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Abstract—This paper mainly studies angle-measurement based 
track processing approach to overcome the existing problems in 
the applications of traditional approaches for bearing-only target 
locating and tracking system. First, this paper gives suited data 
association algorithms including track initiation and point-track 
association. Moreover, a new tracking filtering association gate 
method is presented through analysis of the target motion 
characteristics in polar coordinates for improving bearing-only 
measurement confirming efficiency of real target and limiting 
false track overextension with the dense clutter. Then, by 
analyzing the feasibility of using multi-model technology, the 
IMM is adopt as filtering algorithm to solve existing problem in 
bearing-only tracking for complicated target motion in two 
dimensional angle plane. As the results, the two dimensional 
bearing-only tracking accuracy of real target is improved and 
false tracking is greatly limited. Moreover, computation cost of 
IMM is analyzed in view of the real-time demand of bearing-
only tracking. Finally, this paper gives some concrete summary 
of multi-model choosing principle. The application of the 
proposed approach in a simulation system proves its 
effectiveness and practicability.  
 
Index Terms—data association, multi-model filter, bearing-
only tracking,  passive sensor, targets 
 

I.  INTRODUCTION 

The bearing-only target tracking using passive sensor 
means to obtain target motion element through angle-only 
measurement. Even if the target motion is constant 
velocity, namely CV, the target motion is very difficult to 
express by using linear equation in the θ-φ (azimuth 
and pitching) plane. This problem is high nonlinear in 
substance and target motion takes on higher 
maneuverability in polar plane. As yet, resolving method 
of this issue has been difficult in maneuvering target 
tracking domain [1-5]. Traditional multi-station joint 
passive tracking watching system estimates 3D 
information based on 2D measurement. Namely, this 
system  indirectly  gets  the target position information by  

 

using multi-angle crossing approach [6,7]. But this 
approach brings more “ghosting” so that great 
computation cost is produced in target association 
tracking because of sensor measuring error itself. At the 
same time, this approach is limited by distance demand 
between the station and the other station. Thus, the target 
tracking error is enlarged and application value of this 
approach is little. In view of the demands of the 
concealment and flexibility for passive tracking system, 
the suited target tracking algorithm based on single 
passive sensor is urgent very much. In correlative 
references[8,9], some scholar make linear assumption for 
bearing-only target motion if sampling time of passive 
sensor is shorter and target confirming accuracy is high 
enough. Based on this assumption, azimuth angle and 
pitching angle of target is regarded as decoupling. From 
its inspiration, Aiming at the bearing-only tracking 
characteristics, a resolving approach completely based on 
angle-only measurements is studied by the deeply 
analysis of  data association, association gate technology 
and multi-model filtering approach in this paper. 

II. TRACK INITIATION BASED ON BEARING-ONLY 
MEASUREMENTS 

A. Existing problem and solution 
Multi-target track initiation is primary problem of 

maneuvering target tracking. It is a decision-making link 
of new target file establishment. For multi-target tracking 
processing, the right track initiation is key to reduce the 
burden of track processing and improve maneuvering 
target tracking effect. Traditional track initiation 
approach is difficult to find real target quickly and 
effectively. Taking into account the relevant 
characteristics of single passive tracking system and high 
real-time demand in the battlefield, mostly maneuvering 
target tracking need feedback target track information 
timely for tracking with scanning system. So taking 
sequential processing approach, which including heuristic 
algorithm and logic-based algorithm [10-13], is primary 
choice for track initiation in the bearing-only tracking 
system due to good real-time performance. It is worth 
noting that heuristic algorithm has high false track 
probability for simple heuristic rule. For high confirming 
efficiency and excellent performance, logic-based 
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algorithm is widely adopted in real engineering 
application. This paper presents bearing-only track 
initiation approach based on traditional logic-based 
algorithm. It is depicted as 

1) Isolated bearing-only measurement is used to 
establish new candidate track. By angular velocity rule 
that will be depicted as association gate design in part Ⅳ, 
measurements in next cycle are put into association 
decision. 

2) Candidate track from step 1 is linearly extrapolated. 
Regard extrapolative point as associated center and make 
association decision for bearing-only measurements from 
next cycle. If some candidate track isn’t associated with 
every measurement, those candidate tracks are terminated. 

3) For every candidate track including three or more 
measurements, it is extrapolated by using second-order 
polynomial. Then make relevant associated decision 
according to the extrapolative point. The rest can be 
deduced up to the N-th step by analogy. Confirm target 
track by comparing the relation between innovation and 
threshold at last. For time k(k=N), bearing-only 
measurement sequence corresponding to candidate track 
m is 

{ 1, (1, ) 2, (2, ) , ( , ), ,...,m m N N mz z zρ ρ ρ }                              (1) 

where ρ(k, m) is depicted as measurement number 
corresponding to temporary track m.  

Define cumulative innovation as 
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where ,ˆk mz  is position estimation of candidate track 

through polynomial fitting, namely 
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where ˆm
ja  is polynomial fitting coefficient. 

 Proved in reference [14], statistical value * ( )J m  is 

chi-square ( 2χ ) distribution with z xNn n−  degree of 
freedom（ xn is polynomial fitting order）. If statistical 
value * ( )J m  satisfy test of thresholdγ , which is gotten 

based on 2χ  distribution with z xNn n−  degree of 
freedom, namely 

γ≤)(* mJ                                                                    (4) 
Then, this candidate track is target track. It turn into 

tracking phase. For quick track initiation, this paper set 
continuous decision cycle as 4. 
 

III. FEASIBILITY STUDY OF BEARING-ONLY DATA 
ASSOCIATION ALGORITHM 

 
 
 

A. Nearest Neighbor Data Association (NNDA） 
NNDA [15,16] is a early simple association algorithm. 

It helps to ensure the real-time demand of passive sensor 
target tracking. This approach associates the nearest 
neighbor measurement away from the tracking target in 
statistical view. This statistical distance is defined as 
weighed norm of innovation vector’s  , that is   

2 1
| 1| 1

Td k kk kk k
−= −−

% %z S z                                                 (5) 

where | 1k k−%z is filter innovation, kS  is innovation 

covariance matrix, 2d
k

 is norm of error vector.  

The radical meaning of NNDA is uniquely choosing 
the nearest measurement away from target as associated 
object to estimate target state. For easy realization and 
little computing cost, it is applied to the tracking systems 
which have the high SNR and the little target density. But 
when the measurement density is tremendous or multi-
target association gate intercrossing each other, the 
nearest measurement not always come from the tracking 
target. Therefore, NNDA’s anti-jamming capability is not 
so good and this approach easily brings false association. 

B. Joint Probabilistic Data Association(JPDA)  
JPDA [17-19] is advancing extending algorithm from 

PDA [20] (Probabilistic Data Association). It resolves the 
bug of false tracking in the application of PDA algorithm 
in the high maneuvering target density environment. This 
algorithm always is considered as one of the most perfect 
association approach. But comparatively, its computing 
cost is high because the association hypothesis event 
number between target and measurement is exponential 
expanded. Moreover, the distance between the two targets 
is very near. It is possible to bring bias and aggregation of 
track. Flow chart of this algorithm is shown in figure 1. 
The key technology of this algorithm lists the following 

1)  Association gate  
2

1( )
ˆ[ ( | 1)] ( ) [ ( | 1)]'

t
tt t t

zA k g
z z k k S k z z k k−

⎧ ⎫
≡ ≤⎨ ⎬

− − − −⎩ ⎭
)  

                                          (6)   
 Where, t=1,2,…,N, ˆ ( | 1)tZ k k− is the position estimation 

of target t at k; ( )tS k  is error covariance matrix of the 
measurement t at k.   
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Figure 1．JPDA algorithm flow chart 
 

{ }ˆ ˆ( ) [ ( | 1)][ ( | 1)]'t t tS k E z z k k z z k k= − − − −    

(7) 
where 2gt denotes gate value. 
If and only if the target measurement involves in the 

target association gate, it is regarded as valid 
measurement, or rejected. Assume that there are mk  
valid measurements involving in N target-gates. Those 
measurements in the association gate are regarded as 
following association standby. 

2) Clustering matrix  
If consider that clustering matrix (or confirmed matrix) 

have km rows and N＋1 lines, clustering is defined as the 
most aggregate of conjoint tracking gate. All of targets 
are divided into different groups according to different 
clustering. There is a binary element matrix of clustering 
matrix which associates each of these groups all the time. 
Clustering matrix is defined as follows: 

( ), 1,2,..., ; 0,1,...,j m t Njt kωΩ= = =                  (8) 

where jtω  denotes that measurement j whether or not 
is contained by association gate. 

1

0

If Z kj
jtω

⎧⎪
⎨
⎪⎩

( ) is in the association gate
＝

or else
                  (9)  

where 1, 2, ..., , 1, 2, ...,j m t Nk= = , and t=0 means that 
no target exist and correspondingly all line elements of 
Ω  are 1.  In this time, any measurement originates from 
clutter or falsehood. 

3) Feasibility Event 
Feasibility event is produced by clustering matrix. 

Assume association event 

{ }( )Z k comes tjjtθ = valid measurement   from the target 

                                                                                        (10) 

where  j=1, …, km ,  t=1,2,…,N.                                                  
When t=0, 0jθ  denotes measurement ( )Z kj  coming 

from clutter or noise. Note association event posterior 
probability 

                      { }| kP Zjt jtβ θ=                        (11) 

Βjt is association probability. It is probability of 
association event appearance.  

Define joint association event  

1

mk
jt j

j
θ θ=

=
I                   (12) 

Joint association event θ may represent matrix: 
ˆ ˆ( ) ( )jtθ ω θ⎡ ⎤Ω =⎣ ⎦                  (13) 

where 
1

ˆ ( )
0

jt
jt

θ θ
ω θ

⎧ ⊂⎪
= ⎨
⎪⎩ or else

,                   (14) 

If satisfying two conditions as follows, joint 
association is defined as feasibility event θ: 

• Every measurement only comes from a 
headspring, target or clutter, namely: 

ˆ( ) ( ) 1 1,2,...,
0

T
j mj jt k

t
τ θ ω θ= = =∑

=
                (15)    

• Every  target only has a measurement, that is 

ˆ( ) ( ) 1 1,2,...,
1

mk
t Nt jt

j
δ θ ω θ= ≤ =∑

=
                (16)      

For feasibility eventθ , corresponding matrix ˆ ( )θΩ is 
referred to as feasibility matrix. It is gotten by splitting 
clustering matrix， that is scanning Ω  and only choosing 
a “1” in every row as feasibility matrix element. Except 
for the first line, every line of feasibility matrix only has a 
“1”. ( )tδ θ is defined as target detecting indicator and 

( )jτ θ  is defined as measurement indicator. Then clutter 
number is: 

( ) [1 ( )]
1

mk
j

j
θ τ θΦ = −∑

=
                  (17)               

4) Feasibility Event Probability and Association 
Probability Calculation 

The sum of joint association event is L at k.  Condition 
Probability, that is  

• If clutter model is Poisson distribution, then 

1( | ) [ ( ( ))] ( ) (1 )
' 1 1

m Tkk t tj t tP Z N Z k P Pi t j D Djc j t

λ τ δ δθ
Φ

−= −∏ ∏
= =

  (18)  

• Else if clutter model is uniformity distribution, 
then 
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1 ! 1( | ) [ ( ( ))] ( ) (1 )
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Where, c and c’ are unitary element. 

( )( ( )) ( ); ( | 1), ( )t tN Z k N Z k Z k k S kt j j j jj = −                 (20) 

Where, N  denotes normal distribution. 
Finally, association probability is: 

{ } ˆ| ( )
1

L kP Zjt i jt i
i

β θ ω θ= ∑
=

                (21) 

Where, 1,..., ; 1,...,j m t Tk= =                               

The probability of invalid measurement originating 
from target t is: 

    0
1

1, ..., ; 1, ...,1 ,
km

t jt
j

j m t Tkβ β
=

= == −∑              (22)          

5) State Estimation 
ˆ ˆ( | ) ( | )

km
t t

jt j
j

X k k X k kβ=∑                  (23) 

IV. ASSOCIATION GATE  DESIGN FOR BEARING-ONLY 
TARGET TRACKING 

Gate technology is a key for data association. It 
affects the computing complexity of data association. 
Moreover, it decides the efficiency and performance of 
data association. The traditional gate technology is 
inefficient in θ-φ plane. They not only can not limit 
false track overextension with the dense clutter but also 
hardly confirm those real target tracks.   

Firstly, initial gate will be design to confirm isolated 
measurement.  There are two ordinary initial gate 
technologies. One is  2χ  test method, the other is based 
on utmost  velocity as min max[ , ]k v vv ∈ . For the reason of 
complicated 2D bearing-only target motion as high 
nonlinear, the traditional gate technology is inefficiency. 
So gate technology in θ-φ plane must be based on the 
characteristic of bearing-only target motion. Obviously,  
target motion is nearer, angle measurement change is 
larger. Thus, the area of confirming measurement must 
have good adaptability. In view of these factors, rational 
gate design is core for track processing in bearing-only 
tracking.  Under normal circumstances, tracking system 
require that target will be reliably tracked at minD  
kilometers away from observation point. Design initial 
gate as the rule  
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3

1 min

( 1) ( )
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t t D+

+ −
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z z
                          (24) 

where kt  is k-th sample time.  

1β
2β

3β

0a

3a
2a
1a

 
Figure 2． Angle change of target motion 

 
Combining with the angle change analysis of 

bearing-only target motion, the gate of extrapolating by 
using linearly and second-order polynomial will be 
presented. As shown in figure 2, suppose that observation 
point is O and target moves along 0 3A A  as straight line. 
The sample points of the moving target at every sample 
time are  0 1 2 3, , , ...A A A A  and the distances of the different 
sample points away from observation point 
are 0 1 2 3, , , ...a a a a . The angles between observation point 
and the sample points are 1 2 3, , ...β β β . With a view to the 
assumption that sampling time of passive sensor is 
shorter and target confirming accuracy is high enough, so 
the average velocity of adjacent sampling circle is 
approximately equal and target motion is an 
approximately straight line form. Simultaneity, angle 
change in  θ ϕ−  plane is small. If supposing that  2A  
corresponds to the sampling time k, equations are 
established based on triangular relationship according to 
figure 2 . Simplify those equations and get result as 

1
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k
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−
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where  j
itΔ  denotes time interval between sample 

time i and sample time j. Then 
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k k k
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t tD
t D v t t

β− −
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Δ Δ
≤ ⋅ − − ⋅

Δ − ⋅Δ Δ
       (26) 

Formula 26 denotes the upper limit of angle 
deviation when candidate track is linearly extrapolated in 
θ ϕ−  plane. Use the upper limit as linearly extrapolating 
association gate in the course of track initiation. Make the 
assumption that measurement ( )i kz and the j-th 
component of vector ˆ ( )L

m kz  which is gotten by 
extrapolating candidate track m. If satisfying the 
following formula, measurement ( )i kz will be confirmed. 

2 1min
, , 1 1

2 min max 1 2

ˆ( ) ( ) ( 1)
k k

L k k
i j m j k k k

k k k

t tD
z k z k

t D v t t
− −
− −
− − −

Δ Δ
− ≤ ⋅ − −

Δ − ⋅Δ Δ
�  

1, 2,( )k i k iz z− −−                                                       (27) 
When extrapolating candidate track using second-

order polynomial, suppose that  3A  corresponds to the 
sampling time k. Then, equations are established based on 
triangular relationship. Simplify those equations and get 
result as 
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Formula 28 denotes the upper limit of angle 
deviation when candidate track is extrapolated in θ ϕ−  
plane using second-order polynomial. Use the upper limit 
as second-order extrapolating association gate in the 
course of track initiation. If satisfying the following 
formula, measurement will be confirmed. 
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where ,ˆ ( )R
m jz k  is the j-th component of vector ˆ ( )R

m kz  
which is gotten by extrapolating candidate track m using 
second-order polynomial. These gate technologies make 
full advantage of the characteristic of bearing-only target 
motion and association gate adaptively adjust according 
to the measurements of the different candidate track.  

 

V. BEARING-ONLY TRACKING ALGORITHM BASED ON 
INTERACTIVE MULTI-MODEL(IMM)   

A．Multi-model algorithm introduction 
In the course of study and engineering application of 

bearing-only maneuvering target tracking, the tracking 
performance of single model based adaptive filter isn’t so 
good. Its limitation mainly is the competition between 
tracking accuracy  and rapid response to target tracking. 
Especially to bearing-only tracking, for its higher target 
maneuverability and the variety of structure and parameter 
existing in target motion model, single-model adaptive 
filter is difficult to accurately recognize these varieties in 
time so that inaccurate model and false tracking appear. 

Multi-model filter use several suited model to 
approximate the real target motion. Among them each 
model has a potential maneuvering mode. Random 
maneuvering of target is depicted as random hopping 
among models. By designing filter composed of several 
model, accordingly carry them into effectively 
execution for maneuvering target tracking. Thus, 
improving tracking performance is naturally shown. If 
making assumption that random hopping of target motion 
model state is discrete and target motion state is 
continuous, maneuvering target tracking is typical mixed 
estimation issue. Traditional solution of mixed estimation 
issue is combining estimation with decision-making. If 
making hard decision for the uncertain parameter and 
structure, the estimation result is usually bipolar 
optimization rather than global optimization. Under the 
circumstances, multi-model approach becomes mainly 
solution to mixed estimation nowadays. 

The basic idea of multi-model maneuvering target 
tracking approach is mapping potential motion model into 
model set. Each model in set represents different 
maneuvering mode and varieties of models based filter 
works in parallel. State estimation output is Bayesian 
illation based data fusion of all filtering state estimations. 
Suppose that {1,2,....,(Ms ) }ki∈  is model state sequence 
index up to time k and Ms is model number in model set. 
Simultaneity, ˆ ( | )x k ki and ( | )P k ki respectively is state 
estimation and error covariance under assumption of 
model state sequence km  matching model sequence kmi of 

i index. { | }k k kP m m zi=  is posterior probability  of this 

assumption. kS  is a set of all potential model sequence. 
kZ  is measurement sequence. Then, optimal multi-model 

estimation under LMSE need to considered all potential 
model state sequence assumption, namely 

'

ˆ ˆ( | ) ( | ) { | }

ˆ ˆ ˆ ˆP( | ) { ( | ( ( | ) ( | ))( ( | ) ( | )) } { | }

k k
i

ik k
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k k k
l i

m S

k k k
i i i i

m S

x k k x k k P m m Z

k k P k k x k k x k k x k k x k k P s m z
∈

∈

⎧ = =
⎪
⎨

= + − − =⎪
⎩

∑

∑

                                                                                         (30) 

Apparently, the number of potential model sequence 
assumption presents an index growth with time flowing. 
It produces an unacceptable computation cost. Especially 
to the disadvantage that target threatening degree can’t be 
estimated for distance information lack in passive 
tracking system, so real-time is very important to this 
system. Thus, the computation cost of selective approach 
must satisfy the demand of tracking operation. IMM 
algorithm [21-23] proposed by H.A.P.Bolm is an 
inferior optimized multi-model algorithm which has high 
cost-effective. This algorithm makes assumption that 
transformation of different model obeys finite Markov 
chain of known transition probability. It has the same 
performance as GBP2 and advantage of computation cost 
as GBP1. IMM is regarded as the first multi-model 
algorithm up to application value[24]. 
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B. IMM algorithm based on bearing-only 
measurement  
In polar coordinate, redefine state variable as  

[ ]'X θ ϕ θ ϕ= & &                  (31) 
Assume that target motion can be depicted as a model 

from r assumption model in some time, note model set 
{ }M := 1,...,rr : . The effective event of model j is noted as 

( )jM k  in sampling period ( , ]1t tk k− . For the assumption 
model j, whose target state equation is 

( ) ( 1) ( 1) ( 1) ( 1)

( ) ( ) ( ) ( )

j j jX k F k X k G k W k
j jZ k H k X k V k

⎧ = − − + − −⎪
⎨
⎪ = +⎩

        (32) 

Assume that probability of model j 

{ }(0) Pr (0)j jMμ =                                                   (33)              

 Transition probability  
Pr{ ( )| ( 1)}j ip M k M kij= −                                          (34) 

It is known and decided by Markov chain from 
( 1)jM k− to ( )jM k  in this time. 

1) Mixed probability calculating 
If ( )jM k  and measurement set 
1Zk− ( : { (1), (2),..., ( 1)}1Z Z Z Z kk = −− ) is known in sampling 

time k, appearance probability of iM can be expressed as 

{ } 1| ( 1| 1) ( 1) | ( ) , ( 1)1
i j iu k k P M k M M k M Z p u ki j k ijc j

− − = − = = = −−    

(35) 
Where, i,j=1,2,…,n, jc  is normalization constant. 

1) Interacting and mixed calculating  
Give the calculating expression of ˆ ( 1| 1)iX k k− −  and 

corresponding covariance ( 1| 1)iP k k− −  for different 
model

0 |
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0 |
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0 0

ˆ ˆ( 1| 1) ( 1| 1) ( 1| 1)

ˆ( 1| 1) ( 1| 1){ ( 1| 1) [ ( 1| 1)

ˆ ˆ ˆ( 1| 1)][ ( 1| 1) ( 1| 1)] '}
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j i i j

i

n
j i j i i

i

j i j

X k k X k k u k k

P k k u k k P k k X k k

X k k X k k X k k

=

=

⎧ − − = − − − −⎪
⎪⎪
⎨ − − = − − − − + − − −⎪
⎪

− − − − − − −⎪⎩

∑

∑                         

(36) 

2) Model conditional filtering 
 Regard the gotten mixed initial condition from step 2 

and current measurement Z(k) as input of each filter in 
time k. Thus, figure out newly model estimation, i.e. 

ˆ ( | )jX k k and ( | )jP k k . Together with predicted 

measurement ˆ ( | 1)jZ k k−  and corresponding innovation 

covariance ( )jS k ，  figure out likelihood function of 
filter 

11 1 ˆ ˆ( ) exp [ ( ) ( | 1)]'( ( )) [ ( ) ( | 1)]
22 | ( ) |

j j j j

j
k Z k Z k k S k Z k Z k k

S kπ
−⎧ ⎫Λ = − − − − −⎨ ⎬

⎩ ⎭

 

(37) 

Where, function distribution is Gauss.                                                  

3) Renewing model probability 
 Each renewing model probability lists as follows 

1( ) ( ) ( 1)
1

nj j iu k k p u kijc i
= Λ −∑

=
                 (38) 

4) State and covariance estimation.  
Formula of State and covariance estimation is 

1

1

ˆ ˆ( | ) ( | ) ( )

ˆ ˆ ˆ ˆ( | ) ( ){ ( | ) [ ( | ) ( | )][ ( | ) ( | )] '}

n
j j

j

n
j j j j

j

X k k X k k u k

P k k u k P k k X k k X k k X k k X k k

=

=

⎧ =⎪
⎪
⎨
⎪ = + − −
⎪⎩

∑

∑

                                                                                       (39) 
By analysis of algorithm framework, measurement 

information utilization of IMM exists in not only filtering 
estimation but also model probability. And IMM can 
adaptively adjust model by model probability change. 
Simultaneity, this algorithm has modularization 
characteristic. Through different application, filtering 
module can adopt all kinds of linear and nonlinear 
filtering algorithm. Finally, efficiency is improved in 
virtue of each filtering module working side by side in 
this algorithm. 

     C．Model selection for bearing-only tracking 
In this paper, model selection only limits to CV and 

CA because there isn’t so good performance for CT in 
polar coordinate and value of ω is difficult to grasp. The 
research indicates that common motion can be 
approximated by certain combination of CV and CA. 

 

VI. SIMULATION 

For getting more clear result, track initiation will be 
simulated firstly in order to test its distinguishing ability 
and fast ability in clutter environment. At last, set 
environment to test the final effect of track processing 
system as a whole. 

A.  Track initiation simualtion 
Introduce guide line for simulation judgment [25]. 
1) False probability of track initiation (FP) 

 
1 1

/
N N

i i
i i

FP f n
= =

= ∑ ∑                                      (40) 

where N is simulation number based on Monte-
Carlo. N=30 in this paper. 

if  is false track number and 

in  is initiated track number as a simulation.  
2)    Correct initiation probability ( jC ) 

N

l
C

N

i
ij

j

∑
== 1                                                        (41) 
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where ijl  represents if target j is initiated correctly in 
the i-th Monte-Carlo simulation. Correct is 1, or 0. 

TABLE I.  INITIAL STATES OF THE TARGETS IN CARTESIAN 
COORDINATE 

Target Process 
noise 

coefficient   

Model Velocity X Y Z 

1 0.70 CV 980 15000 5100 5000
2 0.90 CA 520 10000 1200 1000
3 0.60 CV 500 12000 100 -800
4 1.25 CA 430 9500 6000 200
5 1.00 CV 480 10000 800 -600
6 0.70 CV 550 9000 -2500 1000
7 0.50 CV 530 15000 8000 -600

 
There are seven targets in simulation environment. 

Their movements are CA and CV respectively. Process 
noise is white Gaussian noise. Initial states of the targets 
list as table 1 (position and velocity unit are m and m/s 
respectively.). There, acceleration of target 2 and target 4 
are 75m/s2 and 87m/s2 respectively. Figure out bearing-
only measurement in polar(θ-φ) coordinate based on 
these target tracks in Cartesian coordinate. Assume 
clutter density 5 26.25*10 /mradλ −= （Clutter number is 
Poisson distribution. Clutter is scattered as uniform 
distribution. ） and measurement noise coefficient is 
1.5mrad. Note that angle unit is one thousandth of radian, 
namely mrad. There, Dmin=10km, T=1.5s, maxv =1km/s, 

maxa =100m/s2 and threshold test significance 
level 0.01α = . In order to test speed of track initiation, 
this simulation is based on 6 sample cycle. Typical clutter 
environment is shown in figure 3.  Effect of track 
initiation is shown in figure 4. Based on 30 times Monte-
Carlo simulation, false track probability with different 
clutter density is shown in figure 5.  Correct track 
initiation probabilities of the targets as follow 

 
C1=86.7%, C2=83.3%, C3=93.3%, C4=80.0%, 
C5=80.0%, C6=90.0%, C7=93.3%. 
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Figure 3． Bearings-only measurements in clutter environment 
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Figure 4． Effect of track initiations 

 

 

 

 

 

 
 
 
 
 

Figure 5．False track probabilities based on the clutter density  
  

B. The tracking  effect based on JPDA-IMM for 
maneuvering target 
Here, a selective maneuvering target is shown in 

figure 6 and figure 7. The performance comparison of 
IMM and single model approach based on JPDA 
algorithm is shown in figure 8 and figure 9 based on 
Monte Carlo simulation. Where, make assumption that 
T=1.5s, sampling number N=350. 

Assume that measurement noise is Gauss white noise 
whose coefficient is 1 mrad. In this tracking filtering 
algorithm, the approach of direct angle modeling is 
chosen. In the single model algorithm, tracking model is 
CV whose state noise coefficient is 0.7 mrad. 
Simultaneity, there is an IMM filter composed of 4 model 
used to track. These models are depicted as: There are 
different Q matrix for model 1-model 3, which is CV 
whose state noise coefficient respectively are 1, 0.1, 0.01 
and model 4 is chosen as CA whose state noise 
coefficient respectively is 0.1. Initial model probability 
matrix  

0 [1/ 4 1/ 4 1/ 4 1/ 4]μ =  
 
 Model transition probability matrix 
 
 

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.05

0.1

0.15

0.2

0.25

clutter density       (10 -5 / mrad2)

F
P
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        .  

Figure 6.  Target track in Cartesian coordinate 

 

       
Figure 7.  Target track in bearing-only   coordinate 

 

 
Figure 8.  Azimuth RMSE comparison of IMM and single model 

 

Figure 9.  Pitching RMSE comparison of IMM and single model 

 

Figure 10.  Tracking effect in bearing-only   coordinate 

In these simulation figures, tracking comparison of 
IMM and every model of composing IMM are given in 
polar coordinate. Paying more attention to the dimension, 
horizontal and vertical axis, respectively, are radian and 
RMSE. Simulation time cost is shown in Table 2. 

TABLE II.   COMPUTATION COST COMPARISON OF IMM AND 
SINGLE MODEL FOR TARGET 1 

Model IMM CV1 CV2 CV3 CA 
Time(s) 1.0940 0.2350 0.2030 0.2180 0.2500

 

VII. CONCLUSION 

Simulation of track initiation approach in this paper 
shows that its confirming efficiency is effectively 
improved based on the presented gate technology. This 
approach effectively affirms the correct probability of 
track initiation for maneuvering target. According to 
simulation result of whole track processing system and 
application of actual ship-borne infrared system, adopting 
JPDA as data association is suitable for bearing-only 
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tracking system using passive sensor. Whereas, its 
performance takes on not so good comparing with 
performance in Cartesian coordinate. Moreover, JPDA is 
very high need for target detecting probability, sampling 
time and clutter density etc. Unsuitable value might lead 
to missing tracking. There is also clear conclusion that 
tracking accuracy is improved by using IMM. On the 
other hand, algorithm complexity is enhanced in deed, 
and that computation cost is in direct proportion to model 
number. Under the accuracy condition satisfied, model 
number choice is less as possible. By simulation, draw a 
conclusion: if the model number of CV exceeds 3 or 
number of CA exceeds 2, minimal performance 
improvement is displayed in the bearing-only tracking 
with computation cost greatly increase. It is the reason 
that too much unnecessary model competition in the 
multi-model data fusion. Excessive use of the model, not 
only increase computation cost but also reduce the 
accuracy of estimation. Based on simulation and outdoor 
actual debug of ship-based defense system, balancing the 
two factors that accuracy and computation cost, that 
choose the two CV and one CA to compose of multi-
model tracking filter can get the more satisfied results.  
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