
I.J. Image, Graphics and Signal Processing, 2015, 9, 27-33
Published Online August 2015 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijigsp.2015.09.04

Copyright © 2015 MECS I.J. Image, Graphics and Signal Processing, 2015, 9, 27-33

Finding Longest Common Substrings in

Documents

M.I.Khalil
Nuclear Research Center, Atomic Energy Authority, Cairo, Egypt. Currently in a sabbatical leave as an Associate Prof.

at Princess Nora Bint Abdurrahman University, Faculty of Computer and Information Sciences, Networking and

Communication Dept., Riyadh, Kingdom of Saudi Arabia, Riyadh

Email: magdi_nrc@hotmail.com, mikhalil@pnu.edu.sa

M.A.Hadi
College of Computer Science and Information’s- Princes Nourah University-Riyadh – KSA Networking and

Communication Systems

Email: mohahadi@yahoo.com, haamohamed@pnu.edu.sa

Abstract—This paper introduces an algorithm to address

the problem of finding the longest common substring

between two documents. This problem is known as the

longest common substring (LCS) problem. The proposed

algorithm is based on the convolution between the two

sequences (named major sequence (X) which is

represented as array and the minor one (Y) which is

represented as circular linked list. An array of linked lists

is established and a new node is created for each match

between two substrings. If two or more matches in

different locations in string Y share the same location in

string X, the corresponding nodes will construct a unique

linked-list. Accordingly, by the end of processing, we

obtain a group of linked-lists containing nodes arranged

in certain manner representing all possible matches

between sequences X and Y. The algorithm has been

implemented and tested in C# language under Windows

platform. The obtained results presented a very good

speedups and indicated that impressive improvements

had been achieved.

Index Terms—Longest Common Substring; Data

structures and Algorithms; Documents, Document

Similarity.

I. INTRODUCTION

There are many methods and algorithms to compare

documents or simply to judge similarity between

documents. Such algorithms are time and space

consuming, for instant the brute force algorithm compares

two documents in word by word manner. The classic text-

book solution to the longest common substring (LCS)

problem is to build the (generalized) suffix tree of the

documents and find the node that corresponds to LCS [1-

8]. While this can be achieved in linear time, it comes at

the cost of using huge space to store the suffix tree. In

applications with large amounts of data or strict space

constraints, this renders the classic solution impractical.

Another algorithms compare the subject document with

investigated documents by constructing metrics related to

the documents such as punctuation, the number of

statements, paragraphs [9].

LCS approaches aid the problem of searching for

coding regions in DNA sequences yielding the common

substring between DNA sequences [10, 15].

The problem of LCS can be defined mathematically as:

Given two documents (strings), S of length m and T of

length n, find the longest strings which are substrings of

both S and T.

A generalization is the k-common substring problem

[16].

Given the set of strings ,
where and ∑ . Find for each

 , the longest strings which occur as substrings of at least

 strings.

The algorithm suggested in this paper aims to minimize

both the time of processing and the size of allocated

memory. The algorithm detects not only the longest

common string but finds exactly all possible common

substrings. It is based on the convolution between the two

documents (named major sequence (X) which is

represented as array and the minor one (Y) which is

represented as circular linked list. An array (Z) of linked

lists is established and a new node is created for each

match between two substrings. The first string is kept

fixed while the another one is rotated, using pointer, to left

in one character step. If two or more matches in different

locations in string Y share the same location in string X,

the corresponding nodes will construct a unique linked-list.

Accordingly, by the end of processing, we obtain a group

of linked-lists containing nodes arranged in certain

manner representing all possible matches between

sequences X and Y. The array Z of linked lists is then

traversed horizontally and vertically looking for the

matches between string X and Y.

The rest of the paper is organized as follows. Section II

discusses the suggested algorithm, and the

implementation and experimental results are discussed in

Section III. We conclude the paper in Section IV.

28 Finding Longest Common Substrings in Documents

Copyright © 2015 MECS I.J. Image, Graphics and Signal Processing, 2015, 9, 27-33

II. THE SUGGESTED ALGORITHM

The suggested algorithm compares two documents to

find all possible identical matches. The data structure

required for the suggested algorithm is shown in Fig.1.

The major string is represented in array X while the

second one (the minor string) is represented in circular

linked-list Y. Each node in the circular linked list Y

consists of two fields: the first field holds character value

while the second one points to the next node in a circular

manner. The initialization process (shown in Fig.2) reads

the major document (the longer one) character by

character in array X (each array cell holds one character

value) and the minor document is read into the circular

linked-list Y respectively. In addition, it establishes an

empty linked-list array Z, where each cell of array Z is a

separate linked-list. The data structures X, Y and Z are all

of the same size as the major document (measured in

characters). The major document refers to the longer one.

If the major document is longer than the minor one, the

rest of the circular linked-list Y will be filled with a not

used special character (i.e. Null).

Fig.1. The data structures used in the suggested approach

Fig.2. Flow chart of the initialization process

The process of matching is described in the flowchart

shown in Fig.3; where it begins by creating two counters:

I for loop number and shift_no for the shifting number.

Two nested loops will be used, one for left-shifting the

sequence represented in the circular linked-list Y, and the

inner loop for comparing every character in X with the

corresponding one in Y. If there is a match between the the

character stored in cell number n in X and the character

stored in node number n in the shifted circular linked-list

Y, then a new node will be added to the linked-list stored

in cell number n in array Z. The new node consists of two

fields; the first one contains the shift number (shift_no

counter) and the second one contains a pointer to the next

node in the same linked-list (it must be null until adding

new node).

The last process scans and inspects the contents of the

linked-list array Z looking for the contiguous nodes which

contains the same shift_no in its data fields. The result of

this process is added to a list yielding the longest

contiguous nodes sequence.

The following example illustrate the matching process

of the suggested algorithm:

Input: two strings

 Major string = “please let me learn better”

 Minor string = “release letter”

Fig.3. Flow chart of the matching process

As illustrated in Fig.5 B, the first two rows at top of the

right table contain the two input strings X and Y

respectively. The minor string is rotated to left one

character at a time yielding to the successive strings

shown in the rest of the same table. The convolution

process is performed every time the minor string is rotated,

the contents of the minor string is compared, character by

character with the corresponding characters of the major

string yielding to the corresponding row in the left table

Start

Create array X

Create circular_linked_list Y

Read major document file into X

Read Minor document file into Y

Fill rest of Linked_list Y with null

character

End

 Finding Longest Common Substrings in Documents 29

Copyright © 2015 MECS I.J. Image, Graphics and Signal Processing, 2015, 9, 27-33

(Fig.5 A) in the figure. If two characters are equal, a new

node is added to the linked list related to this position in

the major string. The new node contains two fields: the

first one contains the shift_no and the other contains a

pointer to the next node (null until adding the next node).

The new node is represented by “1” in the left table. The

two linked-lists shown in Fig.4 represent the added nodes

in the second and third columns of the left table (Fig. 5 A)

respectively and they are corresponding to characters “l”

and “e” of the major string. Inspecting the rows contained

in the left table, it is noticed that each row represents the

result of comparing the major string with the minor one at

certain rotation number. The “ones” in a row means that

the corresponding characters in both strings are equal. The

contiguous “ones” means that the corresponding

characters is common substring in both strings. For

example the ones in the row number “1” in the left table

represents the substrings: “lease let”, “ ” and “r”

respectively.

Fig.4. the added nodes in the second and third columns of the left table

corresponding to characters “l” and “e” of the major string

A) B)

Fig.5. Illustration example to find matches between strings: ”please let me learn better” as major string and “release letter” as minor one

III. IMPLEMENTATION AND EXPERIMENTAL RESULTS

The suggested algorithm has been implemented using

C# (Microsoft Visual Studio) language to perform

comparison between two input long strings and display

all possible common substrings in suitable manner. The

program has been tested with different lengths strings and

the time of processing is computed in each case. The

snapshot in Fig.6 is taken after running the program for

the example explained in Fig.5. The resulted common

substrings between the two input strings are listed in the

data view component as shown in the mentioned Fig.

along with the locations of those substrings and their

lengths in both input strings. The relation between the

time of processing and its dependence on the ratio

between the lengths of both minor and some major strings

30 Finding Longest Common Substrings in Documents

Copyright © 2015 MECS I.J. Image, Graphics and Signal Processing, 2015, 9, 27-33

(see Table-1) have been experimentally studied yielding

to Table-2 which is presented and plotted in Fig.7. The

major string was 1000 character and the minor string is

varied gradually from 50 to 1000 characters length. It is

noticed that this relation is almost linear. Moreover, the

time of processing has been studied in more deep: the

time of processing consists of two components; the first

one is consumed in constructing the linked lists related to

each position in the major string which contains the

matches between the two strings, and the other

component is consumed in traversing the these linked

lists looking for continuous strings. It has been found that

the first time component is trivial compared to the second

one (Table-2). The relation between time of processing

and its dependence on the length of the major string is

considered and inspected yielding to Table-3 which is

represented in Fig.8 respectively.

Table 1. LCS for different input strings

Major string Minor string LCS

please let me learn better release letter Lease let

A state diagram is a model of a reactive system. state diagrams are

used to model complex logic. The model defines a finite set of states

and behaviors and how the system transitions from one state to
another when certain conditions are true.

state diagrams are used to model

complex logic in dynamic systems

from one state to another

state diagrams

are used to

model complex
logic

we can format hard disk information science format

his computer is encoded the letter is enclosed ter is enc

this manual machine is very old the computational machines Al machine

Table 2. Relation between time of creating linked lists and traversing them (length of major string = 1000 characters).

Minor string length Time of creating linked list Time of traversing linked list Total time (seconds)

50 16 1597 1613

100 24 1879 1903

150 29 2311 2340

200 30 2847 2877

250 34 3211 3245

300 35 3688 3723

350 36 4380 4416

400 36 5094 5130

450 37 5988 6025

500 37 6957 6994

550 37 8649 8686

600 37 10400 10437

650 37 11505 11542

700 37 13042 13079

750 37 15264 15301

800 37 16389 16426

850 38 17689 17727

900 38 18770 18808

950 38 20349 20387

1000 40 21422 21462

Table 3. Relation between total processing time and length of string (both minor and major strings are of the same size).

Minor string length Time of creating linked list Time of traversing linked list Total time (seconds)

200 4 277 281

400 8 966 974

500 16 1710 1726

600 22 2705 2727

700 26 4197 4223

800 29 7596 7625

1000 37 19188 19225

1200 75 34815 34890

1500 119 64296 64415

2000 300 155075 155375

2250 442 224355 224797

2500 576 310108 310684

3000 976 530132 531108

4000 1779 1340481 1342260

4500 2111 1919311 1921422

5000 2695 2656767 2659462

 Finding Longest Common Substrings in Documents 31

Copyright © 2015 MECS I.J. Image, Graphics and Signal Processing, 2015, 9, 27-33

Fig.6. The snapshot of the implemented program running for the illustration example.

Fig.7. The relation between the time of processing and its dependence on the ratio between the lengths of both minor and some major strings

Fig.8. Relation between time consumed in constructing linked lists and time consumed in traversing them

32 Finding Longest Common Substrings in Documents

Copyright © 2015 MECS I.J. Image, Graphics and Signal Processing, 2015, 9, 27-33

IV. CONCLUSION

Documents matching is a fundamental and upcoming

area in data processing and internet search. The algorithm

proposed in this paper addressed the problem of locating

the longest common substring (LCS) in two different

sequences. It is based on the convolution between the two

strings (named major sequence X and minor one Y) and

creating a node to the linked-list in the corresponding cell

of array Z for each match between two substrings. If two

or more matches share the same location in string X, the

corresponding nodes will construct a single linked-list

yielding to a group of linked-lists containing nodes

arranged in certain manner representing all possible

matches between sequences X and Y. The obtained results

presented very good speedups and indicate that impressive

improvements has been achieved. basing on this algorithm,

an application can be developed to find the longest

common substring between two or more DNA sequences.

The prposed algorithm can be developed to locate the

longest common strings between the major document and

several minor strings. Moreover, the algorithm needs to be

developed to be able to run in parallel processing manner

to cope with the long time processing problem.

REFERENCES

[1] Gusfield, D.: Algorithms on Strings, Trees and Sequences:

Computer Science and Computational Biology. Cambridge

University Press (1997).

[2] Hui, L.C.K.: Color Set Size Problem with Applications to

String Matching. In: Proc. 3rd CPM (LNCS 644). pp. 230–

243 (1992).

[3] Weiner, P.: Linear Pattern Matching Algorithms. In: Proc.

14th FOCS (SWAT). pp. 1–11 (1973).

[4] J. A. W. Faidhi and S. K. Robinson, “An empirical

approach for detecting program similarity within a

university programming environment”, Computers &

Education, vol. 11, no. 1, (1987), pp. 11-19.

[5] U. Manber, “Finding similar files in a large file

system[C/OL]”, In: Proceedings of the Winter USENIX

Conference, (1994), pp. 1-10.

[6] BLAST, http://blast.ncbi.nlm.nih.gov/Blast.cgi, (2011)

September.

[7] Weiner, P.: Linear Pattern Matching Algorithms. In: Proc.

14th FOCS (SWAT). pp. 1–11 (1973).

[8] Hui, L.C.K.: Color Set Size Problem with Applications to

String Matching. In: Proc. 3rd CPM (LNCS 644). pp. 230–

243 (1992).

[9] S. Grier, “A tool that detects plagiarism in Pascal

programs”, ACM SIGCSE Bulletin, vol. 13, no. 1, (1981),

pp. 15-20.

[10] J. K. Me, M. R. Panigrahi, G. N. Dash and P. K. Meher,

Wavelet Based Lossless DNA Sequence Compression for

Faster Detection of Eukaryotic Protein Coding Regions,

IJIGSP Vol.4, No.7, July 2012.

[11] Kamta Nath Mishra, P. C. Srivastava, Anupam Agrawal,

Vivek Tripathi, Rishu Garg, Minutiae Distances and

Orientation Fields Based Thumbprint Identification of

Identical Twins, IJIGSP Vol.5, No.2, February 2013.

[12] Murugan. A. and Lavanya. B. DNA algorithmic approach

to solve GCS problem. Journal of Computational.

Intelligence in Bioinformatics,3(2):239-247, 2010.

[13] Murugan. A., Lavanya. B., and Shyamala. K.A novel

programming approach for DNA computing. International

Journal of Computational Intelligence Research, 7(2):199-

209, 2011.

[14] Lavanya. B. and Murugan. A. Discovering sequence

motifs of different patterns parallelly using DNA

operations. International Journal of Computer Applications,

3(1):18-24, Nov 2011.

[15] Lavanya. B. and Murugan. A. A DNA based approach to

_nd closed repetitive gapped subsequence from a sequence

database. International Journal of Computer Applications,

29(5):45-49, Sep 2011.

[16] http://en.wikipedia.org/wiki/Longest_common_substring_p

roblem

Authors’ Profiles

Dr. Magdi Ibrahim Khalil El-Sharkawy,

Egyptian, male, has obtained his B.Sc degree

in Computer and Automatic Control

Engineering from Faculty of Engineering, Ain

Shams University, Cairo, Egypt, in 1983,

M.Sc degree in Computer Engineering from

Faculty of Engineering, Tanta

University,Tanta, Egypt, in 2003 and Ph.D degree in Computer

Systems Engineering from Faculty of Engineering, Benha

University, Cairo, Egypt, in 2005. He is currently working as

Associate Professor in Department of Networking and

Communication systems at the Faculty of Computer and

Information Sciences, Princess Noura Bent Abdulrahman

University, Riyadh, KSA. He has 15 years of previous

experience at the Reactor Physics Department, Nuclear

Research Center (NRC), Egyptian Atomic Energy Authority

Cairo (EAEA), Egypt in the field of Data Acquisition and

Interface Design. His main research interests focus on: Digital

Signal Processing, Wireless Sensor Networks, Personal and

Mobile Communications. So far, he has twelve years of

teaching experience and has published more than twenty-five

papers in repute journals and proceedings of conferences in

fields of the data acquisition, digital signal processing, image

processing and neural networks.

Dr. M.A.Hadi was born in Cairo, Egypt, in

1960. He received BSc degree in Electronic

and Telecommunication in 1983 from Faculty

of Engineering, Helwan University, Egypt. He

was a consultant engineer at Computer and

Networks field in KSA. In 2003, he received

his MSc in Computer Engineering from Al-

Azhar University, Egypt. In 2012, he received his Ph. D. in

Computer Engineering and Networks, from the Engineering

College at Al-Azhar University. Currently, , he was a Lecture at

Faculty of Science, Department of computer science at Darna

university Libya, from 2003 to 2004, he was an lecturer. From

2004 to 2010 at Taif Department of computer science at Darna

university Libya, from 2003 to 2004, he was an lecturer. From

2004 to 2010 at Taif University, He is working From 2012 to

2013 as an assistant professor at the Electricity Department at

College of Engineering, Taif University. KSA. He was working

from Aug. 2013 to Jan. 2014 as an assistant professor in

Engineering and Computer Science, at Cairo High Institute for

Engineering and Computer Science, New Cairo, Egypt.

At the same time he was working as an assistant professor in

Engineering College at Canadian International College, New

Cairo, Egypt. Currently he is working as an assistant professor

of Computer Networks and Communication Systems at –

 Finding Longest Common Substrings in Documents 33

Copyright © 2015 MECS I.J. Image, Graphics and Signal Processing, 2015, 9, 27-33

College of Computer and Information Sciences - Princes Nora

University, Riyadh, KSA.

His research interests include Computer Networks, Wireless

Networks, Data Security, Mobile Applications and Satellite

Communications.

How to cite this paper: M.I.Khalil, M.A.Hadi,"Finding Longest Common Substrings in Documents", IJIGSP, vol.7,

no.9, pp.27-33, 2015.DOI: 10.5815/ijigsp.2015.09.04

