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Abstract—Acoustic vibrations of the heart in time 

domain correspond to phonocardiogram (PCG) signal. A 

PCG signal, in the healthy case, consists of two 

fundamental sounds s1 and s2 produced by the mechanical 

functioning of the heart. Abnormalities in the heart valves 

correspond to other cardiac sounds than s1 and s2. This 

makes PCG signal a valuable tool related to the track of 

heart diseases. Actually, the characterization and the 

analysis of PCG signals is being a fertile area of study 

and investigation. However, most of the topics which 

treated this area of research focused only on time-

frequency analysis, without exploiting the periodic 

character of PCG signal due to the limitations of the PCG 

modeling. In this work, we propose a coherent 

mathematical model for PCG signals based on 

cyclostationarity and Gabor kernel. The motivation 

behind is to define a framework, utilizing cyclic statistic 

due to noise robustness, for a full description of PCG 

signals, which leads to an easy and efficient early 

identification of certain heart abnormalities. The 

validation of the proposed model and its capacity to 

reflect the heart functioning is tested over synthetic and 

real data sets. 

 

Index Terms—Heart sound, phonocardiogram modeling, 

cyclostationarity, cyclic statistics, Gabor kernel, heart 

diseases. 

 

I.  INTRODUCTION 

The Phonocardiogram signal (PCG) is a temporal 

representation of the acoustic sound of the heart vibration. 

It is a considerable source of information that can lead by 

its analysis, to the detection and the identification of 

several heart abnormalities. A PCG signal in the healthy 

case consists of two fundamental sounds, i.e. the first 

heart sound s1 and the second heart sound s2. These two 

fundamental sounds are derived from the mechanical 

functioning of the heart and are due to the closing of the 

valves and the turbulent passage of blood [14]. There are 

other sounds than s1 and s2 that may correspond to 

diseases or problems in the heart valves. Although some 

diseases tend to be recognized with difficulty, by using a 

stethoscope, they are all reflected on the patient PCG 

signal. That is why we resort to this type of signals to 

identify the state of the heart. 

 

Regarding the analysis of digital PCG signals, all 

related works in this area are based on time-frequency 

analysis [12, 9]. To the best of our knowledge, the 

existing models do not exploit the periodic character of 

the heart functioning. As a matter of fact, the heart sound 

is a series of repeated mechanical actions. The repetition 

is not exactly periodic but is considered quasi-periodic. It 

means that the vibration wave recordings are 

cyclostationary [1, 13, 16]. Many natural or man-made 

processes in various fields arise from periodic phenomena, 

as mechanics, telecommunications, radio astronomy, 

econometric, … These processes, although not periodic 

functions of time, give rise to random data whose 

statistics vary periodically with time and are called 

cyclostationary processes [20]. 

A stochastic signal ( )x t  of mean { ( )}x tE  and time-

varying autocorrelation function  

 
*( , ) { ( / 2) ( / 2)},xR t x t x t    E  

 
where the superscript * denotes complex conjugation, is 

said to be wide-sense cyclostationary with T0-period if 

both { ( )}x tE  and ( , )xR t   are periodic over time t with 

T0-period [3], i.e.  0{ ( )} ( )x t x t T E E  for all t  

0( , ) ( , )x xR t R t T    for all t, τ.  

The time-varying autocorrelation function is, thus, 

periodic over tand can be expanded in Fourier series:  
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where 0/
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n T

xR   is known as the cyclic autocorrelation 

function and is given by:  
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where 0/ ,n T n   are the cyclic frequencies.  

The Fourier transform of the cyclic autocorrelation 

function with respect to the cyclic frequency α gives rise 

to the spectral correlation density function: 
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In this context, several models representing the 

functioning of the heart sounds were presented in the 

literature [14, 18, 8]. However, these models are limited 

to a single cardiac cycle, and hence remain uncompleted. 

Thus, the purpose of this study is to introduce a coherent 

cyclostationary and Gabor kernel based model for a 

whole description of PCG signals. The proposed model 

takes into account the fluctuation of the heart beats from 

one cycle to another. The motivation behind is to define a 

framework, utilizing cyclic statistic due to noise 

robustness, for a full description of PCG signals, which 

leads to an easy and efficient early identification of 

certain heart abnormalities. The validation of the 

proposed model and its capacity to reflect the heart 

functioning is tested over synthetic and real data sets. 

This paper is organized as follows. Section 2, describes 

the modeling of PCG signals. Section 3 concerns the 

analytical study of the proposed model, some simulation 

results are also presented in this section in order to 

confirm the theoretical analysis. Section 4 focuses on the 

validation of the computed cyclic statistics on synthetic 

and experimental PCG signals. Finally, Section 5 is 

dedicated to conclusions. 

 

II.  PCG MODELING   

A.  Context 

A PCG beat mainly consists of two distinct sounds, s1 

and s2, sample waveforms of which are depicted in Fig. 1. 

The need of an adequate framework, for the detection and 

the classification of abnormalities in the heart functioning, 

has pushed researchers to be interested in the modeling of 

the PCG signals. Therefore, modeling the shape of the 

heart sounds has been studied by many authors: the chirp 

model [10, 11, 17], the damped sinusoidal model [5, 2], 

and the modified Prony model [6]. To our knowledge, all 

related models are limited to a single cardiac cycle and 

give no information about the behavior of heart sounds 

for the remaining cycles. The motivation of this work is 

to build up a mathematical model able to produce the 

shape and the quasi-periodic character of heart sounds. 

B.  Established PCG Model 

Among the existing PCG models, the ones based on 

Gabor and Laplace kernels [18, 19, 7, 8, 10] seem to be 

more realistic. The Gabor kernel, which is actually a 

Gaussian-damped sinusoidal wave, offers the possibility, 

through five adjustable parameters

( and )i i i i ia f  ， ， ， , to exactly reproduce the shape 

of any heart beat.  

The model of (1) makes use of two Gabor kernels to 

represent each heart sound s1 and s2. Therefore, one heart 

beat of PCG signal can be modeled with four kernels as 

given bellow (Fig. 1): 
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Where 

 

 if  and i  are respectively the frequency and the 

phase shift of the sinusoid terms. 

 , ,i i ia and     are successively the amplitude, the 

center and the width which represent the 

parameters of the Gaussian terms. 

   is a superscript indicating the two Gabor kernels 

which are used for modeling each heart sound, with 

1 2 1 1 2 2[ ; ] [ , ; , ]s s s s s s      . 

 

 

Fig.1. Example of healthy PCG signal for a single heart cycle of (1). 

C.  Modified PCG Model 

The model of (1) represents the PCG signal for a single 

cardiac cycle. Unfortunately, this representation is not 

enough to make a full characterization of the heart in a 

limited time. Hence, the idea of the proposed model, to 

achieve a whole description is to jointly combine Gabor 

kernels, for modeling the shape of heart sounds, with 

some randomness to reproduce the fluctuations occurring 

in the heart functioning for every cardiac cycle. This 

combination leads to the model given by the following 

expression:  
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Where 

 

 The index n stands for the cardiac cycle. 

 T  is the cardiac cycle duration. 

 

The random behavior in ( )z t  comes simultaneously 

from the parameters ,i na  and ,i n . This means that the 

amplitude and the phase for each heart sound might 
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change for any cardiac cycle. Where ,i na is the amplitude 

of Gabor kernel, for the ith  heart sound and the nth  

cardiac cycle, which follows a Gaussian law 
2( , )ai ai N whereas the phase ,i n  follows a uniform 

law inside the interval ,0 ,0[ , ]i i      with is 

[0, ]   and ,0i the ith  initial phase. An example 

of the proposed model of (2) is given by Fig. 2 where the 

parameters are showed in Tab. 1.  

Moreover 1 , 100T s K     cardiac cycles and the 

sampling frequency sf  
is set to. 1000Hz . 

Table. 1. Mean values of the phonocardiogram (PCG) model parameters 

according to (2). 

 
𝜇𝑎𝑖 

(mv) 
𝜎𝑎𝑖 

(mv) 
𝜇𝑖 
(s) 

𝜎𝑖 
(s) 

𝜑𝑖,0 

(rad) 

∆𝜑𝑖 
(rad) 

𝑓𝑖 
(Hz) 

1
st
 d

at
a 

se
t 

𝑠1
+ 0.8 0.02 0.0414 0.0127 2.77 

π

10
 

66.66 

 

𝑠1
− 0.8 0.15 0.0716 0.0127 1.73 

π

10
 

78.85 

 

𝑠2
+ 0.8 0.10 0.3836 0.0143 3.14 

π

10
 66.92 

𝑠2
− 0.9 0.07 0.3883 0.0143 3.14 

π

10
 71.19 

 

 

Fig.2. Example of a healthy PCG signal of (2), which shows the almost 

periodic behavior of PCG signals. 

 

III.  CYCLOSTATIONARY ANALYSIS OF THE PROPOSED 

PCG MODEL 

A.  1st-Order and 2nd-Order Moments  

Let us check the wide-sense cyclostationarity for the 

proposed model using the previous definitions. We first 

start compute the 1st-order moment of ( )z t  and, then, the 

time-varying autocorrelation function. The expectation 

{ ( )}z tE  is given by: 
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( )zm t  is T-periodic which indicates that z( )t  is 1st-

order cyclostationary. It should be noted that ( )zm t  

converges to 0 when  moves toward π as. 

[0, ]   .     

Besides, the computation of the time-varying 

autocorrelation function, of the PCG signal after 

removing the first order cyclostationarity, is given by the 

following relationship: 
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Fig.3. A numerical estimate of the time-varying autocorrelation function 

( , )zR t 
 
for 0 ,s  of the synthetic signal of Fig. 2. 
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( , )zR t  is T-periodic as well as { ( )}z tE . Hence, we 

come to the conclusion that the signal of the proposed 

model of (2) is well wide-sense cyclostationary. 

Moreover, Fig. 3 reports a numerical estimator of 

( , )zR t  , of the synthetic signal of Fig. 2 which confirms 

the previous theoretical result.  

B.  Cyclic Autocorrelation Function ( )zR   

According to Gardner [3], the cyclic autocorrelation 

function can be defined by performing the Fourier 

transform of ( , )zR t   with respect to t. Thus, the Fourier 

transform of ( , )zR t   of (3) leads to: 
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With (.)  denotes the Dirac’s delta.  

The first thing to note is that ( )zR   is α-discrete and is 

nonzero only for the harmonics of
1T 

. This point 

confirms the second order cyclostationarity of the model 

of (2). Also, the term 
2

2 2

ai i

T

   increases when ai  

increases too, this will result in an increase of 

cyclostationarity. However, sin(2 )

2








decreases when 

  goes to π which leads to a decrease of 

cyclostationarity.  

Fig. 4 reports a numerical estimator of ( )zR 
 
of the 

synthetic signal of Fig. 2. As expected from theory, the 

figure shows that the cyclic autocorrelation is nonzero 

only for the harmonics of 
1 . 1T i e Hz   which validates 

the previous theoretical results. 

 

 
(a) 

 
(b) 

 
(c) 

Fig.4. A numerical estimate of the cyclic autocorrelation function 

( )zR   of the synthetic signal of Fig. 2: (a) ( )zR  as a function of α 

and τ, (b) ( )zR   in α-plan for 0s  , (c) zoom of ( )zR   in the α-

plan for 0s  . 
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C.  Cyclic Spectral Autocorrelation Function ( )zS f  

( )zS f

 
represents another important second order cyclic 

statistic allowing the characterization in the ( , )f  -plan. 

As defined by Gardner [4], the cyclic spectral correlation 

of a cyclostationary random process in the broad sense is 

the Fourier transform of its cyclic correlation function 

with respect to τ. So, the Fourier transform ( )zR   of (4) 

leads to: 
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It should be noted that for the zero cyclic frequency i.e.

0   , the later relationship is reduced to the power 

spectrum density: 
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As it is shown by the relationship (5), the cyclic 

spectral correlation ( )zS f  is α-discrete and is nonzero 

only for  
1nT   with resonances around 2 if . 

Furthermore, ( )zS f  is f-continuous and presents peaks in 

frequencies
if , with 1 2[ , ]i s s  , where if  represents 

a characteristic frequency.

 Moreover, Fig. 5 reports a numerical estimator of 

( )zS f  of the synthetic signal of Fig. 2 which confirms the 

effectiveness of the theoretical results mentioned 

previously. 

 

 
(a) 

 
(b) 

 
(c) 

Fig.5. A numerical estimate of the spectral correlation density ( )zS f
: 

(a) ( )zS f
 a function of (α , f), (b) ( )zS f

 in the α-plan for f = 0Hz, (c) 

zoom of ( )zS f

 
in axis α for f = 73.24Hz, of the synthetic signal of Fig. 

2. 

 

IV.  EVALUATION ON SYNTHETIC AND EXPERIMENTAL 

PCG SIGNALS 

A.  Realistic Synthetic PCG Signals 

Additional simulations have been made in order to 

confirm the cyclostationary behavior of the mathematical 

model of (2) regarding its parameters. Actually, the 

parameters 

 

,0, , , , ,ai ai i i i i iand f             

 

mentioned in subsection II.C, might vary from beat to 

beat and for each person i.e. these parameters represent 

the functioning of a unique heart.  
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Two healthy hearts cannot have exactly the same 

parameters. Other data sets are necessary to understand 

the influence of these parameters on the PCG model and 

to evaluate how much cyclic statistics represent a 

coherent signature and characteristic even for different 

hearts (different parameters), and thereby a suitable to 

recognize healthy hearts. The parameters for the 

simulations are listed in Tab. 2. Moreover, an additive 

Gaussian noise is added such that the SNR is set to the 

desired values. The sampling frequency for the three 

signals is set to 1000Hz. 

Table. 2. Parameters to generate three sets of realistic PCG signals according to (2). 

 𝜇𝑎𝑖 
(mv) 

𝜎𝑎𝑖 
(mv) 

𝜇𝑖 
(s) 

𝜎𝑖 
(s) 

𝜑𝑖,0 

(rad) 

∆𝜑𝑖 
(rad) 

𝑓𝑖 
(Hz) 

𝑇 
(s) 

𝑆𝑁𝑅 
(dB) 

𝐾 

2
n

d
 d

at
a 

se
t 

    

s1
+ 

0.45 0.25 0.0446 0.0223 2.83 
π

6
 67.86 

0.83 30 100 

s1
− 

 
0.93 0.17 0.0748 0.0111 3.14 

π

6
 76.59 

s2
+ 

 
0.70 0.20 0.3676 0.0111 3.14 

π

6
 69.12 

s2
− 0.51 0.09 0.3915 0.0111 0.00 

π

6
 62.83 

3
rd

 d
at

a 
se

t 

 

s1
+ 0.33 0.03 0.23 0.0127 0.0127 

π

4
 63.21 

0.76 20 100 

s1
− 0.80 0.19 0.44 0.0111 0.0111 

π

4
 68.05 

s2
+ 
 

0.53 0.02 2.39 0.0127 0.0127 
π

4
 62.27 

s2
− 0.52 0.05 2.36 0.0095 0.0095 

π

4
 66.98 

4
th
 d

at
a 

se
t 

 

s1
+ 

 
0.43 0.04 0.25 0.0175 2.23 

π

3
 65.97 

0.65 10 100 

s1
− 0.76 0.15 0.50 0.0127 3.14 

π

3
 71.94 

s2
+ 
 

0.43 0.03 2.36 0.0064 3.14 
π

3
 67.36 

s2
− 0.33 0.08 2.45 0.0271 3.14 

π

3
 66.98 

 

 

Fig.6. A numerical estimate of the time-varying autocorrelation functions of each synthetic PCG signal. 
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Fig.7. A numerical estimate of the cyclic autocorrelation functions ( )zR  : 1st range- ( )zR 
 
as a function of α and τ, 2nd range- ( )zR  in the α-

plan for 0s  , and 3rd range- zoom of ( )zR   in axis 𝛼 for 0s  ;of each synthetic PCG signal. 
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Fig.8. A numerical estimate of the spectral correlation density ( )zS f
: 1st range- ( )zS f

 as a function of α and f, 2nd range- ( )zS f
 in the α-plan, for 

0f Hz  and 3rd range- zoom in axis  α for ( 76.66 , 67.87 , 71.77 )f Hz f Hz f Hz   ; of each synthetic PCG signal. 

 

The second order statistics reported in Figs. (6, 7 and 

8), confirm the cyclic behavior of the three PCG signals 

even if the cyclic periods are different. It should be noted 

that the cyclic statistics are not sensitive to noise since the 

noise is supposed to be stationary. 

B.  Experimental PCG Signals 

The estimations of second order statistics for real PCG 

signals will indicate the matching of the proposed model 

of (2) with reality. To do this we make use of data sets 

provided from [15] which have been gathered from a 

clinic trial in hospitals using the digital stethoscope 

DigiScope. 

The second order statistics reported in Figs. (9, 10 and 

11) show that the three real PCG signals are well wide-

sense cyclostationary. This result matches with the one of 

synthetic PCG signals which proves the effectiveness of 

the proposed model of (2). It should be noted that the last 

two real PCG signals are very noisy. The perturbations in 

cyclic autocorrelation function and the spectral 

correlation density of the last two real PCG signals may 

be explained by the strong fluctuation of the cyclic period 

i.e. cardiac cycle. Furthermore, the spectral correlation 

density functions are thresholded in order to exclude 

noise due to the estimator since signals have a small 

number of samples. 

 

 

Fig.9. 1st range- time representation of the real PCG signals and 2nd range- time-varying autocorrelation function for each real PCG signal.
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Fig.10. The cyclic autocorrelation functions:

 
( )zR   of the three real PCG signals: 1st range- ( )zR  : as a function of α and τ, 2nd range- ( )zR   in 

the α-plan for 0s   and 3rd range- zoom of ( )zR   in axis α for 0s  . 
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Fig.11. The spectral correlation density ( )zS f
of the three real PCG signals: 1st range- ( )zS f

as a function of α and f, 2nd range- ( )zS f
in the α-plan 

for 0f Hz  and 3rd range- zoom in axis α for ( 43 , 26.91 , 29.29 )f Hz f Hz f Hz    

 

V.  CONCLUSION 

In this study, we introduced a new PCG model 

allowing a better description of heart beats over several 

cardiac cycles. The effectiveness of the model was 

validated over synthetic and real PCG signals. We proved 

the wide-sense cyclostationarity of the model that allows 

an accurate characterization of PCG signals as cyclic 

statistics are not influenced by stationary additive noise. 

Hence, any trouble in the heart functioning, even small, 

will influence second-order cyclic statistics. This 

modification could be used as an alarm that alerts 

cardiologists to suspect early heart abnormalities. 
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