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Abstract—Texture classification and analysis are the 

most significant research topics in computer vision. Local 

binary pattern (LBP) derives distinctive features of 

textures. The robustness of LBP against gray-scale and 

monotonic variations and computational advantage have 

made it popular in various texture analysis applications. 

The histogram techniques based on LBP is complex task. 

Later uniform local binary pattern’s (ULBP) are derived 

on LBP based on bit wise transitions. The ULBP’s are 

rotationally invariant. The ULBP approach treated all 

non-uniform local binary pattern’s (NULBP) into one 

miscellaneous label. This paper presents a new texture 

classification method incorporating the properties of 

ULBP and grey-level co-occurrence matrix (GLCM). 

This paper derives ternary patterns on the ULBP and 

divides the 3 x 3 neighborhood in to dual neighborhood. 

The ternary pattern mitigates the noise problems 

particularly near uniform regions. The dual neighborhood 

reduces the range of texture unit from 0 to 6561 to 0 to 80. 

The GLCM features extracted from ULBP-dual texture 

matrix (ULBP-DTM) provide complete texture 

information about the image and reduce the texture unit 

range. Various machine learning classifiers are used for 

classification purpose. The performance of the proposed 

method is tested on Brodtaz, Outex and UIUC’s textures 

and compared with GLCM, texture spectrum (TS) and 

cross-diagonal texture matrix (CDTM) approaches. 

 

Index Terms—Local binary pattern (LBP), Uniform LBP 

(ULBP-DTM), ternary patter, dual neighborhood, texture 

spectrum (TS). 

 

I.  INTRODUCTION 

Texture is one of the very fundamental and important 

appearances of the object surface.  Texture is widely used 

in object surface recognition and description. Texture 

classification plays an important role in texture analysis. 

Classification and analysis of textures has wide range of 

applications, for example, in industrial inspections, 

medical image processing, face recognition, problems 

related to human faces like face, facial expression, age 

classification issues, remote sensing, etc. The texture 

classification method initially compares the features of a 

unknown test sample, with the training sample features 

with respect to spatial scale, orientation, grey scale 

properties etc... Then the unknown sample is given the 

class of training sample that is more identical or whose 

distance measure is least. Texture classification mainly 

dependent on the features extracted on the image or 

object surface. Numerous methods are derived in the past 

decades, to extract the features from local patterns in 

texture classification [1-5].  

In the literature rotation invariant approaches has been 

developed. Circular auto regressive model are initially 

used to derive rotation-invariant texture classification [2]. 

Recently texton distribution methods are used for texture 

classification [3, 6, 7] and also for age classification 

[8].The revolutionary work of Ojala et al. “local binary 

pattern (LBP)” is extensively used for rotation invariant 

texture classification these days [9]. The LBP attracted 

increasing attention among the research scholars because 

of low computational complexity and invariance to 

monotonic illumination changes and rotation. The 

rotation invariant uniform LBP (LBPriu2), proposed by 

Ojala achieved a good rotational invariance performances. 

Later the original LBP operator [10] has been extended in 

several ways, such as neighborhoods with different sizes 

[9], multi-resolution [11], uniform patterns [12], 

prominent- LBP [31] etc. These developments on LBP 

mostly focus at capturing more discriminative and 

rotationally invariant information in local patterns and 

has a wide application, such as texture analysis and 
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classification [13-16], face detection and recognition [17 

- 25], image retrieval [26], etc. 

The other variant of LBP called local ternary pattern 

(LTP) [27] quantized the difference between a pixel and 

its neighbors into three levels. Some variants of LBP, 

such as derivative-based LBP [28], dominant LBP [29] 

and center-symmetric LBP [30], prominent LBP [31], 

dual LBP [26] have been proposed recently to overcome 

the noise and other related problems of LBP. The PLBP 

[31] derived new transitions that contains set of ULBP’s 

and NULBP’s and achieved prominent results in face 

recognition. Another variant of LBP descriptors [32], 

combined LBP and co-occurrence features. In local 

quantized patterns (LQP) [33], a clustering method was 

adopted. The local color vector binary pattern (LCVBP) 

[34] is especially developed for color image applications. 

A texture classification method named local vector 

quantization pattern [LQVP] [35] developed recently 

aimed at quantizing the whole difference vector between 

the central pixel and its neighborhood pixels instead of 

each neighborhood pixels separately and it attained a 

good classification result on UIUC, Outex and Brodatz 

data bases.  

Randen and Huso [36] after an extensive comparative 

study involving dozens of different spatial filtering 

methods concluded that the degree of computational 

complexity of most proposed texture measures in the 

literature is too high. To address this, the paper proposes 

a new feature description called ULBP-dual texture 

matrix (ULBP-DTM) for rotation and gray-scale 

invariant texture classification. At first, our approach 

quantizes the given texture image into ULBP coded 

image, this preserves the rotational invariant and 

fundamental units of texture image. The next step further 

quantizes the given ULBP texture image with ternary 

values and evaluates texture units by splitting the each 3 

x 3 neighborhood in to dual neighborhood (cross and 

diagonal neighborhoods) of 4 pixels each. The GLCM 

features are evaluated on ULBP-DTM by using machine-

learning classifiers for texture classification.  

The rest of the paper is organized as follows. Section 2 

briefly introduces LBP and its limitations; section 3 

presents the derivation of ULBP-DTM.  In Section 4 we 

present experimental results of proposed method and 

discussion. Finally, conclusions are drawn in Section 5. 

 

II.  LOCAL BINARY PATTERNS 

LBP is a simple and efficient operator to describe local 

image pattern and it is a robust, theoretically and 

computationally simple approach. It brings together the 

separate statistical and structural approaches to texture 

analysis and this has resulted, a door for the analysis of 

both stochastic micro textures and deterministic macro 

textures simultaneously. The LBP has shown outstanding 

performance in many comparative studies, in terms of 

both discrimination performance and computational 

complexity. That’s why many researchers in the field of 

image and video processing are motivated to use LBP 

operator in their findings. 

The derivation of the LBP follows that represented by 

Ojala et al. [9].  There is no universally accepted 

definition for texture. In general a texture T in a local 

neighborhood of a gray-scale image is defined as the joint 

distribution of the gray levels of P + 1 (P > 0) image 

pixels: 

 

T = t(Pc, P0, . . . , Pn),                          (1) 

 

Where Pc represents to the gray value of the center 

pixel and Pn(n = 0, . . . , n−1) represent to the gray values 

of P equally spaced neighboring  pixels on a circle of 

radius R (R > 0). That is according to LBP a texture is 

defined not only by the grey level values of a pixel Pc 

also by the surrounding or neighboring pixels of Pc. The 

neighboring pixel coordinates are given by (xc + 

R*cos(2πp/P ), yc−R*sin(2πp/P )), where (xc, yc) are the 

coordinates of the center pixel. The values of neighbors 

that do not fall exactly on pixels are estimated by bilinear 

interpolation. Most of the textural information in an 

image can be obtained from local neighborhoods because 

correlation between pixels decreases with distance. 

One can represent the local texture, based on the 

difference of grey level values between center pixel and 

neighboring pixels: 

 

T = t(Pc, P0 − Pc, . . . , Pn − Pc)                    (2) 

 

The above representation of texture is not true due to 

the limited nature of the values in digital images, further 

this representation describes the overall luminance of an 

image, which is unrelated to local image texture and does 

not provide useful information. The LBP measures only 

the signs of the differences, to achieve invariance with 

respect to any monotonic transformation of the grey 

scales. The LBP operator assigns a binomial weight 2p to 

each sign S(Pn − Pc).This transforms the sign differences 

in a neighborhood into a unique LBP code. The code 

characterizes the local image texture around (xc, yc). In 

practice, Eq. 4 represents the LBP code or local gray-

scale distribution which results in 2n distinct values. The 

process of formation of LBP code is shown in the Fig.1. 

 

T~t(S(P0–Pc), . . . , S(Pn-1 – Pc)),                 (3) 

 

where  

 

S(x) = 1 if x >= 0 else 0 

 

LBPP,R(xc,yc)=∑ 𝑆(𝑃𝑖 − 𝑃𝑐) ∗  2𝑖𝑛−1
𝑖=0                  (4) 

 

 

 

Fig.1. Representation of LBP.
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Fig.2. The derivation of basic LBP code. 

A 3 x 3 neighborhood with 8-neighboring pixels 

derives a LBP code that ranges from 0 to 28-1= 0 to 255.  

The Fig.2 illustrates the process of LBP code derivation.  

The centre pixel 40 is replaced by the obtained LBP value 

67. In this way a new LBP image is constructed by 

replacing the centre value with the corresponding LBP 

code. There is no unique way to label the coefficients and 

ordering the 255 LBP codes on a 3×3 neighborhood. The 

eight elements may be ordered differently. If the eight 

elements are ordered clock wise around the central pixel, 

the first element may take eight possible positions from 

top left corner to the left middle. This will result labeling 

of LBP code in 8-different ways. This will result 8-

different LBP codes for the Fig.2 {13, 26, 52, 104, 208, 

161, 67, 134}. 

 

III.  THE DERIVATION OF ULBP-DTM 

The number of LBP codes will be increased drastically 

if one increases the number of neighboring pixels (P) 

from 8 (28 ) to 16 (216) or 24(224) over a radius R. To 

quantify the varying performance of individual pattern 

attributes to the spatial structure of patterns the 

uniformity measure ‘U’ on LBP is defined. The 

uniformity corresponds to the number of circular spatial 

transitions (bitwise 0/1 changes) in the LBP. A LBP is 

treated as Uniform LBP (ULBP) if it contains at most two 

transitions from 0 to 1 or 1 to 0 in a circular manner. The 

remaining patterns are treated as non–uniform LBP 

(NULBP). The Pattern with 00000000, 01000000 and 

01010101, derives 0, 2 and 8 transitions respectively. A 

LBP with (P, R) where P=8 and R=1 will have P * (P-1) 

+ 2 = 58 ULBPs and 198 NULBP’s. Some of the 

researchers [37, 38] considered only ULBP’s because of 

the following reasons. a) The fundamental properties of 

texture image can be precisely represented by ULBP. b) 

90 to 95% of the texture images hold only ULBP 

windows. c) Treating the 192 NULBP’s as miscellaneous 

will reduce lot of dimensionality without losing the 

texture content. The present paper given unique code for 

each ULBP i.e. from 1 to 58 and the code 0 is assigned to 

all remaining 198 NULBP’s. The quantization process of 

the basic 3 x 3 neighborhood in to ULBP coded image is 

shown in Fig.3. Here the central pixel 75 is replaced with 

zero (NULBP code) because the LBP window is a 

NULBP. 

 

 

Fig.3. ULBP quantization process.  

The proposed ULBP-DTM initially quantizes the given 

grey level image in to ULBP window, by treating all 

noisy and non significant windows i.e. NULBPs in to 

miscellaneous. This quantization process represents the 

significant information of texture in the form of lines, 

curves, spots, blobs, edges etc… In the second step this 

paper further quantizes the ULBP coded image in to 

ternary representation by assigning one of three possible 

values (ternary patterns; 0, 1, and 2) to the neighboring 

pixels of ULBP windows i.e. using a threshold i.e. the  

grey level value of center pixel as specified in the 

equation 5.  

 

𝑇𝑖  =  {

0  𝑖𝑓 𝑃𝑖 < 𝑃𝑐

 1 𝑖𝑓 𝑃𝑖 == 𝑃𝑐    𝑓𝑜𝑟 𝑖 = 0,1,2, … 7 
2 𝑖𝑓 𝑃𝑖 > 𝑃𝑐

       (5) 

 

𝑇𝑈𝑛 =  ∑ Ti ∗   3i , Ti ϵ {0,1,2}

7

i=0

 

and 

 

     TUn ϵ {0,1,2, … 38−1}                          (6) 

 

By assigning ternary weights to the ULBP 

neighborhood it generates a unique code ranging from 0 

to 6561 as given in equation 6. The above ternary pattern 

approach on ULBP overcomes the sensitive to noise 

problem of LBP, which is particularly in the presence of 

smooth and weak illumination gradients in near uniform 

regions. That is ternary representation can better tolerate 

noise and it is significantly more distinctive. However 

one of the main disadvantages of this approach is it 

results a large set of TUn (0 to 6561) when compared to 

LBP (0 to 255) on a 3x3 neighborhood.  To reduce 

dimensionality, while preserving the significant 

information this paper divided the ULBP ternary 

neighbourhood in to dual neighbourhoods and named 

them as cross-ULBP (CULBP) and diagonal-ULBP 

(DULBP). The CULBP and DULBP of a 3 x 3 

neighbourhood consist of four pixels (Fig. 4). 

Multiplying each of the four ternary pattern elements of 

the CULBP and DULBP with ternary weights and 

concatenating them will result a code that ranges from 0 

to 81 (34) as given in Eqn. 7 and 8. The CULBP and 

DULBP on a 3×3 grid can be represented in four ways as 

shown in Fig.5.1 and Fig.5.2 and this allows the 

formation of ULBP-DTM in 16 different ways. The 

ULBP-DTM is formed by placing CULBP code on the x-

axis and DULBP code on the y-axis as in Fig.4. This 

ULBP-DTM has elements of relative frequencies of both 

basic windows and has a fixed size of 81 x 81. Since the 

values of CULBPn and DULBPn range from 0 to 80, the 

ULBP-DTM will have a fixed size of 81 x 81. This 

reduction is useful to reduce computational complexity of 

a GLCM. The GLCM method [40] gives reasonable 

texture information of an image that can be obtained from 

two pixels. The GLCM method characterizes the spatial 

relationship between a pixel and a neighboring pixel at a 

given specific distance and angle. The size of GLCM 
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depends on gray level range of the image. The entire 

process of transforming an ULBP image neighborhood 

into ULBP-DTM is shown in Fig.4.  

 

𝑁𝐶𝑇𝑈 =  ∑ 𝑇𝑖 . 3𝑖−14
𝑖=1                        (7) 

 

𝑁𝐷𝑇𝑈 =  ∑ 𝑇𝑖 . 3𝑖−14
𝑖=1                        (8) 
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Fig.4. Transformation of ULBP neighborhood into ULBP-DTM (a): 

ULBP window; b) Ternary representation on ULBP window; c & d) 

Ternary elements of DULBP and CULBP window; e &  f)  The ternary 

weights of DULBP and CULBP ( CULBPn  & DULBPn ). 

 

Fig.5.1. Four possible representations of ternary weights of CULBP. 

 

Fig.5.2. Four possible representations of weights of DULBP. 

This paper evaluated 13 GLCM features on the ULBP-

DTM using 0o, 45o, 90o and 135o degrees and performed 

the classification by computing average of these four 

rotations. The proposed ULBP-DTM model using GLCM 

combines the merits of both statistical and structural 

information of images and thus represents complete 

information of the facial image.  

 

IV.  RESULTS AND DISCUSSIONS 

This paper conducted experiments on three very large 

scale natural texture databases i.e. Brodtaz [41], UIUC 

[42] and Outex [43] and the experimental results are 

compared with other state of art methods CDTM [44], 

GLCM[40] , TS [39],  TCTF [7].  The texture images of 

these databases are natural and captured under varying 

conditions like illumination, rotation, lightening, 

reflections etc…The present paper conducted 

experiments using various machine learning classifiers 

like Naïvebayes, Multi perceptron, Ibk and J48. This 

paper listed out the average classification rate, mean 

absolute error and root mean square error rates. 

We selected 24 homogeneous texture image classes 

from the Brodatz database (Fig. 6). In each class, we 

considered 10 texture images. The texture images are of 

size 512 x 512 pixels. We extracted randomly 8 non-

overlapping patches with 128×128 size from each image. 

In this way, we generated a dataset containing 1920 (24 x 

10 x 8) texture images, and with each class or category 

containing 80 images. We have randomly picked 20 

texture patch images from each category as training and 

remaining are used for test images, i.e. 25% of images are 

considered for training purpose.  

 

 

Fig.6. Sample image of Brodtaz textures. 

The UIUC texture database is represented with 25 

different categories of images, with 640×480 resolution, 

shown in Fig.7. The database contains images under 

significant viewpoint variations. This paper considered 
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all 25 classes of UIUC database for experimental sake. 

And in each category we have randomly picked 10 

images.  We extracted 10 randomly non overlapped 

patches from each image with a size of 128 x 128.  This 

makes the data base size of 2500 images with resolution 

of 128 x 128 (25 x 10 x 10). In each category we have 

used 20 texture patches as training set and remaining 80 

images as test cases.   

 

 

Fig.7. Sample images of the 25 classes from the UIUC database. 

The Outex database includes two test suites: 

Outex_TC_10and Outex_TC_12 (TC12_000 and 

TC12_001) as shown in Fig. 8.  Both TC10 and TC12 

contain 24 classes of texture images captured under three 

illuminations (“inca”, “tl84” and“horizon”) and nine 

rotation angles (0° , 5° , 10° , 15° , 30°,45° , 60° , 75° and 

90° ). There are twenty 128×128 images for each rotation 

angle under a given illumination condition. The 24×20 

images of illumination “inca” and rotation angle 0°are 

adopted for the training process. For the TC10 dataset, 

we use the non-zero rotation angles with illumination 

“inca” for testing. For TC12 dataset, all the 24×20×9 

samples captured under illumination “tl84” or “horizon” 

is used as the test data. In order to generate the codebook, 

we choose one image from each class on TC10 dataset, 

limiting the training set size to 24. 

 

 

Fig.8. Sample images of the 24 classes from the Outex database. 

This paper computed classification rates of textures on 

ULBP-DTM, using 13 GLCM features on the above three 

databases using NaiveBayes, Multilayer perceptron, Ibk 

and J48 classifiers on Weka tools. The 13 GLCM features 

in four principal directions are given as inputs to the 

classifiers and the average classification per texture class 

is listed in Table 1. We also computed average 

classification rate of each classifier on ULBP-DTM and 

presented in the last row of the table.  The high 

classification rate is achieved by multilayer perceptron 

and in the remaining part of the paper, we will be 

mentioning this classification rate only on ULBP-DTM. 

The paper evaluated the eight TS features [46] on all 

databases and average classification is listed in the Table 

2. The eight TS features are 1) black-white symmetry 

(BWS), 2) geometric symmetry (GS), 3) degree of 

direction (DD), 4) micro-horizontal structures (MHS), 5) 

micro-vertical structures (MVS), 6) micro-first diagonal 

structures (MDS1), 7) micro-second diagonal structures 

(MDS2) and 8) central symmetry [46].  This paper also 

evaluated the 13 GLCM features on the raw texture 

image using 0o, 45o, 90o and 135o degrees and displayed 

the classification rate in Table 2. This paper evaluated the 

13 GLCM features on CDTM [44] on 4-different 

ordering ways and the average classification rate is listed 

in the Table 2. This paper also computed the texture 

classification with our earlier method TCBTF [7] 

approach. The TCBTF [7] approach was only 

experimented on a particular type or category of textures 

i.e. stone textures of Brodtaz Texture, however in this 

paper we have tested the performance of this earlier 

method [7] on these three types of texture databases with 

huge number of  images. 

From Table 2 the following are noted down: 

 

 The eight features derived on texture spectrum has 

resulted very poor classification rate of 55.36%.  

 The TCTF and GLCM features have resulted a 

classification rate 80.44 and 61.29 respectively.  

 The 13 GLCM features on CDTM with average of 

4-different orientations has resulted good 

classification rate of 83.62. 

 The proposed ULBP-DTM with the 13 GLCM 

features outperformed the other existing methods. 

The proposed ULBP-DTM achieved on average of 

90.05% of classification rate.  

 Outex and Brodtaz textures have resulted slightly 

higher classification rate on all approaches when 

compared to UIUC database. This is because 

UIUC database contains lot of orientations and 

scale changes when compared to other two 

databases. 

 

The proposed ULBP-DTM exhibited more robustness 

to monotonic illuminations and other changes in the 

texture images than other methods due to the following 

reasons: 
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1. The ULBP’s are fundamental rotation-invariant 

properties of local image texture consist of 

powerful texture feature.  

2. The ternary patterns derived on ULBPS resisted to 

noise and have shown more discriminative power.  

3. The division of neighborhoods, into dual 

neighborhoods reduced dimensionality to a greater 

extent, and that’s why the computational burden of 

evaluating GLCM features on ULBP-DTM is 

reduced to a greater extent from 256 x 256 to 81 x 

81.  

4. The GLCM features derived on ULBP-DTM have 

shown high discriminative power on all databases.  

The graphs of Fig. 10, 11 and 12 , displays the average 

classification rate, mean absolute error rate and root mean 

squared error respectively on four different methods. The 

proposed ULBP-CDTM is resulted a high classification 

rate and low error rate on all databases when compared to 

the other existing method. The proposed ULBP-DTM 

method achieved on average classification rate of 90.05%, 

a low average mean absolute error of 0.30 and root mean 

squared error rate of 0.34 using multilayer perceptron 

classifier.  

 

 

 

Table 1. Classification rate of proposed ULBP- DTM method on different databases using classifiers. 

Databases/Classifiers NavieBayes Multilayer 

perceptron 

Ibk J48 

Brodtaz 82.13 86.48 84.78 85.69 

Outex_T10 91.98 95.41 88.15 88.45 

Outex_T12 90.99 94.89 87.12 85.42 

UIUC 81.78 83.43 81.15 81.78 

Avg 86.72 90.05 85.30 85.33 

Table 2. Classification rate of proposed and existing methods. 

Databases/ 

Classifiers 

Proposed 

ULBP-

DTM 

method 

CDTM GLCM TS TCTF Average 

classific

ation 

rate per 

database 

Brodtaz 86.48 82.46 60.18 54.76 79.56 72.68 

Outex_T10 95.41 85.48 63.47 56.86 82.45 76.73 

Outex_T12 94.89 87.86 64.82 57.63 84.44 77.92 

UIUC 83.43 78.69 56.71 52.21 75.32 69.27 

Avg 90.05 83.62 61.29 55.36 80.44  

 

 

Fig.9. Classification rate of proposed ethod on considered databases. 

 

Fig.10. Comparison graph of proposed and existing methods on 

considered databases in terms of classification rate.
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Fig.11. Comparison graph of proposed and existing methods on 

considered databases in terms of mean absolute error. 

 

Fig.12. Comparison graph of proposed and existing methods on 

considered databases in terms of root mean square error. 

 

V.  CONCLUSIONS 

In this paper we integrated the structural and statistical 

features by deriving a new texture analysis method called 

ULBP-DTM and it is tested. The present method initially 

derived ULBP on the textural images to capture rotational 

invariant fundamental features and treated all 192 

NULBP as miscellaneous. By this dimensionality is 

reduced while preserving the significant and fundamental 

features of textures. This paper derived ternary patterns 

on ULBP to reduce the effect of noise and to increase 

distinctiveness. To reduce the number texture units on 

ternary patterned texture the present paper divided the 3 x 

3 neighborhood in to dual neighborhood and estimated 

texture units separately and established a relationship 

among them. This has reduced the dimensionality and 

derived a texture matrix of size 81 x 81 (in case of LBP it 

is 256 x 256 and 6561 x 6561 in case of TS). The 

performance of the proposed method has been compared 

with GLCM, TS, CDTM and TSTF. The performance of 

the proposed ULBP-DTM showed better performance 

and proved to be an excellent gray-scale and rotation 

invariant texture descriptor. 
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