
I.J. Image, Graphics and Signal Processing, 2016, 7, 49-58
Published Online July 2016 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijigsp.2016.07.06

Copyright © 2016 MECS I.J. Image, Graphics and Signal Processing, 2016, 7, 49-58

Moving Object Detection Scheme for Automated

Video Surveillance Systems

Sanjay Singh, Sumeet Saurav, Chandra Shekhar
CSIR - Central Electronics Engineering Research Institute (CSIR-CEERI) Pilani - 333031, Rajasthan, India

E-mail: sanjay.csirceeri@gmail.com

Anil Vohra
Electronic Science Department, Kurukshetra University, Kurukshetra - 136119, Haryana, India.

Abstract—In every automated video surveillance system,

moving object detection is an important pre-processing

step leading to the extraction of useful information

regarding moving objects present in a video scene. Most

of the moving object detection algorithms require large

memory space for storage of background related

information which makes their implementation a difficult

task on embedded platforms which are typically

constrained by limited resources. Therefore, in order to

overcome this limitation, in this paper we present a

memory optimized moving object detection scheme for

automated video surveillance systems with an objective

to facilitate its implementation on standalone embedded

platforms. The presented scheme is a modified version of

the original clustering-based moving object detection

algorithm and has been coded using C/C++ in the

Microsoft Visual Studio IDE. The moving object

detection results of the proposed memory efficient

scheme were qualitatively and quantitatively analyzed

and compared with the original clustering-based moving

object detection algorithm. The experimental results

revealed that there is 58.33% reduction in memory

requirements in case of the presented memory efficient

moving object detection scheme for storing background

related information without any loss in accuracy and

robustness as compared to the original clustering based

scheme.

Index Terms—Moving Object Detection, Automated

Video Surveillance System, Smart Camera System.

I. INTRODUCTION

In today‘s world of automation, the design of an

automated video surveillance system has become one of

the most important field of research in the computer

vision community and is getting increasingly attention

day by day due to increasing level of terrorist activities,

safety and security, and other general social problems.

These are also motivated by the constant increase in the

number of cameras which naturally demands elimination

of the human interaction within the video monitoring

systems. Typically, the first step in any automated video

surveillance system is the detection of moving objects,

the outputs of which are used in the further processing

steps. Thus, the efficiency and performance of the

complete automated video surveillance system solely

depends on the effectiveness of the moving object

detection algorithm. Therefore, over the time a number of

moving object detection algorithms have been proposed -

each trying to compete their counterpart in terms of

performance, reliability and speed.

For a given sequence of images taken from the same

scene at several different time intervals, the objective of

the moving object detection algorithm is to identify the

set of pixels that are significantly different to the last

image of the sequence [1]. Thus, the purpose of the

moving object detection algorithm is to classify the pixels

of every frame of the image sequence into two classes:

the background (corresponding to pixels belonging to the

static scene) and the foreground (corresponding to pixels

belonging to a moving objects [2]. A key requirement of

any moving object detection algorithm is that it must

have ability to discriminate the moving objects from the

background as accurately as possible, without being too

sensitive to the sizes and velocities of the objects, or to

the changing conditions of the static scene. In addition to

this, the algorithm should also be computationally

efficient.

There are a number of algorithms reported in the

literature for moving object detection. The most simplest

approach used for moving object detection is based on

background subtraction methods, where a background

model is first built using images from a sequence, which

is then used for the purpose of segmentation (to find the

moving objects) by subtracting the current frame pixel-

by-pixel from the build background model. Thus, the

accuracy of moving object detection process depends on

how well the background is modeled. Researchers have

reported several moving object detection methods that are

closely related to background subtraction e.g. change

vector analysis [3]-[5], image rationing [6], and frame

differencing using sub-sampled gradient images [7]. The

simplicity of background subtraction based approaches

comes at the cost of moving object detection quality and

these approaches are unlikely to outperform the more

advanced algorithms proposed for real-world surveillance

applications such as predictive models [8]-[12], adaptive

neural network [13], and shading models [14]-[16]. A

50 Moving Object Detection Scheme for Automated Video Surveillance Systems

Copyright © 2016 MECS I.J. Image, Graphics and Signal Processing, 2016, 7, 49-58

comprehensive description and comparative analysis of

these methods has been presented by Radke et al. [1].

Even for stationary background situations, there may

be changes like light intensity changes in day time which

must be a part of the stationary background. To address

this problem, the researchers have designed adaptive

background subtraction techniques [17]-[19] for moving

object detection using Gaussian Density Function which

are capable of handling light intensity/illumination

changes in a scene with stationary background scenarios.

But the background in the real-world scenes are pseudo-

stationary and hence for real-world surveillance

applications background cannot be assumed perfectly

stationary. The pseudo-stationary background in the

natural scenes are the consequences of the events like

swaying branches of trees, moving tree leaves in

windows of rooms, moving clouds, the ripples of water

on a lake, or moving fan in the room. These small

perturbation in the scenes are not desirable and should be

incorporated into background. The statistical background

modelling scheme using a single Gaussian is not capable

of correctly modeling such pseudo-stationary

backgrounds. Realizing this, Stauffer and Grimson [20]

proposed an Adaptive Background Mixture Models using

mixture of Gaussians to model such pseudo-stationary

backgrounds. However, maintaining these mixtures for

every pixel in the frame is computational expensive and

results in low frame rates. To overcome this limitation

Butler et al. [21] proposed a new approach, similar to that

of Stauffer and Grimson [20]. The processing, in this

approach, is performed on YCrCb video data format

which still requires many computations and a large

amount of memory for storing the background models.

In any automated video surveillance system, moving

object detection is one of the important component which

acts as a pre-processing step and on its outputs many

other processing modules are dependent. Therefore, in

addition to being accurate and robust, a moving object

detection technique must also be efficient in terms of

computational resources and memory requirement. This

is because many other complex algorithms of an

automated video surveillance system also runs on the

same embedded or FPGA platform if standalone

implementation is desired which is actually the case

required for any automated video surveillance system.

Thus, in order to address the problem of reducing the

computational complexity, Chutani and Chaudhury [22]

proposed a block-based clustering scheme with a very

low complexity for moving object detection. On one hand

this scheme is robust enough for handling pseudo-

stationary nature of background, and on the other it

significantly lowers the computational complexity and is

well suited for designing standalone systems. However,

the algorithm is still not much efficient in terms of

memory requirements. Therefore, to optimize the

memory requirements of the clustering based moving

object detection algorithm, we have presented a memory

efficient moving object detection algorithm suitable for

implementation on limited resources standalone

embedded platforms such as low-cost low-end embedded

FPGA board for achieving real-time performance.

The rest of the paper is organized as follows: in the

next section, we detail the original clustering based

moving object detection algorithm. In third section, we

present the memory analysis of original clustering based

moving object detection algorithm and certain important

observations based on which the memory efficient

algorithm is designed. The designed memory efficient

moving object detection algorithm with its pseudo-code is

described in the fourth section. Verification results and

memory reduction results are reported in the fifth section.

Finally, we conclude this paper with a short summary.

II. ORIGINAL CLUSTERING-BASED MOVING OBJECT

DETECTION ALGORITHM

In this section, the clustering based moving object

detection scheme is briefly described. For more detailed

description we refer to [22] and [21]. Clustering based

moving object detection uses a block-based similarity

computation scheme. To start with, each incoming video

frame is partitioned into 4x4 pixel blocks. Each 4x4 pixel

block is modeled by a group of four clusters where each

cluster consists of a block centroid (in RGB) and a frame

number which updated the cluster most recently.

Optionally, for each block there may be a motion flag

field. The group of four clusters is necessary to correctly

model the pseudo-stationary background, as a single

cluster is incapable of modeling multiple modes that can

be present in pseudo-stationary backgrounds. The group

size is selected as four because it has been reported by

Chutani and Chaudhury [22] that four clusters per group

yield a good balance between accuracy and

computational complexity. The basic computational

scheme is shown in Fig. 1 and the pseudo-code is shown

in Fig. 2. The sequence of steps for moving object

detection using original clustering-based scheme is given

below.

Fig.1. Clustering-based Moving Object Detection Scheme.

Block Centroid Computation: Each incoming frame

is partitioned into 4x4 blocks. For each block, the block

centroid for grayscale image is computed by taking the

average intensity value of the 16 pixels of that block. The

block centroid is of 8-bits.

Cluster Group Initialization: During the initial four

 Moving Object Detection Scheme for Automated Video Surveillance Systems 51

Copyright © 2016 MECS I.J. Image, Graphics and Signal Processing, 2016, 7, 49-58

frames, initialization is performed. In the first frame, the

first cluster of each block is initialized with its centroid

set to the block centroid of corresponding block of the

first frame and its frame number is set to 1. In the second

frame, the second cluster of each block is initialized with

its centroid set to block centroid of corresponding block

of the second frame and its frame number is set to 2.

Fig.2. Pseudo-code for Clustering-based Moving Object Detection Scheme.

In the third frame, the third cluster of each block is

initialized with its centroid set to the block centroid of

corresponding block of the third frame and its frame

number is set to 3. In the fourth frame, the last/fourth

cluster of each block is initialized with its centroid set to

the block centroid of corresponding block of the fourth

frame and its frame number is set to 4. In this way, during

initialization all the four clusters of the cluster group are

initialized.

Cluster Matching: After initialization, the next step

52 Moving Object Detection Scheme for Automated Video Surveillance Systems

Copyright © 2016 MECS I.J. Image, Graphics and Signal Processing, 2016, 7, 49-58

for moving object detection in incoming frames is to

compare each of the incoming blocks against the

corresponding cluster group. The goal is to find a

matching cluster within the cluster group. For finding a

matching cluster, for each cluster in the cluster group, the

difference between its centroid and the incoming current

block centroid is computed. The cluster with minimum

centroid difference below the user defined threshold is

considered as a matching cluster. In order to simplify this

computation, Manhattan distance (sum of absolute

differences) is used which avoids the overheads of

multiplication in difference computation [21].

Eliminating multiplications is very beneficial in terms of

reducing computational complexity of the algorithm as

multiplications are costly in hardware.

Cluster Update: If, for a given block, a matching

cluster is found within the cluster group, then the

matching cluster is updated. The frame number of the

matching cluster is replaced by the current frame number

and the centroid of the matching cluster is replaced by the

average value of matching cluster centroid and the

incoming current block centroid.

Cluster Replace: If, for a given block, no matching

cluster could be found within the group, then the oldest

cluster which has not been updated for the longest period

of time (cluster with minimum frame number) is deleted

and a new cluster is created having the current block

centroid as its centroid and the current frame number as

its frame number.

Classification: For a given block, if no matching

cluster is found and the oldest cluster is replaced, then it

implies that the incoming current block is not matching

with the background models and it is marked as moving

object detected block by setting the motion flag field of

the block to ‗1‘. If a matching cluster is found within the

cluster group and the matching cluster is updated, then

the incoming current block belongs to the background

and therefore, the motion flag field of the block is set to

‗0‘ (i.e. no moving object detected).

III. ALGORITHM ANALYSIS AND OBSERVATIONS

In this algorithm, there are two main parameters (i.e.

Centroid and Frame Number) associated with each 4x4

pixels block for storing the background related

information. For grayscale images, the Centroid value is

of 8-bits and Frame Number is stored using 16-bits data

format. Therefore, for each 4x4 pixels block it would

require 24-bits to store one background model

information. As there are four background models used in

the algorithm, it requires 96-bits memory space for

storing background information for each 4x4 pixel block.

For PAL (720x576) resolution video, the total number of

4x4 pixels blocks are 25920 (= 720/4 * 576/4). Therefore,

total memory space required to store the background

information for PAL resolution videos is 25920x100 bits

= 2592000 bits = 2530 Kbits = 2.373 Mbits. For

achieving real-time performance, it is very difficult to

implement this algorithm on limited resources standalone

embedded platforms like low-cost low-end FPGAs

having very less on-chip memory (Block RAMs).

Therefore, for this reason, further emphasis needs to be

given to the minimization of memory requirements of

clustering-based moving object detection scheme

proposed by [22] without compromising on accuracy and

robustness of moving object detection.

Accordingly, the clustering-based moving object

detection algorithm was re-looked at and the memory

analysis was carried out. The memory size required for

storing the background information is directly

proportional to the size of the cluster group, block size,

and video frame size. Therefore, for given standard PAL

(720x576) size color video streams, memory size can be

reduced either by reducing the number of clusters from

four to three or by increasing the 4x4 pixels block size to

a larger block size. But Chutani and Chaudhury [22] had

chosen to select a cluster size of 4 clusters and block size

of 4x4 pixels because empirically they had found that

these values yielded a good balance between accuracy

and computational complexity. Therefore, reducing

cluster size or increasing block size will result in the

degradation of accuracy and robustness of the clustering

based moving object detection scheme. In the first case, if

the number of clusters is reduced to three then the

algorithm‘s background model used to capture pseudo-

stationary changes/movements becomes weak and the

algorithm becomes more sensitive to pseudo-stationary

background changes, resulting in false relevant moving

object detection outputs for pseudo-stationary

background changes. In the second case, for larger block

sizes, the system becomes less sensitive to relevant

motions in smaller areas in a video scene. Therefore,

none of the above two techniques can be used to reduce

memory size as the objective is to reduce memory size

without compromising on the accuracy and the robustness

of moving object detection. For this reason, we re-

analyzed the original clustering based moving object

detection algorithm and the following observations were

resulted.

The background related information in the clustering-

based moving object detection algorithm is stored and

updated using two parameters viz. Centroid and Frame

Number. Each Centroid memory location contains four

Centroid values corresponding to four clusters/

background models which contain intensity information

of pseudo-stationary background. Each Frame Number

memory location stores four Frame Number values

corresponding to four clusters / background models

which are used to keep the record of Centroid value

updation or replacement history i.e. for the particular 4x4

pixels block when (at what time or for what Frame

Number) the cluster Centroid value is updated or replaced.

Now, the important observation is that during the cluster

updating (in case a matching cluster is found) or cluster

replacement (in case no matching cluster is found) the

actual time or frame number when the cluster is updated

or replaced is not necessarily required. During cluster

update, the matching cluster label is required (i.e. first or

second or third or fourth), not the actual value of the

Frame Number. In case of cluster replacement, the oldest

 Moving Object Detection Scheme for Automated Video Surveillance Systems 53

Copyright © 2016 MECS I.J. Image, Graphics and Signal Processing, 2016, 7, 49-58

cluster label (which has not been updated for the longest

period of time) is required. The Frame Number is stored

and used to get this required information only. This

implies that there is no need of storing the complete

Frame Number value. An index value is sufficient to

maintain the cluster updating or replacement history,

which implies that it is the newest cluster (most recently

updated or replaced), the second newest cluster, the

second oldest cluster, or the oldest cluster (which has not

been updated for the longest period of time). As there are

four cluster, therefore, a 2-bit index value is sufficient to

record this information (i.e. the newest cluster, the second

newest cluster, the second oldest cluster, or the oldest

cluster). This reduces the 16-bit wide Frame Number

memory to 2-bit wide memory and results in significant

reduction in memory requirements. Based on this

observation and associated modifications in the original

clustering-based moving object detection scheme, a

memory efficient moving object detection scheme is

proposed and detailed in the next section.

IV. PROPOSED MEMORY EFFICIENT MOVING OBJECT

DETECTION ALGORITHM

In this section, we present a new memory efficient

algorithm for moving object detection based on the

observations discussed in previous section and associated

modifications in the original clustering-based moving

object detection scheme. The algorithm is proposed and

designed with an aim to reduce the memory requirements

without compromising on the robustness and accuracy of

moving object detection. The block size and number of

cluster/background models are kept same as in original

algorithm (i.e. 4x4pixel block and 4 clusters). However,

in this proposed scheme, each 4x4 pixel block is modeled

by a group of four clusters where each cluster consists of

a block Centroid and a 2-bit Index Value as shown in Fig.

3. The pseudo-code is shown in Fig. 4. The complete

proposed memory efficient moving object detection

algorithm is detailed below.

Fig.3. Proposed Memory Efficient Moving Object Detection Scheme.

Each incoming grayscale frame is partitioned into 4x4

blocks. For each block, the Block Centroid is computed

by taking the average intensity value of the 16 pixels of

that block. The block centroid is of 8-bits.

During the initial four frames, Cluster Group

Initialization is performed. In the first frame, the first

cluster of each block is initialized with its centroid set to

the block centroid of corresponding block of the first

frame and its index value is set to 3 as this is going to be

the oldest value at the end of the Cluster Group

Initialization process. In the second frame, the second

cluster of each block is initialized with its centroid set to

the block centroid of corresponding block of the second

frame and its index value is set to 2 as this is going to be

the second oldest value at the end of the Cluster Group

Initialization process. In the third frame, the third cluster

of each block is initialized with its centroid set to the

block centroid of corresponding block of the third frame

and its index value is set to 1 as this is going to be the

second newest value at the end of the Cluster Group

Initialization process. In the fourth frame, the last/fourth

cluster of each block is initialized with its centroid set to

the block centroid of corresponding block of the fourth

frame and its index value is set to 0 as this is going to be

the newest value at the end of the Cluster Group

Initialization process. At the end of Cluster Group

Initialization process, we will have four cluster for each

4x4 pixels block with Centroid and Index Value

parameters.

After initialization (in initial four frames), for all

subsequent frames the moving object detection is

performed. During moving object detection either of the

two processes (i.e. Cluster Updating process or Cluster

Replacement process) is performed. Therefore, the

objective is either to update the cluster node or to replace

the cluster node.

If a matching cluster is found (i.e. the Minimum

Centroid Difference is less than the threshold) within the

cluster group then the matching cluster is updated. For

this purpose, the Centroid value of the matching cluster is

updated with the average value of the matching cluster

Centroid value and incoming current Block Centroid

value. The Index Value of matching cluster can be any of

the four values i.e. 0, 1, 2, 3.

Consider the first case of Cluster Updating i.e.

matching cluster Index Value is 0. In this case, the Index

Values for all cluster will remain same as the newest

cluster is updated and order of four clusters

update/replacement history will remain same.

Consider the second case of Cluster Updating i.e.

matching cluster Index Values is 1. In this case, the Index

Value of matching cluster will be replace by 0 and also

the cluster having Index Value 0 will be replaced by

Index Value 1 to keep the proper update/replacement

history order.

Consider the third case of Cluster Updating i.e.

matching cluster Index Value is 2. In this case, the Index

Value of matching cluster will be replaced by 0 and also

the cluster having Index Value 0 and 1 will be replaced

by Index Value 1 and 2 respectively to keep the proper

update/replacement history order.

Consider the last/fourth case of Cluster Updating i.e.

matching cluster Index Value 3. In this case, the Index

Value of matching cluster will be replace by 0 and also

the clusters having Index Value 0, 1, 2 will be replaced

by Index Value 1, 2, ad 3 respectively to keep the proper

54 Moving Object Detection Scheme for Automated Video Surveillance Systems

Copyright © 2016 MECS I.J. Image, Graphics and Signal Processing, 2016, 7, 49-58

update/replacement history order.

If no matching cluster is found (i.e. the Minimum

Centroid Difference is greater than the threshold) within

the cluster group then oldest cluster is replaced. For this

purpose, the oldest cluster which has not been updated for

the longest period of time i.e. cluster having Index Value

3 is replaced. The Centroid of this cluster is set to

incoming current Block Centroid value and its Index

Value is set to 0 as it is replaced most recently. Also the

cluster having Index Value 0, 1, and 2 will be replaced by

Index Value 1, 2, and 3 respectively to keep the proper

update/replacement history order.

Thus, at the end of any of the processes i.e. Cluster

Group Initialization, Cluster Updating, or Cluster

Replacing, the four clusters Index Values keep the record

of their update/replacement history properly. This process

is performed for all the blocks in every incoming frame

and it keeps track of newest cluster (most recently

updated or replaced), second newest cluster, second

oldest cluster, or oldest cluster (which has not been

updated for the longest period of the time) and require

only 2-bit Index Value in place of 16-bit Frame Number

value. The proposed novel scheme is thus successful in

substantially reducing the memory requirement of

original clustering based moving object detection scheme,

without any loss of accuracy in moving object detection.

The resulting reduction in memory size for different

video resolution is presented in next section.

 Moving Object Detection Scheme for Automated Video Surveillance Systems 55

Copyright © 2016 MECS I.J. Image, Graphics and Signal Processing, 2016, 7, 49-58

Fig.4. Pseudo-code for Proposed Memory Efficient Moving Object Detection Scheme.

V. VERIFICATION RESULTS OF PROPOSED MOVING

OBJECT DETECTION SCHEME

Comparison of memory requirements by proposed

memory efficient moving object detection algorithm and

original clustering based algorithm [22] is summarized in

Table 1 for different video resolutions. The percentage of

reduction in memory requirements for all video

resolutions is 58.33%.

In order to reduce the memory requirement of moving

object detection algorithm, without negatively impacting

the quality of processed videos, it is important to

accurately evaluate the proposed algorithm against

original clustering-based moving object detection

algorithm on video streams of different real-world

scenarios. For this purpose, the original clustering based

algorithm and proposed memory efficient algorithm have

been programmed in C/C++ programming language. For

running the code, a Dell Precision T3400 workstation

(with Windows XP operating system, quad-core Intel®

Core™2 Duo Processor with 2.93 GHz Operating

Frequency, and 4GB RAM) was used. The Open

Computer Vision (OpenCV) libraries were used in the

code for reading video streams (either stored or coming

from camera) and displaying moving object detection

results. The effect of removing 16-bit Frame Number and

using 2-bit Index Value was evaluated on test bench

videos taken from surveillance cameras. The selected

video streams have a resolution of 720 × 576 pixels (PAL

size) and have five minute duration.

Fig. 5 and Fig. 6 visually compare the results for both

the moving object detection algorithms (proposed and

original) for different indoor and outdoor conditions with

pseudo-stationary backgrounds. In Fig. 5, the moving fan

in background is present, while in Fig. 6, the moving

leaves of trees are present. The top row in both figures

shows the original frames extracted from video streams.

The second row shows the moving object detection

results obtained from the original clustering based

algorithm and the third row shows the moving object

detection results obtained from the proposed memory

efficient clustering based algorithm for respective frames.

To compare the results, the pixel-by-pixel difference of

second and third row images has been taken and it gives

black images (fourth row). This indicates that the

proposed memory efficient algorithm produces same

moving object detection results as original clustering

based moving object detection algorithm without any loss

of accuracy and robustness but with significant reduction

in memory requirement.

56 Moving Object Detection Scheme for Automated Video Surveillance Systems

Copyright © 2016 MECS I.J. Image, Graphics and Signal Processing, 2016, 7, 49-58

Table 1. Reduction in Memory Requirements for Different Video Resolutions.

Video Resolution
Memory Required by

Original Algorithm [22]

Memory Required by

Proposed Algorithm

Reduction in Required Memory

Space by Proposed Algorithm

HD (1920 x 1080) 12150 Kb 5062.50 Kb 7087.50 Kb

PAL (720 x 576) 2430 Kb 1012.50 Kb 1417.50 Kb

NTSC (720 x 480) 2025 Kb 843.75 Kb 1181.25 Kb

VGA (640 x 480) 1800 Kb 750.00 Kb 1050.00 Kb

CIF (352 x 288) 594 Kb 247.50 Kb 346.50 Kb

(a) Input Video Frames

(b) Original Moving Object Detection Algorithm Output

(c) Proposed Moving Object Detection Algorithm Output

(d) Difference of Original and Proposed Algorithm Outputs

Fig.5. Comparison of Results of the Proposed Memory Efficient Moving Object Detection Algorithm with the Original Clustering based Moving
Object Detection Scheme for Indoor Scenario.

(a) Input Video Frames

(b) Original Moving Object Detection Algorithm Output

 Moving Object Detection Scheme for Automated Video Surveillance Systems 57

Copyright © 2016 MECS I.J. Image, Graphics and Signal Processing, 2016, 7, 49-58

(c) Proposed Moving Object Detection Algorithm Output

(d) Difference of Original and Proposed Algorithm Outputs

Fig.6. Comparison of Results of the Proposed Memory Efficient Moving Object Detection Algorithm with the Original Clustering based Moving
Object Detection Scheme for Outdoor Scenario.

For quantitative analysis, for every frame of each video

stream, the mean square error (MSE) is calculated. MSE

is a common measure of quality of video and is

equivalent to other commonly used measures of quality.

For example, the peak signal-to-noise ratio (PSNR) is

equivalent to MSE [23]. Some researchers measure the

number of false positives (FP) and false negatives (FN)

whose sum is equivalent to the MSE [24]. MSE is defined

as

 ∑ ∑)))

 (1)

In the above equation, IORIGINAL (m, n) is the moving

object detected binary output image produced by running

the software (C/C++) implementation of original

clustering based algorithm, while IPROPOSED (m, n) is the

moving object detected binary output image produced by

running the software (C/C++) implementation of

proposed memory efficient clustering based algorithm. M

is the number of columns in a video frame i.e. 720 and N

is the number of rows in a video frame i.e. 576.

As the moving object detection outputs are binary

images, therefore, the square of the difference between

IORIGINAL (m, n) and IPROPOSED (m, n) has only two

possible values: ―1‖ if the pixel has different values in

IORIGINAL and IPROPOSED and ―0‖ if the pixel has same

values. As a result of this MSE is equivalent to the ratio

of the number of pixels which are different in IPROPOSED

with respect to IORIGINAL to the total number of pixels in a

video frame.

The computed MSE for every frame of all the test

bench videos is zero and it confirms that the proposed

memory efficient moving object detection scheme

produces the same moving object detection results as the

original clustering based moving object detection scheme

without negatively affecting the quality of processed

videos, but with 58.33% reduction in memory

requirement.

VI. CONCLUSIONS

In this research article, a memory optimized moving

object detection scheme, useful for designing automated

video surveillance systems, has been presented. The

emphasis has been given on optimizing memory

requirements for storing background related information.

The presented scheme is best suited for implementation

on limited resources standalone embedded platforms such

as low-cost low-end FPGAs for achieving real-time

performance. It has been coded using C/C++ in the

Microsoft Visual Studio IDE. The moving object

detection results of proposed memory efficient scheme

were qualitatively as well as quantitatively analyzed and

compared with the original clustering-based moving

object detection algorithm. There is 58.33% reduction in

memory requirements in case of proposed memory

efficient algorithm for storing background related

information without any loss in accuracy and robustness

of moving object detection as compared to original

clustering based scheme.

REFERENCES

[1] R.J. Radke, S. Andra, O.A. Kofahi, and B. Roysam,

Image Change Detection Algorithms: A Systematic

Survey, IEEE Transactions on Image Processing, Vol. 14,

No. 3, pp. 294-307, 2005.

[2] L. Lacassagne, A. Manzanera, J. Denoulet, and A.

Merigot, High performance motion detection: some trends

toward new embedded architectures for vision systems,

Journal of Real-Time Image Processing, Vol. 4, No. 2, pp.

127-146, 2009.

[3] L. Bruzzone and D.F. Prieto, Automatic Analysis of the

Difference Image for Unsupervised Change Detection,

IEEE Transaction on Geosciences and Remote Sensing,

Vol. 38, No. 3, pp. 1171–1182, 2000.

[4] J.E. Colwell and F.P. Weber, Forest Change Detection, In

Proceedings: 15th International Symposium on Remote

Sensing of the Environment, pp. 839-852, 1981.

[5] W.A. Malila, Change Vector Analysis: An Approach for

Detecting Forest Changes with Landsat, In Proceedings:

Symposium on Machine Processing of Remotely Sensed

Data, pp. 326-336, 1980.

[6] A. Singh, Review Article: Digital Change Detection

58 Moving Object Detection Scheme for Automated Video Surveillance Systems

Copyright © 2016 MECS I.J. Image, Graphics and Signal Processing, 2016, 7, 49-58

Techniques using Remotely-sensed Data, International

Journal of Remote Sensing, Vol. 10, No. 6, pp. 989-1003,

1989.

[7] L.D. Stefano, S. Mattoccia, and M. Mola, A Change-

detection Algorithm based on Structure and Color, In

Proceedings: IEEE Conference on Advanced Video and

Signal-Based Surveillance, pp. 252-259, 2003.

[8] Y.Z. Hsu, H.H. Nagel, and G. Rekers, New Likelihood

Test Methods for Change Detection in Image Sequences,

Computer Vision, Graphics, Image Processing, Vol. 26,

No. 1, pp. 73-106, 1984.

[9] K. Skifstad and R. Jain, Illumination Independent Change

Detection for Real World Image Sequences, Computer

Vision, Graphics, Image Processing, Vol. 46, No. 3, pp.

387-399, 1989.

[10] A.S. Elfishawy, S.B. Kesler, and A.S. Abutaleb, Adaptive

Algorithms for Change Detection in Image Sequence,

Signal Processing, Vol. 23, No. 2, pp. 179-191, 1991.

[11] Z.S. Jain and Y.A. Chau, Optimum Multisensor Data

Fusion for Image Change Detection, IEEE Transaction on

System, Man and Cybernetics, Vol. 25, No. 9, pp. 1340-

1347, 1995.

[12] K. Toyama, J. Krumm, B. Brumitt, and B. Meyers,

Wallflower: Principles and Practice of Background

Maintenance, in Proceedings: Seventh International

Conference on Computer Vision, pp. 255-261, 1999.

[13] C. Clifton, Change Detection in Overhead Imagery using

Neural Networks, Applied Intelligence, Vol. 18, pp. 215-

234, 2003.

[14] E. Durucan and T. Ebrahimi, Change Detection and

Background Extraction by Linear Algebra, In Proceedings:

IEEE, Vol. 89, No. 10, pp. 1368-1381, 2001.

[15] L. Li and M.K.H. Leung, Integrating Intensity and

Texture Differences for Robust Change Detection, IEEE

Transaction on Image Processing, Vol. 11, No. 2, pp. 105-

112, 2002.

[16] S.C. Liu, C.W. Fu, and S. Chang, Statistical Change

Detection with Moments under Time-Varying

Illumination,‖ IEEE Transaction on Image Processing,

Vol. 7, No. 9, pp. 1258-1268, 1998.

[17] A. Cavallaro and T. Ebrahimi, Video Object Extraction

based on Adaptive Background and Statistical Change

Detection, In Proceedings: SPIE Visual Communications

and Image Processing, pp. 465-475, 2001.

[18] S. Huwer and H. Niemann, Adaptive Change Detection

for Real-Time Surveillance Applications, In Proceedings:

Third IEEE International Workshop on Visual

Surveillance, pp. 37-46, 2000.

[19] T. Kanade, R.T. Collins, A.J. Lipton, P. Burt, and L.

Wixson, Advances in Cooperative Multi-Sensor Video

Surveillance, In Proceedings: DARPA Image

Understanding Workshop, pp. 3-24, 1998.

[20] C. Stauffer and W.E.L. Grimson, Learning Patterns of

Activity using Real-Time Tracking, IEEE Transaction on

Pattern Analysis and Machine Intelligence, Vol. 22, No. 8,

pp. 747-757, 2000.

[21] D.E. Butler, V.M. Bove, and S. Sridharan, Real-Time

Adaptive Foreground/Background Segmentation,

EURASIP Journal on Applied Signal Processing, Vol.

2005, pp. 2292-2304, 2005.

[22] E.R. Chutani and S. Chaudhury, Video Trans-Coding in

Smart Camera for Ubiquitous Multimedia Environment,

In Proceedings: International Symposium on Ubiquitous

Multimedia Computing, pp.185–189, 2008.

[23] M. Genovese and E. Napoli, ASIC and FPGA

Implementation of the Gaussian Mixture Model

Algorithm for Real-time Segmentation of High Definition

Video, IEEE Transactions on Very Large Scale

Integration, Vol. 22, No. 3, pp. 537-547, 2014.

[24] R. Rodriguez-Gomez, E.J. Fernandez-Sanchez, J. Diaz,

and E. Ros, FPGA Implementation for Real-Time

Background Subtraction Based on Horprasert Model,

Sensors, Vol. 12, No. 1, pp. 585–611, 2012.

Authors’ Profiles

Sanjay Singh is working as Scientist in

CSIR-Central Electronics Engineering

Research Institute, Pilani, India - A

Government of India Research

Laboratory. He is Member of IEEE -

USA, IACSIT - Singapore, IAENG -

Hong Kong, and SSI - India. He is

involved in various projects sponsored

by Indian Government on Computer Vision and VLSI Design.

His research interests are VLSI Architectures for Computer

Vision, FPGA Prototyping, and VLSI Design. He received his

Ph.D. in VLSI Design for Computer Vision, M.Tech. in

Microelectronics & VLSI Design, M.Sc. in Electronics, and

B.Sc. in Electronics & Computer Science from Kurukshetra

University, Kurukshetra, Haryana, India. He earned Gold Medal

(First Position in University) during his M.Tech. and M.Sc. He

topped college during B.Sc. He received more than 20 Merit

Certificates and Scholarships during his academic career.

Sumeet Saurav is working as SRF in

CSIR-Central Electronics Engineering

Research Institute, Pilani, India - A

Government of India Research

Laboratory. His research interests are

Computer Vision and VLSI Design. He

received his M.Tech. in Advanced

Semiconductor Devices from Academy

of Scientific & Innovative Research (AcSIR), India. He is

University rank holder in B.E.

Anil Vohra is professor with Electronic Science Department,

Kurukshetra University, Kurukshetra, India. At present, he is

holding the positions of Dean Academics and Dean R&D at

Kurukshetra University, Kurukshetra, India. He received his

M.Sc. and Ph.D. from Punjab University, India.

Chandra Shekhar is the former director of CSIR-Central

Electronics Engineering Research Institute, Pilani, India - A

Government of India Research Laboratory. His research

interests are VLSI architectures and VLSI Design

Methodologies. He received his Ph.D. from BITS, Pilani, India.

