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Abstract—In every automated video surveillance system, 

moving object detection is an important pre-processing 

step leading to the extraction of useful information 

regarding moving objects present in a video scene. Most 

of the moving object detection algorithms require large 

memory space for storage of background related 

information which makes their implementation a difficult 

task on embedded platforms which are typically 

constrained by limited resources. Therefore, in order to 

overcome this limitation, in this paper we present a 

memory optimized moving object detection scheme for 

automated video surveillance systems with an objective 

to facilitate its implementation on standalone embedded 

platforms. The presented scheme is a modified version of 

the original clustering-based moving object detection 

algorithm and has been coded using C/C++ in the 

Microsoft Visual Studio IDE. The moving object 

detection results of the proposed memory efficient 

scheme were qualitatively and quantitatively analyzed 

and compared with the original clustering-based moving 

object detection algorithm. The experimental results 

revealed that there is 58.33% reduction in memory 

requirements in case of the presented memory efficient 

moving object detection scheme for storing background 

related information without any loss in accuracy and 

robustness as compared to the original clustering based 

scheme. 

 
Index Terms—Moving Object Detection, Automated 

Video Surveillance System, Smart Camera System. 

 

I.  INTRODUCTION 

In today‘s world of automation, the design of an 

automated video surveillance system has become one of 

the most important field of research in the computer 

vision community and is getting increasingly attention 

day by day due to increasing level of terrorist activities, 

safety and security, and other general social problems. 

These are also motivated by the constant increase in the 

number of cameras which naturally demands elimination 

of the human interaction within the video monitoring 

systems. Typically, the first step in any automated video 

surveillance system is the detection of moving objects, 

the outputs of which are used in the further processing 

steps. Thus, the efficiency and performance of the 

complete automated video surveillance system solely 

depends on the effectiveness of the moving object 

detection algorithm. Therefore, over the time a number of 

moving object detection algorithms have been proposed - 

each trying to compete their counterpart in terms of 

performance, reliability and speed.  

For a given sequence of images taken from the same 

scene at several different time intervals, the objective of 

the moving object detection algorithm is to identify the 

set of pixels that are significantly different to the last 

image of the sequence [1]. Thus, the purpose of the 

moving object detection algorithm is to classify the pixels 

of every frame of the image sequence into two classes: 

the background (corresponding to pixels belonging to the 

static scene) and the foreground (corresponding to pixels 

belonging to a moving objects [2]. A key requirement of 

any moving object detection algorithm is that it must 

have ability to discriminate the moving objects from the 

background as accurately as possible, without being too 

sensitive to the sizes and velocities of the objects, or to 

the changing conditions of the static scene. In addition to 

this, the algorithm should also be computationally 

efficient. 

There are a number of algorithms reported in the 

literature for moving object detection. The most simplest 

approach used for moving object detection is based on 

background subtraction methods, where a background 

model is first built using images from a sequence, which 

is then used for the purpose of segmentation (to find the 

moving objects) by subtracting the current frame pixel-

by-pixel from the build background model. Thus, the 

accuracy of moving object detection process depends on 

how well the background is modeled. Researchers have 

reported several moving object detection methods that are 

closely related to background subtraction e.g. change 

vector analysis [3]-[5], image rationing [6], and frame 

differencing using sub-sampled gradient images [7]. The 

simplicity of background subtraction based approaches 

comes at the cost of moving object detection quality and 

these approaches are unlikely to outperform the more 

advanced algorithms proposed for real-world surveillance 

applications such as predictive models [8]-[12], adaptive 

neural network [13], and shading models [14]-[16]. A 
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comprehensive description and comparative analysis of 

these methods has been presented by Radke et al. [1]. 

Even for stationary background situations, there may 

be changes like light intensity changes in day time which 

must be a part of the stationary background. To address 

this problem, the researchers have designed adaptive 

background subtraction techniques [17]-[19] for moving 

object detection using Gaussian Density Function which 

are capable of handling light intensity/illumination 

changes in a scene with stationary background scenarios. 

But the background in the real-world scenes are pseudo-

stationary and hence for real-world surveillance 

applications background cannot be assumed perfectly 

stationary. The pseudo-stationary background in the 

natural scenes are the consequences of the events like 

swaying branches of trees, moving tree leaves in 

windows of rooms, moving clouds, the ripples of water 

on a lake, or moving fan in the room. These small 

perturbation in the scenes are not desirable and should be 

incorporated into background. The statistical background 

modelling scheme using a single Gaussian is not capable 

of correctly modeling such pseudo-stationary 

backgrounds. Realizing this, Stauffer and Grimson [20] 

proposed an Adaptive Background Mixture Models using 

mixture of Gaussians to model such pseudo-stationary 

backgrounds. However, maintaining these mixtures for 

every pixel in the frame is computational expensive and 

results in low frame rates. To overcome this limitation 

Butler et al. [21] proposed a new approach, similar to that 

of Stauffer and Grimson [20]. The processing, in this 

approach, is performed on YCrCb video data format 

which still requires many computations and a large 

amount of memory for storing the background models.  

In any automated video surveillance system, moving 

object detection is one of the important component which 

acts as a pre-processing step and on its outputs many 

other processing modules are dependent. Therefore, in 

addition to being accurate and robust, a moving object 

detection technique must also be efficient in terms of 

computational resources and memory requirement. This 

is because many other complex algorithms of an 

automated video surveillance system also runs on the 

same embedded or FPGA platform if standalone 

implementation is desired which is actually the case 

required for any automated video surveillance system. 

Thus, in order to address the problem of reducing the 

computational complexity, Chutani and Chaudhury [22] 

proposed a block-based clustering scheme with a very 

low complexity for moving object detection. On one hand 

this scheme is robust enough for handling pseudo-

stationary nature of background, and on the other it 

significantly lowers the computational complexity and is 

well suited for designing standalone systems. However, 

the algorithm is still not much efficient in terms of 

memory requirements. Therefore, to optimize the 

memory requirements of the clustering based moving 

object detection algorithm, we have presented a memory 

efficient moving object detection algorithm suitable for 

implementation on limited resources standalone 

embedded platforms such as low-cost low-end embedded 

FPGA board for achieving real-time performance.  

The rest of the paper is organized as follows: in the 

next section, we detail the original clustering based 

moving object detection algorithm. In third section, we 

present the memory analysis of original clustering based 

moving object detection algorithm and certain important 

observations based on which the memory efficient 

algorithm is designed. The designed memory efficient 

moving object detection algorithm with its pseudo-code is 

described in the fourth section. Verification results and 

memory reduction results are reported in the fifth section. 

Finally, we conclude this paper with a short summary. 

 

II.  ORIGINAL CLUSTERING-BASED MOVING OBJECT 

DETECTION ALGORITHM 

In this section, the clustering based moving object 

detection scheme is briefly described. For more detailed 

description we refer to [22] and [21]. Clustering based 

moving object detection uses a block-based similarity 

computation scheme. To start with, each incoming video 

frame is partitioned into 4x4 pixel blocks. Each 4x4 pixel 

block is modeled by a group of four clusters where each 

cluster consists of a block centroid (in RGB) and a frame 

number which updated the cluster most recently. 

Optionally, for each block there may be a motion flag 

field. The group of four clusters is necessary to correctly 

model the pseudo-stationary background, as a single 

cluster is incapable of modeling multiple modes that can 

be present in pseudo-stationary backgrounds. The group 

size is selected as four because it has been reported by 

Chutani and Chaudhury [22] that four clusters per group 

yield a good balance between accuracy and 

computational complexity. The basic computational 

scheme is shown in Fig. 1 and the pseudo-code is shown 

in Fig. 2. The sequence of steps for moving object 

detection using original clustering-based scheme is given 

below. 

 

 

Fig.1. Clustering-based Moving Object Detection Scheme. 

Block Centroid Computation: Each incoming frame 

is partitioned into 4x4 blocks. For each block, the block 

centroid for grayscale image is computed by taking the 

average intensity value of the 16 pixels of that block. The 

block centroid is of 8-bits. 

Cluster Group Initialization: During the initial four 
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frames, initialization is performed. In the first frame, the 

first cluster of each block is initialized with its centroid 

set to the block centroid of corresponding block of the 

first frame and its frame number is set to 1. In the second 

frame, the second cluster of each block is initialized with 

its centroid set to block centroid of corresponding block 

of the second frame and its frame number is set to 2. 

 

 
Fig.2. Pseudo-code for Clustering-based Moving Object Detection Scheme. 

In the third frame, the third cluster of each block is 

initialized with its centroid set to the block centroid of 

corresponding block of the third frame and its frame 

number is set to 3. In the fourth frame, the last/fourth 

cluster of each block is initialized with its centroid set to 

the block centroid of corresponding block of the fourth 

frame and its frame number is set to 4. In this way, during 

initialization all the four clusters of the cluster group are 

initialized. 

Cluster Matching: After initialization, the next step 
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for moving object detection in incoming frames is to 

compare each of the incoming blocks against the 

corresponding cluster group. The goal is to find a 

matching cluster within the cluster group. For finding a 

matching cluster, for each cluster in the cluster group, the 

difference between its centroid and the incoming current 

block centroid is computed. The cluster with minimum 

centroid difference below the user defined threshold is 

considered as a matching cluster. In order to simplify this 

computation, Manhattan distance (sum of absolute 

differences) is used which avoids the overheads of 

multiplication in difference computation [21]. 

Eliminating multiplications is very beneficial in terms of 

reducing computational complexity of the algorithm as 

multiplications are costly in hardware.  

Cluster Update: If, for a given block, a matching 

cluster is found within the cluster group, then the 

matching cluster is updated. The frame number of the 

matching cluster is replaced by the current frame number 

and the centroid of the matching cluster is replaced by the 

average value of matching cluster centroid and the 

incoming current block centroid. 

Cluster Replace: If, for a given block, no matching 

cluster could be found within the group, then the oldest 

cluster which has not been updated for the longest period 

of time (cluster with minimum frame number) is deleted 

and a new cluster is created having the current block 

centroid as its centroid and the current frame number as 

its frame number.  

Classification: For a given block, if no matching 

cluster is found and the oldest cluster is replaced, then it 

implies that the incoming current block is not matching 

with the background models and it is marked as moving 

object detected block by setting the motion flag field of 

the block to ‗1‘.  If a matching cluster is found within the 

cluster group and the matching cluster is updated, then 

the incoming current block belongs to the background 

and therefore, the motion flag field of the block is set to 

‗0‘ (i.e. no moving object detected). 

 

III.  ALGORITHM ANALYSIS AND OBSERVATIONS 

In this algorithm, there are two main parameters (i.e. 

Centroid and Frame Number) associated with each 4x4 

pixels block for storing the background related 

information. For grayscale images, the Centroid value is 

of 8-bits and Frame Number is stored using 16-bits data 

format. Therefore, for each 4x4 pixels block it would 

require 24-bits to store one background model 

information. As there are four background models used in 

the algorithm, it requires 96-bits memory space for 

storing background information for each 4x4 pixel block. 

For PAL (720x576) resolution video, the total number of 

4x4 pixels blocks are 25920 (= 720/4 * 576/4). Therefore, 

total memory space required to store the background 

information for PAL resolution videos is 25920x100 bits 

= 2592000 bits = 2530 Kbits = 2.373 Mbits. For 

achieving real-time performance, it is very difficult to 

implement this algorithm on limited resources standalone 

embedded platforms like low-cost low-end FPGAs 

having very less on-chip memory (Block RAMs). 

Therefore, for this reason, further emphasis needs to be 

given to the minimization of memory requirements of 

clustering-based moving object detection scheme 

proposed by [22] without compromising on accuracy and 

robustness of moving object detection. 

Accordingly, the clustering-based moving object 

detection algorithm was re-looked at and the memory 

analysis was carried out. The memory size required for 

storing the background information is directly 

proportional to the size of the cluster group, block size, 

and video frame size. Therefore, for given standard PAL 

(720x576) size color video streams, memory size can be 

reduced either by reducing the number of clusters from 

four to three or by increasing the 4x4 pixels block size to 

a larger block size. But Chutani and Chaudhury [22] had 

chosen to select a cluster size of 4 clusters and block size 

of 4x4 pixels because empirically they had found that 

these values yielded a good balance between accuracy 

and computational complexity. Therefore, reducing 

cluster size or increasing block size will result in the 

degradation of accuracy and robustness of the clustering 

based moving object detection scheme. In the first case, if 

the number of clusters is reduced to three then the 

algorithm‘s background model used to capture pseudo-

stationary changes/movements becomes weak and the 

algorithm becomes more sensitive to pseudo-stationary 

background changes, resulting in false relevant moving 

object detection outputs for pseudo-stationary 

background changes. In the second case, for larger block 

sizes, the system becomes less sensitive to relevant 

motions in smaller areas in a video scene. Therefore, 

none of the above two techniques can be used to reduce 

memory size as the objective is to reduce memory size 

without compromising on the accuracy and the robustness 

of moving object detection. For this reason, we re-

analyzed the original clustering based moving object 

detection algorithm and the following observations were 

resulted.  

The background related information in the clustering-

based moving object detection algorithm is stored and 

updated using two parameters viz. Centroid and Frame 

Number. Each Centroid memory location contains four 

Centroid values corresponding to four clusters/ 

background models which contain intensity information 

of pseudo-stationary background. Each Frame Number 

memory location stores four Frame Number values 

corresponding to four clusters / background models 

which are used to keep the record of Centroid value 

updation or replacement history i.e. for the particular 4x4 

pixels block when (at what time or for what Frame 

Number) the cluster Centroid value is updated or replaced. 

Now, the important observation is that during the cluster 

updating (in case a matching cluster is found) or cluster 

replacement (in case no matching cluster is found) the 

actual time or frame number when the cluster is updated 

or replaced is not necessarily required. During cluster 

update, the matching cluster label is required (i.e. first or 

second or third or fourth), not the actual value of the 

Frame Number. In case of cluster replacement, the oldest 
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cluster label (which has not been updated for the longest 

period of time) is required. The Frame Number is stored 

and used to get this required information only. This 

implies that there is no need of storing the complete 

Frame Number value. An index value is sufficient to 

maintain the cluster updating or replacement history, 

which implies that it is the newest cluster (most recently 

updated or replaced), the second newest cluster, the 

second oldest cluster, or the oldest cluster (which has not 

been updated for the longest period of time). As there are 

four cluster, therefore, a 2-bit index value is sufficient to 

record this information (i.e. the newest cluster, the second 

newest cluster, the second oldest cluster, or the oldest 

cluster). This reduces the 16-bit wide Frame Number 

memory to 2-bit wide memory and results in significant 

reduction in memory requirements. Based on this 

observation and associated modifications in the original 

clustering-based moving object detection scheme, a 

memory efficient moving object detection scheme is 

proposed and detailed in the next section. 

 

IV.  PROPOSED MEMORY EFFICIENT MOVING OBJECT 

DETECTION ALGORITHM 

In this section, we present a new memory efficient 

algorithm for moving object detection based on the 

observations discussed in previous section and associated 

modifications in the original clustering-based moving 

object detection scheme. The algorithm is proposed and 

designed with an aim to reduce the memory requirements 

without compromising on the robustness and accuracy of 

moving object detection. The block size and number of 

cluster/background models are kept same as in original 

algorithm (i.e. 4x4pixel block and 4 clusters). However, 

in this proposed scheme, each 4x4 pixel block is modeled 

by a group of four clusters where each cluster consists of 

a block Centroid and a 2-bit Index Value as shown in Fig. 

3. The pseudo-code is shown in Fig. 4. The complete 

proposed memory efficient moving object detection 

algorithm is detailed below. 

 

 

Fig.3. Proposed Memory Efficient Moving Object Detection Scheme. 

Each incoming grayscale frame is partitioned into 4x4 

blocks. For each block, the Block Centroid is computed 

by taking the average intensity value of the 16 pixels of 

that block. The block centroid is of 8-bits. 

During the initial four frames, Cluster Group 

Initialization is performed. In the first frame, the first 

cluster of each block is initialized with its centroid set to 

the block centroid of corresponding block of the first 

frame and its index value is set to 3 as this is going to be 

the oldest value at the end of the Cluster Group 

Initialization process. In the second frame, the second 

cluster of each block is initialized with its centroid set to 

the block centroid of corresponding block of the second 

frame and its index value is set to 2 as this is going to be 

the second oldest value at the end of the Cluster Group 

Initialization process. In the third frame, the third cluster 

of each block is initialized with its centroid set to the 

block centroid of corresponding block of the third frame 

and its index value is set to 1 as this is going to be the 

second newest value at the end of the Cluster Group 

Initialization process. In the fourth frame, the last/fourth 

cluster of each block is initialized with its centroid set to 

the block centroid of corresponding block of the fourth 

frame and its index value is set to 0 as this is going to be 

the newest value at the end of the Cluster Group 

Initialization process. At the end of Cluster Group 

Initialization process, we will have four cluster for each 

4x4 pixels block with Centroid and Index Value 

parameters. 

After initialization (in initial four frames), for all 

subsequent frames the moving object detection is 

performed. During moving object detection either of the 

two processes (i.e. Cluster Updating process or Cluster 

Replacement process) is performed. Therefore, the 

objective is either to update the cluster node or to replace 

the cluster node.  

If a matching cluster is found (i.e. the Minimum 

Centroid Difference is less than the threshold) within the 

cluster group then the matching cluster is updated. For 

this purpose, the Centroid value of the matching cluster is 

updated with the average value of the matching cluster 

Centroid value and incoming current Block Centroid 

value. The Index Value of matching cluster can be any of 

the four values i.e. 0, 1, 2, 3.  

Consider the first case of Cluster Updating i.e. 

matching cluster Index Value is 0. In this case, the Index 

Values for all cluster will remain same as the newest 

cluster is updated and order of four clusters 

update/replacement history will remain same. 

Consider the second case of Cluster Updating i.e. 

matching cluster Index Values is 1. In this case, the Index 

Value of matching cluster will be replace by 0 and also 

the cluster having Index Value 0 will be replaced by 

Index Value 1 to keep the proper update/replacement 

history order.  

Consider the third case of Cluster Updating i.e. 

matching cluster Index Value is 2. In this case, the Index 

Value of matching cluster will be replaced by 0 and also 

the cluster having Index Value 0 and 1 will be replaced 

by Index Value 1 and 2 respectively to keep the proper 

update/replacement history order. 

Consider the last/fourth case of Cluster Updating i.e. 

matching cluster Index Value 3. In this case, the Index 

Value of matching cluster will be replace by 0 and also 

the clusters having Index Value 0, 1, 2 will be replaced 

by Index Value 1, 2, ad 3 respectively to keep the proper 
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update/replacement history order. 

If no matching cluster is found (i.e. the Minimum 

Centroid Difference is greater than the threshold) within 

the cluster group then oldest cluster is replaced. For this 

purpose, the oldest cluster which has not been updated for 

the longest period of time i.e. cluster having Index Value 

3 is replaced. The Centroid of this cluster is set to 

incoming current Block Centroid value and its Index 

Value is set to 0 as it is replaced most recently. Also the 

cluster having Index Value 0, 1, and 2 will be replaced by 

Index Value 1, 2, and 3 respectively to keep the proper 

update/replacement history order. 

Thus, at the end of any of the processes i.e. Cluster 

Group Initialization, Cluster Updating, or Cluster 

Replacing, the four clusters Index Values keep the record 

of their update/replacement history properly. This process 

is performed for all the blocks in every incoming frame 

and it keeps track of newest cluster (most recently 

updated or replaced), second newest cluster, second 

oldest cluster, or oldest cluster (which has not been 

updated for the longest period of the time) and require 

only 2-bit Index Value in place of 16-bit Frame Number 

value. The proposed novel scheme is thus successful in 

substantially reducing the memory requirement of 

original clustering based moving object detection scheme, 

without any loss of accuracy in moving object detection. 

The resulting reduction in memory size for different 

video resolution is presented in next section.  
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Fig.4. Pseudo-code for Proposed Memory Efficient Moving Object Detection Scheme. 

V.  VERIFICATION RESULTS OF PROPOSED MOVING 

OBJECT DETECTION SCHEME 

Comparison of memory requirements by proposed 

memory efficient moving object detection algorithm and 

original clustering based algorithm [22] is summarized in 

Table 1 for different video resolutions. The percentage of 

reduction in memory requirements for all video 

resolutions is 58.33%.  

In order to reduce the memory requirement of moving 

object detection algorithm, without negatively impacting 

the quality of processed videos, it is important to 

accurately evaluate the proposed algorithm against 

original clustering-based moving object detection 

algorithm on video streams of different real-world 

scenarios. For this purpose, the original clustering based 

algorithm and proposed memory efficient algorithm have 

been programmed in C/C++ programming language. For 

running the code, a Dell Precision T3400 workstation 

(with Windows XP operating system, quad-core Intel® 

Core™2 Duo Processor with 2.93 GHz Operating 

Frequency, and 4GB RAM) was used. The Open 

Computer Vision (OpenCV) libraries were used in the 

code for reading video streams (either stored or coming 

from camera) and displaying moving object detection 

results. The effect of removing 16-bit Frame Number and 

using 2-bit Index Value was evaluated on test bench 

videos taken from surveillance cameras. The selected 

video streams have a resolution of 720 × 576 pixels (PAL 

size) and have five minute duration. 

Fig. 5 and Fig. 6 visually compare the results for both 

the moving object detection algorithms (proposed and 

original) for different indoor and outdoor conditions with 

pseudo-stationary backgrounds.  In Fig. 5, the moving fan 

in background is present, while in Fig. 6, the moving 

leaves of trees are present. The top row in both figures 

shows the original frames extracted from video streams. 

The second row shows the moving object detection 

results obtained from the original clustering based 

algorithm and the third row shows the moving object 

detection results obtained from the proposed memory 

efficient clustering based algorithm for respective frames. 

To compare the results, the pixel-by-pixel difference of 

second and third row images has been taken and it gives 

black images (fourth row). This indicates that the 

proposed memory efficient algorithm produces same 

moving object detection results as original clustering 

based moving object detection algorithm without any loss 

of accuracy and robustness but with significant reduction 

in memory requirement. 
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Table 1. Reduction in Memory Requirements for Different Video Resolutions. 

Video Resolution 
Memory Required by 

Original Algorithm [22] 

Memory Required by 

Proposed Algorithm 

Reduction in Required Memory 

Space by Proposed Algorithm 

HD (1920 x 1080) 12150 Kb 5062.50 Kb 7087.50 Kb 

PAL (720 x 576) 2430 Kb 1012.50 Kb 1417.50 Kb 

NTSC (720 x 480) 2025 Kb 843.75 Kb 1181.25 Kb 

VGA (640 x 480) 1800 Kb 750.00 Kb 1050.00 Kb 

CIF (352 x 288) 594 Kb 247.50 Kb 346.50 Kb 

 

 
(a) Input Video Frames 

 

 
(b) Original Moving Object Detection Algorithm Output 

 

 
(c) Proposed Moving Object Detection Algorithm Output 

 

 
(d) Difference of Original and Proposed Algorithm Outputs 

Fig.5. Comparison of Results of the Proposed Memory Efficient Moving Object Detection Algorithm with the Original Clustering based Moving 
Object Detection Scheme for Indoor Scenario. 

 
(a) Input Video Frames 

 

 
(b) Original Moving Object Detection Algorithm Output
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(c) Proposed Moving Object Detection Algorithm Output 

 

 
(d) Difference of Original and Proposed Algorithm Outputs 

Fig.6. Comparison of Results of the Proposed Memory Efficient Moving Object Detection Algorithm with the Original Clustering based Moving 
Object Detection Scheme for Outdoor Scenario. 

For quantitative analysis, for every frame of each video 

stream, the mean square error (MSE) is calculated. MSE 

is a common measure of quality of video and is 

equivalent to other commonly used measures of quality. 

For example, the peak signal-to-noise ratio (PSNR) is 

equivalent to MSE [23]. Some researchers measure the 

number of false positives (FP) and false negatives (FN) 

whose sum is equivalent to the MSE [24]. MSE is defined 

as 

 

     
 

   
   

 ∑ ∑               )               ) )    
   

   
      (1) 

 

In the above equation, IORIGINAL (m, n) is the moving 

object detected binary output image produced by running 

the software (C/C++) implementation of original 

clustering based algorithm, while IPROPOSED (m, n) is the 

moving object detected binary output image produced by 

running the software (C/C++) implementation of 

proposed memory efficient clustering based algorithm. M 

is the number of columns in a video frame i.e. 720 and N 

is the number of rows in a video frame i.e. 576. 

As the moving object detection outputs are binary 

images, therefore, the square of the difference between 

IORIGINAL (m, n) and IPROPOSED (m, n) has only two 

possible values: ―1‖ if the pixel has different values in 

IORIGINAL and IPROPOSED and ―0‖ if the pixel has same 

values. As a result of this MSE is equivalent to the ratio 

of the number of pixels which are different in IPROPOSED 

with respect to IORIGINAL to the total number of pixels in a 

video frame.  

The computed MSE for every frame of all the test 

bench videos is zero and it confirms that the proposed 

memory efficient moving object detection scheme 

produces the same moving object detection results as the 

original clustering based moving object detection scheme 

without negatively affecting the quality of processed 

videos, but with 58.33% reduction in memory 

requirement. 

 

 

VI.  CONCLUSIONS 

In this research article, a memory optimized moving 

object detection scheme, useful for designing automated 

video surveillance systems, has been presented. The 

emphasis has been given on optimizing memory 

requirements for storing background related information. 

The presented scheme is best suited for implementation 

on limited resources standalone embedded platforms such 

as low-cost low-end FPGAs for achieving real-time 

performance. It has been coded using C/C++ in the 

Microsoft Visual Studio IDE. The moving object 

detection results of proposed memory efficient scheme 

were qualitatively as well as quantitatively analyzed and 

compared with the original clustering-based moving 

object detection algorithm. There is 58.33% reduction in 

memory requirements in case of proposed memory 

efficient algorithm for storing background related 

information without any loss in accuracy and robustness 

of moving object detection as compared to original 

clustering based scheme. 
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