel Processor: A Hands-on Approach, 3rd Ed.,

Elsevier, pp. 1-576, 2016.

[21] S.O. Haykin, Adaptive Filter Theory, 5th Ed. Prentice Hall,

2013.

[22] P. Perona and J. Malik, “Scale-Space and Edge Detection

using Anisotropic Diffusion”, IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 12, no. 7,

pp. 629-639, 1990.

[23] C. Tomasi and R. Manduchi, “Bilateral filtering for gray

and colour images”, Proceedings of IEEE International

Conference on Computer Vision, pp. 839-846, 1998.

[24] A. Buades, B. Coll and J. M. Morel, “A Non-Local

Algorithm for Image Denoising”, Computer Vision and

Pattern Recognition, vol. 2, pp. 60-65, 2005.

[25] A. K. Jain, Fundamentals of Digital Image Processing,

Prentice-Hall, Englewood Clis, New Jersey, 1989.

[26] M. Mam, G. Leena and N. S. Saxena, “Improved K-means

Clustering based Distribution Planning on a Geographical

Network”, International Journal of Intelligent Systems

and Applications, vol. 9, no. 4, pp. 69 – 75, 2017

[27] R. W. Conners and C. A. Harlow, “A Theoretical

Comparison of Texture Algorithms”, IEEE Transaction

on Pattern Analysis and Machine Intelligence, vol. 2, pp.

204-222, 1980.

Authors’ Profiles

T. Kalaiselvi is currently working as an

Assistant Professor in Department of

Computer Science and Applications, The

Gandhigram Rural Institute, Dindigul,

Tamilnadu, India. She received her

Bachelor of Science (B.Sc) degree in

Mathematics and Physics in 1994 &

Master of Computer Applications (M.C.A)

degree in 1997 from Avinashilingam University, Coimbatore,

Tamilnadu, India. She received her Ph.D degree from The

Gandhigram Rural University in February 2010. She has

completed a DST sponsored project under Young Scientist

Scheme. She was a PDF in the same department during 2010-

2011. An Android based application developed based on her

research work has won First Position in National Student

Research Convention, ANVESHAN-2013, organized by

Association of Indian Universities (AUI), New Delhi, under

Health Sciences Category. Her research focuses on MRI of

human Brain Image Analysis to enrich the Computer Aided

Diagnostic process, Telemedicine and Teleradiology

Technologies.

Sriramakrishnan P. is a Research

Scholar (Full-time) in the Department of

Computer Science and Applications,

Gandhigram Rural Institute - Deemed

University, Dindigul, India. He received

his Bachelor of Science (B.Sc.) degree in

2011 from Bharathidasan University,

Trichy, Tamilnadu, India. He received Master of Computer

Applications (M.C.A) degree in 2014 from The Gandhigram

Rural Institute- Deemed University, Dindigul, Tamilnadu, India.

He worked as Software Engineer in the Dhvani Research and

Development Pvt. Ltd, Indian Institute of Technology Madras

Research Park, Chennai during January 2014 – March 2015. He

is currently pursuing Ph.D. degree in The Gandhigram Rural

Institute - Deemed University. His research focuses on Medical

Image Processing and Parallel Computing. He has qualified

UGC-NET for lectureship in June 2015.

Somasundaram K. received his Master of

Science (M. Sc) degree in Physics from the

University of Madras, Chennai, India in

1976, the Post Graduate Diploma in

Computer Methods from Madurai Kamaraj

University, Madurai, India in 1989 and the

Ph.D degree in theoretical Physics from

Indian Institute of Science, Bangalore,

India in 1984. He is presently working as Professor at the

Department of Computer Science and Applications,

Gandhigram Rural Institute, Dindigul, India. He was senior

Research Fellow of Council Scientific and Industrial Research

(CSIR) Govt. of India, in 1983. He was previously a Researcher

at the International Centre for Theoretical Physics, Trieste, Italy

and Development Fellow of Commonwealth Universities, at

Edith Cowan University, Perth, Australia. His research interests

are image processing, image compression and medical imaging.

He is also a member of IEEE USA.

How to cite this paper: T. Kalaiselvi, P. Sriramakrishnan, K.

Somasundaram, "Performance of Medical Image Processing

Algorithms Implemented in CUDA running on GPU based

Machine", International Journal of Intelligent Systems and

Applications(IJISA), Vol.10, No.1, pp.58-68, 2018. DOI:

10.5815/ijisa.2018.01.07

