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Abstract—A sampled signal can be properly 

reconstructed if the sampling rate follows the Nyquist 

criteria. If Nyquist criteria is imposed on various image 

and video processing applications, a large number of 

samples are produced. Hence, storage, processing and 

transmission of these huge amounts of data make this task 

impractical. As an alternate, Compressed Sensing (CS) 

concept was applied to reduce the sampling rate. 

Compressed sensing method explores signal sparsity and 

hence the signal acquisition process in the area of 

transformation can be carried out below the Nyquist rate. 

As per CS theory, signal can be represented by alternative 

non-adaptive linear projections, which preserve the signal 

structure and the reconstruction of the signal can be 

achieved using optimization process. Hence signals can 

be reconstructed from severely undersampled 

measurements by taking advantage of their inherent low-

dimensional structure. As Compressed Sensing, requires 

a lower sampling rate for reconstruction, data captured 

within the specified time will be obviously less than the 

traditional method.   

In this paper, three Compressed Sensing algorithms, 

namely Orthogonal Matching Pursuit (OMP), 

Compressive Sampling Matching Pursuit (CoSaMP) and 

Normalized Iterative Hard Thresholding (NIHT) are 

reviewed and their performance is evaluated at different 

sparsity levels for image reconstruction.  

 

Index Terms—Compressed Sensing (CS), Sparsity, 

Sampling, Nyquist rate, Orthgonal Matching Pursuit 

(OMP), Compressive Sampling Matching 

Pursuit(CoSaMP) and Normalized Iterative Hard 

Thresholding (NIHT). 

 

I.  INTRODUCTION 

The pioneering works of Kotelnikov, Nyquist, 

Shannon and Whittaker on sampling of continuous time 

bandlimited signals [1, 2, 3] showed that signals, images, 

videos, and other data can be exactly recovered from a set 

of uniformly spaced samples taken at the Nyquist rate. 

Due to the high rate of success in digitization, the data 

generated by sensing systems have also grown huge in 

size for various applications. Hence, too many samples 

are produced if the Nyquist criteria is followed.  Despite 

advances in signal processing at higher speeds and 

storage abilities, this posed a challenge to the 

computational world. 

To address this challenge, compression techniques 

were adopted, which aims to find the most concise 

representation of a signal with acceptable distortion. The 

most popular signal compression techniques which 

include transform coding are, JPEG, JPEG2000, MPEG, 

and MP3 standards. In these techniques, the entire signal 

is acquired and then removal of redundant data is applied 

in subsequent steps. 

The traditional method of acquiring entire signal and 

then compressing was questioned by Donoho [4] and laid 

the foundation for a field of Compressed Sensing. 

Compressed Sensing (CS), or Compressed Sampling, 

refers to reconstructing signals efficiently from a set of a 

few non-linear measurements having some incoherent 

properties [4, 5, 6]. As most of real life signals are 

compressible in nature and can be represented as sparse 

signals in some transform domain. As sparse signals 

having very few non zero coefficients, it can be 

represented by some linear measurements. Non-linear 

optimization can then enable recovery of such signals 

from very few measurements. Hence, CS enables a 

potentially large reduction in the sampling and 

computation costs for sensing signals which are having 

sparse or compressible representation. 

In 1795, Prony proposed an algorithm for the 

estimation of the parameters associated with a small 

number of complex exponentials sampled in the presence 

of noise [7]. Around 1900, Caratheodory showed that a 

positive linear combination of any k sinusoids is uniquely 

determined by its value at t = 0 and at any other 2k points 

in time [7]. This corresponds to far fewer number of 

Nyquist rate samples when k is small. In the early 2000, 

Blu, Marziliano, and Vetterli developed sampling 
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methods for certain classes of parametric signals which 

are governed by only k parameters, showing that these 

signals can be sampled and recovered from just 2k 

samples [8]. Beurling proposed a method to reconstruct 

signals from partial observation of its Fourier transform 

[9]. This approach suggests to find the signal with 

smallest l1 norm among all signals agreeing with the 

acquired Fourier measurements bears a remarkable 

resemblance to few algorithms used in CS. 

In this paper, few greedy CS algorithms like 

Orthogonal Matching Pursuit (OMP), Compressive 

Sampling Matching Pursuit (CoSaMP) and Normalized 

Iterative Hard Thresholding (NIHT) are reviewed and 

their performance is evaluated based on various image 

quality parameters. 

This paper is divided into different sections, where 

Section II explains the problem formulation of image 

reconstruction, Section III provides an overview of the 

reconstruction algorithms and covers Orthogonal 

Matching Pursuit (OMP), Compressive Sampling 

Matching Pursuit (CoSaMP) and Normalized Iterative 

Hard Thresholding (NIHT) algorithm's theoretical aspects 

and implementation structure. In Section IV, simulation 

results of these algorithms are presented. Conclusions are 

presented in Section V. 

 

II.  PROBLEM FORMULATION OF IMAGE RECONSTRUCTION 

As per CS theory, an unknown sparse signal, in which 

the number of nonzero components are far less than its 

length, can be reconstructed from under determined 

nonadaptive linear measurements that fulfill incoherence 

properties. These under determined nonadaptive linear 

measurement being less than the length of sparse signal, 

where the linear measurement is independent of the 

sparse signal. This compressed sensing or compressive 

sampling model is represented as follows, 

 

sparseY X                                  (1) 

 

Where, 
1n

sparseX R  is a sparse signal with the number 

of nonzero components k far less than its length n. Hence, 

out of n components of signal inX  only k nonzero 

components are taken in sparseX .  
m nR   is a 

measurement matrix with its number of rows m being less 

than columns n. Measurement matrix is often called 

measurement dictionary with each column called atom of 

the dictionary. 
1mY R  is refereed as measurement signal. 

Equ. (1) has an infinite number of solutions as it is under 

determined linear equation. One simple solution can be 

achieved through Moore Penrose Pseudo inverse method, 

in its closed form as
†Y , which is based on the least 

square criterion. 
†  is Moor-Penrose Pseudo inverse of 

 . 

For 
sparseX signal, solution leads to the following 

optimization problem, 

 

1 0
min . .  

sparse
n sparse sparse

X R
X s t Y X


                (2) 

 

Where, 
0

.  is pseudo norm which counts the number 

of nonzero components in the input vector. Equ. (2) has 

total 
n

m

 
 
 

 number of combinations possible, where m is 

the length of the measurement signal. Hence, solution of 

Equ. (2) is an NP-HARD problem. Various Greedy 

algorithms aims to solve the 0l  minimization problem 

approximately. 0l problem could be related to 

 0 1pl p   or even 1l  problem under some conditions. 

pl  and 1l  problem can be represented as follows, 

 

1
min  . .  

spars
n

e

sparse sparsepX R
X s t Y X


               (3) 

 

 
1 1

min . .
spars

n
e

sparse sparse
X R

X s t Y X


              (4) 

 

Where, .
p

and 
1

. represents p-norm and 1-norm of 

the input vector respectively. 

Comparatively, 1l  problem is easier to solve as it is a 

convex type, i.e., there exists a unique global solution [11] 

and can be solved using Basis pursuit (BP) algorithm. 

The equivalence of 0l  problem with 
pl  or 1l  problem 

requires restrictions on measurement dictionary and the 

sparsity of the original sparse signal. For measurement 

dictionary, if the following inequality holds true for any 

sparse signal 
sparseX [11]. 

 

2 22
1 1k sparse sparse k sparseX X X         (5) 

 

The measurement dictionary is said to be with 
thk  

order Restricted Isometry Condition (RIC) k . For 1l

minimization problem stated by Equ. (4), if 
th2k order 

RIC of measurement dictionary satisfies, the solution of 

0l and 1l  minimization problem becomes identical. A 

more fundamental concern is whether the solution of 0l  

problem is equal to the original/sparse signal or not? In 

terms of RIC, it can be said that when the solutions to 

Equ. (2) is exactly the original/sparse signal [11]. 

Another important parameter is called coherence and 

cumulative coherence of measurement dictionary. The 

coherence    and 
thk order cumulative coherence 

 1  of measurement dictionary are defined as [12], 

 

  max ,i j
i j

  


                             (6) 

 

 1
,

max max ,i j
I k i I j I

  
  

                       (7) 
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Where, 1m

i R  and 
1n

j R   represents  
thi  (1  i 

m) and thj (1   j  n) columns of measurement 

dictionary. Here I is set of indices. If  
1

2 1k
  


or

1 1(k 1) (k) 1    , solution of 0l  problem and 1l  

problem becomes identical. So, the Basis Pursuit and the 

OMP algorithms can be used to recover the sparse signal 

in compressed sensing [12]. 

 

III.  COMPRESSED SENSING ALGORITHMS FOR IMAGE 

RECONSTRUCTION 

From above introductory discussion, it can be seen that 

RIC or coherence represents quality of the measurement 

dictionary and suggested to have small value [11]. The 

measurement dictionary is a redundant, which means that 

the number of columns are larger than that of rows, hence, 

RIC could never become zero. Similarly, the smallest 

value of coherence and cumulative coherence of 

measurement dictionary is favored in CS [12]. In the 

extreme case, when both of coherence and cumulative 

coherence become zero, measurement dictionary 

becomes an orthogonal matrix and sparse signal recovery 

becomes easier. 

As measurement dictionary is redundant in nature, one 

could never expect that coherence becomes zero. There 

exists a lower bound of coherence ( )W , called welch 

bound. For a real redundant dictionary with size m n  

and 0.5 (m 1)n m  , welch bound is given as, 

 

                          
( )

(n 1)

n m
W

m






  (8) 

 

The Welch bound is ideal condition, which cannot be 

achieved always by any pair of m and n. Welch bound 

suggests that, how one could reduce the coherence of 

measurement dictionary [13] and design measurement 

dictionary with small coherence value based on 

alternating projection method. From simulation shown in 

[13], it is observed that for dictionary with certain 

dimensions, the coherence could achieve welch bound. 

Quality of the measurement dictionary can be evaluated 

from RIC, but here calculation of its 
thk order RIC is 

impractical as it involves computation of an eigen value 

of the Gram matrix formed by any k columns. Following 

equation represents the condition for 
thk  order RIC, 

 

    max minmax 1, 1T T

K I I I I
I k

  


             (9) 

 

Where, I is matrix composed of atoms of  with 

index in the set I,  max

T

I I   and  min

T

I I   are 

maximal and minimal eigen value respectively. 

Relationship between RIC and cumulative coherence can 

be represented by following equation, 

 1 1K k                                (10) 

 

Equ. (10) represents the relationship between 
thk order 

RIC and th( 1)k  order cumulative coherence. As 

computation of cumulative coherence is practically 

possible, one can aim to design dictionaries that 

ultimately satisfies minimum RIC value criteria. Hence, it 

is quite reasonable to accept minimum coherence as a 

criterion instead of RIC to design the measurement 

dictionary. 

In this paper, three different algorithms named 

Orthogonal Matching Pursuit (OMP), Compressive 

Sampling Matching Pursuit (CoSaMP) and Normalized 

Iterative Hard Thresholding (NIHT) are reviewed. These 

algorithms are utilized for image reconstruction 

application and their outcomes are evaluated based on 

various absolute performance parameters.  

A.  Image reconstruction using Orthogonal Matching 

Pursuit (OMP) algorithm 

An sparse signal with k sparsity value represented as, 

 

    
sparse inX X                               (11) 

 

Where, 
sparseX is sparse signal having only few k 

nonzero terms.  is sensing dictionary. In other words, 

 

                                   (i) 0,sparseX i I ò                         (12) 

 

The index set I corresponding to the nonzero 

components of sparse signal. Sparsity k means that 

I k , only index values of k sparse signals are 

considered and remaining set to zero. The basic CS 

problem can be expressed as 

 

 sparse i sparse

i I

Y X X  
ò

           (13) 

 

Where, Y represents the measurement signal,   

represents the measurement dictionary and 1m

i R   is 

the 
thi column or atom of measurement dictionary. As per 

above Equ. (13), the measurement signal Y is a linear 

combination of k atoms of measurement dictionary. 

These atoms and combination coefficients can be 

determined by nonzero components of sparse signal 

sparseX . After every iteration, the OMP algorithm selects 

the atom of measurement dictionary  , which is most 

correlated with the correct residual r. The index of this 

atom is added into the set of selected atoms ( sI ). The 

algorithm updates the nonzero coefficients of sparse 

signal using least square technique. Then after, the 

residual signal is updated using the coefficient and index 

set is estimated again. After selection of one atom and 

addition of its index set sI , residual is updated as follows,
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Let 
sIP and 

sIP  defined as the orthogonal projection 

operator on the column space 
sI and its complement 

respectively, 

 
†

s s sI I IP                              (14) 

 
†1

s s s sI I I IP P I                         (15) 

 

Where  †
1

 
s s s s

T T

I I I I



     is the Moore penrose 

pseudo inverse of 
sI . Now, residual signal is redefined 

as, 

 

                            
^

s
sparseIr Y X                        (16) 

 

            
^

† † ( )
s s s

sparseI I Ir Y Y X Y            (17) 

 

( )
sIr I P Y                            (18) 

 

                         
sIr P Y                                (19) 

 

So, orthonormal signal becomes the orthogonal 

complementary projection on the subspace spanned by all 

the selected atoms whose index lies in the set sI . As per 

orthogonal complementary projection property, residual r 

is orthogonal to the selected atoms. Which can be 

expressed as below, 

 

   0T

i sr i I                          (20) 

 

In the atom identification process, the identification 

vector h can be written as, 

 

 Th r                                (21) 

 

The above equation can be rearranged as, 

 

 1
0

s s

T

s I I
hI r


                             (22) 

 

Where shI is components of vector h whose index 

belongs to the index set sI and 
 1

0
sI 

is zero vector with 

size  1sI  .  

As per Equ. (22), initially only single atom is selected 

and its index number is added to the index set sI . The 

inner product of this atom with the residual signal 

becomes null, hence the selected atom could not be 

reselected again. After k iterations, all the atoms whose 

index set I are selected and their estimated coefficients 

are given as, 

 

 
1^

  T T
sparse I I IX Y



                          (23) 

 

   
1^

    T T
sparse I I I I sparse I sparseX X Y X



          (24) 

 
^

sparse sparseX X                              (25) 

 

As per Equ. (25), If all atoms correctly selected, the 

reconstructed sparse signal matches with the original one.  

For the success of the OMP algorithm, some conditions 

need to be fulfilled. The first condition is to find the value 

of RIC that guarantee the success of the OMP algorithm? 

The answer was given by Mo and Shen [16], if the RIC 

1k   of measurement dictionary  satisfies, 

 

                               
1 1/ 1k k                             (26) 

 

Then for k sparse signal, the OMP will recover 
sparseX  

from 
sparseY X   in k iterations. A sufficient condition 

for reconstruction is to recover the sparse signal from 

under determined linear measurement [12]. 

 

               
† . .  1

C
sparse i

i I

Y X s t max    
ò

            (27) 

 

Which means maximization occurs over all atoms i , 

which do not participate in the k sparse representation. 

Another sufficient condition given for Equ. (27) based on 

the cumulative coherence of measurement dictionary [12]. 

The exact recovery condition mentioned by Equ. (27) 

whenever, 

 

   1 11 1k k                       (28) 

 

Therefore the OMP algorithm is successful for k sparse 

signal recovery whenever Equ.(28) holds true. 

As discussed both Equ. (27) and Equ. (28) represents 

sufficient conditions for the algorithm. Equ. (27) 

demands for the required index set I of correct atoms, 

which is unknown beforehand, hence it cannot applied 

practically. On the other hand Equ. (28) involves only 

cumulative coherence which is independent of the sparse 

signal. Hence, based on measurement dictionary or on 

cumulative coherence, one could evaluate the OMP 

algorithm for recovery of  k sparse signal. 

The quality measuring parameters of the measurement 

dictionary, mutual coherence and RIC are related to each 

other as follows, 

 

 1 1k k                                 (29) 

 

For over complete measurement dictionary, it's better 

to calculate cumulative coherence as compare to RIC. 

Instead of designing measurement dictionary with small 
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RIC, which is impractical, one can attempt to design with 

small coherence value as mentioned [23, 24]. 

Incorporation of Sensing dictionaryFigures and Tables 

Let matrix 
m nR ò be sensing dictionary of the size

m n . If input data or signal is not sparse in direct form, 

it can be sparsified using a sensing dictionary, 

 

1
max  T

j
j n

i r
 

                                (30) 

 

Where, 
1m

j R  is thj atom of sensing dictionary Ψ 

and r is residual. As, RIC for measurement dictionaries, a 

similar value termed generalized RIC is defined [15]. For 

a pair of measurement and sensing dictionaries the 

following inequality for k sparse signal 
sparseX is, 

 

   
2 2

' '

2
1 1T

k sparse sparse k sparseX X X       (31) 

 

The parameter '

k is termed as  kth order generalized 

RIC. As, RIC of measurement dictionary, there is a 

relationship between the eigenvalue of type Gram matrix 

 ?T

I I   and generalized RIC for any index set I satisfying

I k , then exists the following inequality. 

 

       ' '

min max1    1T T

k I I I I k               (32) 

 

Where,  min  T

I I   and  max  T

I I   are minimal and 

maximal eigen value of type Gram matrix   T

I I   

respectively. 

From Equ.(32), the calculation of generalized RIC 

seems to be computational difficult as the eigen value of 

total nm number of Gram matrix is required to be 

calculated. 

The identity vector is given as, 

 

 T

rh                              (33) 

 

Let’s discuss a sufficient condition, based on which the 

OMP algorithm involving sensing dictionary succeeds in 

recovering k sparse signal in CS. Suppose that (k+1)th 

order generalized RIC of sensing measurement   satisfy 

the following inequality, 

 

     
1

' 1

1
k

k






                              (34) 

 

Then for any k sparse signal sparseX , the OMP will 

recover sparseX  from sparseY X  in k iterations [14]. The 

OMP algorithm could select the correct atom in the first 

iteration and after it, if is replaced by residual r, OMP 

could select next correct atom and so on. 

Now let’s define mutual coherence and cumulative 

coherence for sensing and measurement dictionary. Let 

 and  are sensing and measurement dictionaries 

respectively. Mutual coherence and cumulative mutual 

coherence are defined as, 

 

1 1
' max  

j

T

i j
n

  
 

                             (35) 

 
'

1
 1 , , ,  

max max
S

s S S

T

I i j
I k i j n i I j I

  
    

                 (36) 

 

Where, 1m th

i R i   atom of sensing dictionary   

and 
1n th

j R j   atom of measurement dictionary .  

In the OMP algorithm, when sensing dictionary   is 

involved, right atom will always be selected if, 

 
1( ) 1C C

T T

I II I

                         (37) 

 

Which always satisfied if,  

 

   ' '

1 1 1k k                       (38) 

 

Where, 
1
min  T

i j
i n

  
 

 .  

Compare to Equ. (37), sufficient condition given by 

Equ. (38) can be easily determined by the cumulative 

mutual coherence of sensing and measurement 

dictionaries. From Equ. (38), one can observe that mutual 

coherence should be minimized by designing sensing 

dictionary with respect to the measurement dictionary. 

Minimization of cumulative mutual coherence also makes 

sense for generalized RIC, because relationship exists 

between generalized RIC and cumulative mutual 

coherence. (k-1)th order cumulative mutual coherence and 

kth order generalized RIC of sensing and measurement 

dictionaries have the following inequality [15]. 

 

                                  ' '

1 1k k                                (39) 

 

Above statement suggests that minimization of (k-1)th 

order cumulative mutual coherence would bound the 

value of kth order generalized RIC. Generalized RIC with 

small value is preferable in the OMP algorithm. There 

exists a relationship between mutual coherence and 

cumulative mutual coherence which is, 

 

                             ' '

1 k k                                (40) 

 

Based on the above equation, design a sensing 

dictionary with respect to the given measurement 

dictionary with small mutual coherence to force the 

cumulative mutual coherence to be small. The steps 

involved in the OMP are explained in Algorithm 1[17]. 

Algorithm 1: Orthogonal Matching Pursuit (OMP) 

Input 

 Input image inX  
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 Sensing Dictionary Ψ of dimension m n  to 

produce sparse signal from input signal 

sparse inX X   

 Sparsity level k 

 A measurement matrix Φ of dimension m n   

 A data vector of dimension m 

Output 

 An estimate 
^

sparseX of dimension n of the vector

sparseX . 

 The support 
kI R of 

^

sparseX  

 New approximation of  ty of data vector y 

 m dimensional residual t tr y y   

Procedure 

I). Sparsification of Input Signal 

 Initially take entire input signal or image as 

input inX  

 As input is not sparse in direct form, it can be 

sparsified using sensing dictionary, which is 

over complete DCT basis. The over 

completeness of this dictionary depends on 

various parameters, as discussed in theory. 

 After finalizing the sensing dictionary, 

determines the sparsity level k applied to signal 

input inX . 

 Now take the residual r 

 Initialize with inr X , find the identity vector 

using, T

rh   (projection vector). After 

applying identity vector h, calculate the 

maximum value of its projection, and update 

the index of sensing dictionary.  

 After taking maximum term and its index I, 

repeat the same for k levels of sparsity and 

update the index accordingly. Now 1

inI X   , 

Where  = atoms of dictionary having nonzero 

value. 

 Then after update residual, Apply 

in  Ir X   formula for residual update. 

Hence, after atom by atom updation, final 

identification vector having only k non zero 

values and can be obtained. 

 

II). Initialize 

 Initially, size of measurement matrix Φ  is 

calculated by  /km C log n  , Where n = 

number of dictionary atoms, C=constant and   

= RIC 

 Then after calculate, 
sparseY X   

 

III).  Identity 

 Project the residual onto the measurement 

dictionary  to identify the columns (i.e., atoms of 

the dictionary) that help in  estimation, which takes 

total k iterations to produce k index values. 

 In Identification process, projection initialize with 

,  Tr Y h r   and this Equ. can be rearranged as 

 
S S

T

I Ih T r  . Where 
SIh are components of vector 

h whose index value belongs to the index set SI . 

After completion of first iteration, update the index 

set to nonzero as well as zero coordinates. Now, 
^

S

T
sparse IX Y  then 

^ ^

S
sparseIY X  . Update 

^

r Y Y  and utilize it for the next iteration and 

repeat above procedure. Finally reconstructed signal 

is reproduced by putting non zero and all zero 

values together.  

 
^

sparseX  can be utilize to obtain reconstructed signal 

as, 
^

sparsereconstructedX X  . 

 Reconstructed reconstructedX signal is compared with 

input signal inX and performance is analyzed. 

 

The OMP algorithm can recover sparse signals with 

high probability using random measurement vectors that 

are independent of signals, but it cannot provide 

guarantees for recovery of all sparse vectors [17, 28]. It is 

highly efficient in the reconstruction of high sparsity 

vectors, but costly in case of non-sparse vectors. But, due 

to simplified implementation, the OMP algorithm is an 

attractive alternative to convex relaxation algorithms. 

B.  Image reconstruction using Compressive Sampling 

Matching Pursuit (CoSaMP) algorithm 

The other greedy algorithm, Compressive Sampling 

Matching Pursuit (CoSaMP) is a modified OMP 

algorithm, which incorporates features that guarantee 

comparatively better performance.  Theorem A 

guarantees its performance on noisy samples and shows 

that that run time is nearly proportional to the length of 

most of the vectors [18]. 

For a k-sparse signal 
sparseX collected in the form  

sparseY X  , a vector v can easily form the proxy of 

the signal 
proxyv , which approximates the energy. 

Particularly the k-largest components in 
proxyv corresponds 

to the k-largest components of 
sparseX . 

 

    
T

sparsev X                               (41) 

 

Hence, this proxy can be used for signal recovery. 

CoSaMP invokes this idea for signal reconstruction. At 

each iteration, current approximation yields a residual 

and the samples are updated such that they reflect the 

residual. These samples are taken from the proxy for the 

calculation of residual, which helps in identifying the 

largest components of the vector for a tentative support. 

Then estimate the approximation by least squares method 

using the samples on this tentative support. The process is 

repeated until the target signal is recovered. The steps 

involved in CoSaMP are summarized in Algorithm 2 [20],
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Algorithm 2: Compressive Sampling Matching Pursuit 

(CoSaMP) 

Input 

 Input image inX  

 Sensing Dictionary Ψ of dimension m n  to 

produce sparse signal from input signal 

sparse inX X   

 Sparsity level k 

 A measurement matrix Φ of dimension m n   

 A data vector of dimension m 

Output 

 An estimate 
^

sparseX of dimension n of the vector

sparseX . 

 

Procedure  

The algorithm proceeds by trivial initialization and initial 

residual r is taken to be the data vector y.  

I). Sparsification of Input Signal 

This step is same as discussed in the OMP 

algorithm. 

II). Identification 

A proxy of the residual is formed from the 

current samples 
T

proxy sparsev X  and separate 

the largest 2k components of the proxy. Hence, 

the vector is sorted in decreasing order of 

magnitude and the first 2k components are 

selected. Then after calculate 
sparseu X  . 

III). Support Merging 

The Support of new samples identified from 

proxy is merged with the support of previous 

approximation.  

IV). Least Square Estimation 

The least Square estimation problem is solved 

by 
^

/sparseX u   to obtain an approximation to 

the original sparse vector on this merged support, 

i.e.,  if the merged support is represented by I, 

then select I columns from Least Square 

estimation. As discussed earlier, use pseudo 

inverse of that. 

V). Pruning 

Retain only k-largest components of least square 

estimation to form the new approximation of the 

sparse vector. The support of the approximation 

is also identified. 

VI). Sample Update 

The new approximated samples are updated, 

which reflect the new residual for the next 

iteration. 
proxyv u   . Finally from sparse 

signal 
^

sparseX , reconstructed image is produced 

as  
^

sparsereconstructedX X  . Where  is sensing 

dictionary. Then the performance analysis is 

carried out. 

 

In the OMP algorithm, largest components are 

calculated and updated per iteration, and then the least 

square problem is solved. Whereas in the CoSaMP 

algorithm, all the largest components are identified 

together. Which makes it faster compare to the OMP and 

it requires only few samples of the vector for 

reconstruction. Hence, the runtime of this algorithm is 

found to be comparatively less, among other greedy 

algorithms and convex relaxation methods [20]. 

C.  Image reconstruction using Normalized Iterative 

Hard Thresholding(NIHT) 

Iterative Hard Thresholding [21] computes a sparse 

vector iteratively using an iteration of the form, 

 

                   
1 ( ( )n n T n

sparse k sparse sparseX H X y X         (42) 

 

Where, 
1n

sparseX 
 and 

n

sparseX denotes the samples of 

current and previous iterations and  ( )kH f  is a function 

that sets all the largest k components (in magnitude) to 

zero and leaves others untouched. The algorithm has been 

applied to compressed sensing provided that the norm is 

smaller than one.  

The theorem 1 of [10] guarantees reduction of 

estimation error after each iteration and it converge to a 

best attainable estimation error. The fact that RIC is 

sensitive to rescaling of rendering instability to this 

algorithm. Hence instead on iterative thresholding its 

normalized version [22] is utilized that guarantees 

stability. A new factor μ is added and chosen adaptively, 

instead of constraining to 
2

 , to make Iterative Hard 

Thresholding stable. The approach to choose μ is 

summarized as follows, 

Let  
nI  be the support set of the current estimation 

n

sparseX  and define, 

 

 T n

sparseg y X                          (43) 

 

Where, g is gradient of current estimates.  

During the first iteration, for trivial initialization of the 

vector, the support set of the k larger elements of the 

vector T y  is initialized as 
nI . Assuming that 

nI  is the 

correct support set, the new approximation is evaluated as, 

 

 1 ( n n T n

sparse k sparse sparseX H X y X             (44) 

 

Where the optimal step size μ is defined as, 

 

 

  

n n

n n n n

T

I I

T T

I I I I

g g

g g
 

 
                      (45) 

 

Where, nI
g , the sub vector of  $g$ is formed by 

nI   

elements and nI
  is the matrix formed by 

nI  columns of 

 .  If the support of the new approximation matches 

with that of the previous one, the new one is accepted 
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without any change and expected to be estimated by 

maximal reduction of error. However, if the supports are 

not matched, the step size is no longer valid, because it 

does not guarantee convergence. Hence a sufficient 

condition that guarantees convergence is   ,  is 

defined as, 

 

 

2
1^

2

2
1^

2

1

n n

sparse sparse

n n

sparse sparse

X X

c

X X









 

 

                  (46) 

 

For some constant 0<c<1. When the supports differ, if 

  condition satisfied then accept the estimation, 

otherwise, shrink the step size as 
 1b c





for some 

constant 
1

1
b

c



. New approximation is evaluated by 

updated step size using Equ. (45) till the condition  

is satisfied. The algorithm is summarized in Algorithm 3 

[22]. 

Algorithm 3: Image Reconstruction using Normalized 

Iterative hard Thresholding (NIHT) 

Input 

 Input image inX  

 Sensing Dictionary Ψ of dimension m n  to 

produce sparse signal from input signal 

sparse inX X   

 Sparsity level k 

 A measurement matrix Φ of dimension m n   

 A data vector of dimension m 

Output 

 An estimate 
^

sparseX of dimension n of the vector

sparseX . 

Procedure 

I). Sparsification of Input Signal 

This step is same as discussed in the OMP 

algorithm. 

 

II). Initialization 

 Initialize with sparse image 
sparseX and using 

thresholding function, kH , set all but kH  largest 

components of a vector to zero. 

 Calculate the negative gradient g of 
2

2sparsey X  evaluated at the current estimate 

sparseX , given as (y )T

sparseg X  . Using 

Equ. (45), calculate the step size  . Which is  

using to modify the sparseX  as 

sparse sparseX X g  and apply thresholding on 

it. 

 Check whether new estimated 
^

sparseX  is same as 

sparseX , by measuring Mean Square Error (MSE). 

 If obtained MSE value is not as expected, 

calculate   and if value of   , reduce the 

step size and iterate. 

 Continue with estimation till criteria    is 

satisfied and update the new sample 
sparseX  and 

find the support set. 

 Increment the iteration till halting criteria is met. 

Here MSE is selected  as criteria. 

 Calculate 
^

sparsereconstructedX X  and measure 

performance. 

 

IV.  SIMULATION RESULTS 

The above discussed algorithms are simulated using 

MATLAB software for various sparsity and noise levels. 

Obtained results are tabulated below for different images, 

i.e., cameraman, Lena and Boat. First of all, PSNR and 

MSE measurements are carried out for different sparsity 

levels and then for added random Gaussian noise are 

represented through graphs.   

Table I. Psnr Measurement At Different Sparse Levels 

Image PSNR (dB) (at σ=0.5) 

Cameraman k OMP CoSaMP NIHT 

2 22.06 22.1 22.5 

4 24.7 24.9 25.5 

8 27.8 28.3 29.4 

10 28.9 29.4 30.8 

15 30.8 31.9 34.4 

Lena 2 26.7 26.8 27.4 

4 29.7 30.2 31.6 

8 31.9 33.0 36.1 

10 32.3 34.2 37.7 

15 32.7 34.7 41.1 

Boat 2 24.9 25.1 25.4 

4 27.8 28.2 29.0 

8 30.5 31.4 33.3 

10 31.2 32.5 35 

15 32.3 34.2 38.6 

Table II. Mse Measurement At Different Sparse Levels 

Image MSE (at σ=0.5) 

Cameraman k OMP CoSaMP NIHT 

2 404.1 397.5 364.8 

4 218.8 210.2 180.9 

8 105.7 95.9 74.3 

10 83.02 73.8 51.8 

15 53.9 41.7 23.7 

Lena 2 136.7 133.1 116.7 

4 69.6 61.9 44.9 

8 41.3 32.3 15.7 

10 38 24.4 10.9 

15 34.4 21.9 5 

Boat 2 207 199.5 180.7 

4 107.1 98.3 80.3 

8 56.9 44.6 29.8 

10 47.9 35.2 20.2 

15 38.4 25.1 8.8 
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Table III. Noise Performance Of Algorithms 

Image PSNR (dB) (at k=10) 

Cameraman σ OMP CoSaMP NIHT 

0 30.1 30.1 30.98 

0.5 29.1 29.4 30.9 

1 26.7 27.9 30.87 

1.5 24.2 25.9 30.68 

2 22.2 23.8 30.49 

Lena 0 36.8 36.8 37.78 

0.5 32.3 33.9 37.72 

1 27.6 30.2 37.25 

1.5 24.3 26.5 36.4 

2 22.0 24.5 35.5 

Boat 0 34.1 34.15 35.08 

0.5 31.3 32.6 35.06 

1 27.06 29.3 34.97 

1.5 24.1 26.6 34.7 

2 21.7 20.4 34.12 

 

Table I and Table II represents the performance 

measurements in terms of PSNR and MSE respectively.  

In both tables, Sparsity level k is varied from 2 to 15 and 

the corresponding values of PSNR and MSE of the three 

algorithms i.e., OMP, CoSaMP and NIHT are recorded. 

As observed, NIHT gives higher PSNR and lower MSE 

values compared to other algorithms for each sparsity 

level. 

Table III depicts the results of noise performance of 

these algorithms for different images. Noise analysis is 

done by the addition of noise of varying variance, σ. The 

value of σ is varied from 0 to 2, in steps of 0.5. The NIHT 

algorithm provides better results by delivering higher 

PSNR among all these algorithms.     

Fig.1 represents the graph of comparison for three 

algorithms at sparsity level k = 2, 4, 8, 10, 15. From this 

graph, it is observed that the NIHT algorithm provides 

better results in terms of PSNR compared to other two 

algorithms. For the lower sparsity levels, PSNR value 

difference between  all three algorithms is less but as 

sparsity values increases, this gap also increase and 

makes the NIHT algorithm superior. 

Fig. 2 represents the MSE comparison between three 

discussed algorithms for different sparsity levels. As 

shown, MSE values are lower for the NIHT algorithm as 

compare to other two. Hence, the NIHT algorithm 

provides better reconstruction as compare to other two. 

Fig. 1 and Fig.2 graphs are plotted based on the results 

obtained on Boat image and similar graphs can also be 

obtained for other images.   

Fig.3 represents the Noise performance comparison 

among the three algorithms, i.e., OMP, CoSaMP and 

NIHT. It is clearly visible that noise performance of the 

NIHT algorithm is far better than other two, as PSNR 

approaches to higher values compare to other two 

methods. 

 

Fig.1. Comparison of the Algorithms at different sparse levels, PSNR vs 

k 

 

Fig.2. Comparison of the Algorithms at different sparse levels, MSE vs 

k at noise level σ =0.5 

 

Fig.3. Noise performance of algorithms for various noise levels at k=10 

   
(a) (b) (c) 
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(d) (e) (f) 

   
(g) (h) (i) 

Fig.4. Reconstruction by OMP:(a)  Cameraman image (b) Lena image 

(c) Boat image (d), (e), (f) Reconstructed images for sparsity level, k = 2 

(g), (h), (i) Reconstructed images for sparsity level k = 8 

   
(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

Fig.5. Reconstruction by CoSaMP: (a) Cameraman image (b) Lena 

image (c) Boat image (d), (e), (f) Reconstructed images for sparsity 

level k=2 (g), (h), (i) Reconstructed images for spar.sity level k=8 

   
(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

Fig.6. Reconstruction by NIHT: (a) Cameraman image (b) Lena image 

(c) Boat image (d), (e), (f) Reconstructed images for sparsity level,k = 2 

(g), (h), (i) Reconstrucetd images for spars.ity level k = 8 

Fig. 4, Fig. 5 and Fig. 6, shows the reconstruction of 

images at different sparsity levels for three algorithms. 

Here, results of cameraman, lena and boat images are 

shown, though similar results can also be obtained for 

other natural images. Though algorithms are able to 

reconstruct images at very low sparsity levels, 

satisfactory results can be obtained for higher levels. 

High PSNR values at higher sparsity levels reflects the 

fact that it has more points to estimate the vectors 

properly as compared to lower levels. From theses images, 

it is found the NIHT algorithm provides better subjective 

results compared to other two methods. 

After evaluating algorithms on the basis of pixel 

difference measurement parameters, they are also 

evaluated on the basis of Human Visual System (HVS) 

parameters, i.e., Structural Similarity Index (SSIM), 

Universal Image Quality Index (UIQI) and Mean SSIM 

(MSSIM). Table IV represents the comparison of above 

mentioned HVS parameters for all three algorithms for 

cameraman image. 

Table IV. Measurements Of Hvs Parameters For Cameraman Image 

HVS 

Parameter 

k OMP CoSaMP NIHT 

SSIM 2 0.87 0.87 0.88 

4 0.9 0.91 0.93 

8 0.92 0.94 0.96 

10 0.93 0.94 0.96 

15 0.93 0.95 0.98 

UIQI 2 0.68 0.68 0.76 

4 0.72 0.73 0.83 

8 0.75 0.77 0.88 

10 0.75 0.78 0.89 

15 0.76 0.8 0.91 

MSSIM 2 0.96 0.96 0.97 

4 0.98 0.98 0.99 

8 0.98 0.99 0.99 

10 0.99 0.99 1 

15 0.99 0.99 1 

 

As shown in Table IV, the performance of the NIHT 

algorithm is better among other algorithms, as it offers 

higher SSIM, UIQI and MSSSIM values. 

 

V.  CONCLUSION 

In this paper, the concept of Compressed Sensing is 

reviewed and image reconstruction is carried out using  

OMP, CoSaMP and NIHT algorithms. Based on the 

experimental results, it is observed that the NIHT 

algorithm provides better noise performance compare to 
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OMP and CoSamp, whereas OMP and CoSaMP are 

almost equally efficient in the image reconstruction 

without noise. The NIHT algorithm offers higher values 

not only for Pixel Difference Measurements, PSNR and 

MSE but also for Human Visual System (HVS) 

parameters, SSIM, UIQI and MSSIM. 
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