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Abstract—Texture is one of the most significant 

characteristics for retrieving visually similar patterns in 

remote sensing images. Traditional approaches for texture 

analysis are based on symbolic descriptions and statistical 

methods. This study proposes a new method to extract 

and classify texture patterns from multispectral Landsat 

TM satellite images using optimized clustering and 

probabilistic inference. After the images are preprocessed 

with Principal Component Analysis and decomposed into 

regions of interest, Gabor wavelets are computed for each 

region in the first component image to obtain texture 

feature vectors. An adapted k-means clustering algorithm 

with optimized number of clusters and initial starting 

centers generates training and testing data for Bayes Point 

Machine classifiers. The classifiers may run in the online 

mode for binary classification and the batch mode for 

multi-class classification. The experimental results show 

the effectiveness of the proposed classification method 

and its potentials in other image texture pattern 

recognition applications. 

 

Index Terms—Texture analysis, clustering, Bayesian 

inference, remote sensing. 

 

I.  INTRODUCTION 

Texture is an important element for pattern recognition 

and interpretation in the human visual system. In a digital 

image, it represents the visual impression of smoothness 

or coarseness produced by the uniformity or variability of 

image color or tone [1]. Without universally accepted 

mathematical definition of texture, traditional approaches 

use symbolic descriptions, such as coarse and fine, rough 

and smooth, linear and nonlinear, low and high density, 

and orientation and directionality, etc., to represent 

texture in images [2]. However, descriptive terms for 

texture patterns presented in remote sensing imagery, 

usually generated by multispectral or hyperspectral 

sensors with various resolution, are yet to be established. 

Texture analysis tools have been developed to extract 

features from remote sensing images with different 

criteria. The most frequently used pattern recognition 

techniques are built on statistical methods, such as spatial 

co-occurrence matrix and variogram. For instance, 

texture features are identified with a moving window to 

show the connection between a pixel and its neighbor 

according to a gray-level co-occurrence matrix (GLCM) 

[3]. Variogram analysis has been reported to be superior 

to GLCM for distinguishing very similar texture patches 

[4]. Algorithms based on the frequency transformation, 

such as discrete cosine transforms [5] and wavelet 

transforms [6] have achieved good performance in multi-

resolution texture analysis [7]. 

Texture features extracted from remote sensing images 

often offer complementary information for applications in 

which the spectral information of the images alone might 

not be sufficient for classifying spectrally heterogeneous 

ground cover and ground use classes [8]. Unsupervised 

classification techniques, such as morphology [9] and 

clustering [10], have been used to identify similar texture 

patterns in remote sensing images, with each pattern 

represented by a class that is labeled by domain experts in 

the post-clustering process. Another family of texture 

classification techniques have been developed from 

supervised classification methods, such as Bayesian 

classifier [11] and decision trees [12] when training data 

is available. Furthermore, Hybrid texture classification 

[13] involving multi-stage classification methods has 

demonstrated favorable results. 

Extending this line of research, this study develops an 

application to extract texture features from remotely 

sensed images and classify the texture patterns with a 

new approach that integrates wavelet transformation, 

clustering, and probabilistic inference (See Fig. 1). To 

obtain the texture features, the Principal Component 

Analysis (PCA) [14] is performed on a multispectral 

Landsat TM image, with the first PCA component 

divided into regions of interest. The texture feature vector 

of each region is then represented by Gabor wavelets. 

The classification can be done in either online mode or 

batch mode. The online mode in which the feature 

vectors are directly fed into a binary Bayes Point 

Machine (BPM) [15] classifier allows the user to perform 

binary classification with dynamically created training 



2 Texture Analysis of Remote Sensing Imagery with Clustering and Bayesian Inference  

Copyright © 2015 MECS                                                          I.J. Image, Graphics and Signal Processing, 2015, 9, 1-10 

data, while the batch mode supports multi-class 

classification, given the patterns of interest as well as 

training and testing data for the BPM classifier generated 

from an optimized k-means clustering method. 

 

 

Fig.1. Remote sensing image texture extraction and classification. 

The rest of the paper is organized as follows. Previous 

work related to this study is listed in Section II. Section 

III introduces the process of texture feature extraction by 

applying PCA to multi-spectral remotely sensed images 

and computing Gabor wavelets. The classification 

process that incorporates an optimized k-means clustering 

algorithm and a BPM classifier is presented in section IV. 

Section V deals with the implementation and the 

experiments, Section VI discusses the results in details, 

and section VII concludes with proposals for future work. 

 

II.  RELATED WORK 

Ref [16] compares the performance of various methods 

for multi-class texture image classification, such as Naïve 

Bayes classifier, k-nearest neighbor classifier and Neural 

Network classifier, given features represented by Haar 

wavelet. The results indicate the efficiency of using 

wavelet in multi-class texture image classification. In 

addition, a new texture classification method based on 

texton features, which evaluate the relationship between 

the values of neighboring pixels, has achieved better 

performance than existing methods on various stone 

textures [17]. 

Among unsupervised clustering algorithms, k-means 

clustering is popular due to its implementation simplicity 

and local-minimum convergence [18]. However, k-means 

clustering suffers some intrinsic deficiencies besides its 

expensive computation that requires multiple data scans 

to achieve convergence. For instance, it is very sensitive 

to initial starting conditions, i.e., k-means clustering is 

fully deterministic given the randomly or arbitrarily 

chosen initial centers. In addition, k-means clustering 

requires a parameter of the number of clusters, which is 

difficulty to obtain when no prior knowledge about the 

data is available. Although a general solution does not 

exist, various approaches have been proposed as partial 

remedies. For example, embedding the data set in a multi-

resolution kd-tree and storing sufficient statistics at its 

nodes may help to improve the speed of convergence [19]. 

A validity measure of clusters using intra-cluster and 

inter-cluster distance can be used to estimate the number 

of clusters [20]. Additionally, repeated sub-sampling and 

smoothing methods have been developed to refine the 

starting centers [21]. 

Recent advance in statistics learning with kernel 

methods has generated some powerful non-linear 

classification algorithms, such as Support Vector 

Machines (SVM) [22] and Bayes Point Machines [15]. 

SVM maximizes the margin between positive and 

negative training examples, the so-called support vectors, 

to find an optimal decision boundary, while BPM 

approximates the Bayes-optimal probabilities through the 

mass center of version space. These algorithms have 

performed well in the applications of content-based 

image retrieval [23], image classification [24, 25], and 

remote sensing image information mining [8]. 

 

III.  FEATURE EXTRACTION 

A.  Principal Component Analysis for Satellite Imagery 

Principal Component Analysis (PCA) is a coordinate 

transformation frequently used to reduce the correlation 

contained within a data set [14]. It has been applied to 

remote sensing image analysis to take out the correlation 

contained within the multispectral imagery by creating a 

new set of components, which are usually more 

interpretable than the original images. Ref. [26] provided 

a review of the applications of PCA in remote sensing, 

such as correlation analysis, change detection, and pattern 

recognition with multi-temporal Landsat TM images.  

Assume N is the number of bands in a multispectral 

(multiband) remote sensing image, a pixel vector whose 

components are the individual spectral responses at a 

pixel location in each band can be characterized as 

 TNk xxx ,, 21x . PCA transformation computes the 

covariance matrix of the original data [26]  
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Each column in the transformation matrix represents 

the weights applied to the pixels in the corresponding 

band to create a principal component. The covariance 

matrix yC  of the transformed data becomes a diagonal 

matrix of which the elements are composed of the 

eigenvalues, while the transformed data points are linear 
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combinations of their original data values weighted by 

the eigenvectors [26]. PCA component images built this 

way are uncorrelated and ordered by decreasing variance. 

The first component image, which has the largest 

percentage of the total variance and the highest signal-to-

noise ratio, is used for texture feature representation. 

B.  Gabor Wavelet Transformation 

Ref. [27] proposed a method for texture feature 

extraction based on Gabor wavelets, which may achieve 

the best overall performance compared with other 

multiresolution texture features using the Brodatz texture 

database. In addition, their experimental results on large 

aerial photographs indicate that Gabor wavelets give 

good accuracy of pattern retrieval [7].  

A Gabor function and its Fourier transform are defined 

as [6] 
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Gabor wavelets, which form a self-similar filter 

dictionary, can be obtained by rotation and dilation of the 

Gabor function [27] 
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where 1,,1,0  Sm   and 1,,1,0  Kn  . S is the 

number of scales and K is the number of orientations in 

the multiresolution decomposition. The scale factor ma  

normalizes the filter responses so that the energy is 

independent of m. Gabor filters are considered as 

orientation and scale tunable edge and line detectors, and 

the statistics of the filtered outputs can, therefore, be used 

to characterize the underlying texture information. 

Gabor wavelet transform of an image ),( yxI  is 

defined as [28] 
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where   indicates the complex conjugate. Suppose the 

local texture regions are spatially homogeneous, the mean 

and the standard deviation of the magnitude of the 

transform coefficients may represent the region for 

retrieval and classification [8, 28]. 
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For example, using three scales S = 3 and four 

orientations K = 4, a feature vector can be represented as 
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while the distance between images i and j in the feature 

space is [8] 
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with the individual feature components normalized by 

)( mn  and )( mn , the standard deviations of the 

respective features over the entire set of images. 

 

IV.  CLASSIFICATION METHODS 

A.  Optimized k-means Clustering 

An empirical comparison of initialization methods for 

k-means clustering was presented in Ref. [19]. This study 

adopts an optimized k-means clustering procedure [8] that 

combines the validity measure [20], which estimates the 

number of clusters, with initial centers refinement [21] 

based on repeated sub-sampling and smoothing. 

Suppose N is the total number of pixels, K is the 

number of clusters, and x represents a texture feature 

vector, let mi be the vector representing the center of 

cluster Ci, the validity of clusters is defined as 

interintra MM , where the intra-cluster distance 
intraM  is 

the average of the sum of distance between each vector 

and its cluster center, while the inter-cluster distance 

interM  is the minimum distance between any two cluster 

centers [20]. 
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Assume Kmax is the upper limit of the number of 

clusters presented in a data set, for each integer k where 

max2 Kk  , the optimal number of clusters is found by 

clustering that yields clusters with the minimum validity. 

The initial center refinement algorithm is briefly 

described as follows [8, 21]. Given randomly selected 

sub-samples Si, i = 1, 2,…, J, k-means clustering may 

produce estimates of the true cluster centers CMi. A 

distortion value is computed as the sum of square 

distances of each data point to its nearest center. The 

centers with minimal distortion value over each sub-

sample set are chosen as the refined initial centers. The 

algorithm also checks the solution at termination for 

empty clusters and sets the initial estimates of these  
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empty cluster centers to data points that are farthest from 

their assigned cluster center. 

 

Algorithm 1 Optimized k-means clustering 

Input: K, J, a dataset  XS  x  

Output: Kopt, final hypothesis C  

Begin 

  for i = 1 … J do 

     Draw a random subset Si of S 

     for k = 2 … K do 
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The optimization procedure runs the cluster validation 

algorithm to find the optimal number of clusters i

optK for 

each sub-sample data set Si. The initial center refinement 

algorithm then uses i

optK  to select optimized starting 

centers. The final clusters are generated by k-means 

clustering with Kopt which is the average of i

optK [8]. 

B.  Bayes Point Machine Classification 

A Bayes Point Machine (BPM) uses a hypothesis 

function h(x) to classify an input vector x by finding the 

inner product of x with a weight vector w, yielding the 

output y as true if the inner product xw   is positive and 

false otherwise [15]. Given training data z = (x, y) = 

}),}...{,({ 11 mm yxyx  of size m, the hypothesis functions H 

form a version space V(z), with each point in V 

representing a possible classifier. 
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Suppose y' is the true output, a zero-one loss function 

may quantify the cost of predicting y  
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The Bayes classification of test data 
ii yxh )( aims to 

minimize the loss [29] 
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where the posterior probability is 
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given any prior belief )(H hP . However, if the training 

data is limited, the optimal solution )(xBayes z
may not 

be any single classifier Hh [29]. An approximation 

named Bayes point can be obtained through 
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which implies the classifier Hhbp  is the best 

approximation of the optimal Bayes classifier on average 

over randomly sampled testing data [15]. For linear 

classifier, a hypothesis Hxh )( is defined by its weight 

vector w and therefore, 
bph  can be defined by bpw . 
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When the input distribution is spherically Gaussian, 
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where d is the dimensionality of the feature vectors, the 

center-of-mass 
cmw in V can be a good approximation to 

the Bayes point [29] 
 

 

 WE

WE

w

W

W

zZ

zZ

m

m





cm
                       (20) 

 

Compared with other kernel based classifiers, such as 

SVM which aims to find the center of the largest sphere 

embedded in the version space V, with radius of the 

sphere being the maximal margin between positive and 

negative support vectors, the BPM looks for classification 

at the optimal center, i.e., the Bayes point, of the entire V.  

Therefore, SVM is an approximation to and theoretically 

less accurate than BPM [15].  

a.  Binary BPM classification 

The design of binary BPM classification is based on 

the Infer.NET [30], a framework by Microsoft Research 

for probabilistic programming and running Bayesian 

inference in graphical models. Besides supporting the 

popular C# language, Infer.NET class library can be  
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integrated with other programming languages on 

Microsoft .NET, such as F#, for parallel computing.  

Given the training data that consists of m feature vectors 

and corresponding observed class 

labels  miyD ii ,...,1),,(  x , the BPM classification 

aims to find the predictive distribution 

 KcDcyp ,...,1),,(  x  over K classes, conditional on 

x and D [30]. Assume a parametric density of the form 

)(),( xwwx
Tsypyp   where s is the instance score, 

Fig. 2 illustrates that, the training of a binary BPM 

classifier learns a posterior distribution over the weight w, 

which is used in the predictions on testing data [30]. 

 

 

Fig.2. Factor graph of a binary Bayes Point Machine classifier (adapted 
from Ref [30] Minka, Winn, Guiver and Knowles). 

Assume w is a vector with a multivariate Gaussian 

prior distribution, Gaussian noise is added to the score to 

allow for measurement and labelling error. Because if the 

training data is not linearly separable, which is common 

for kernel based classifiers, then no setting of w exists to 

classify the training data into two classes precisely. For 

each data sample during the training, variable t is 

computed by the inner product of w with the 

corresponding feature vector x in addition to the noise. 

The output variable y yields a value of true if t > 0 or 

false if t < 0. 

b.  Multi-class BPM classification 

The multi-class BPM classification is similar to the 

binary BPM classification. However, instead of using a 

single linear discriminant function, it has K functions 

with their respective weight vectors wc and scores sc, one 

for each class c in {1,...,K} [30]. The maximum score 

decides the class y to which a feature vector belongs.  

 

 

Fig.3. Training and testing data generated from nearest neighbors of the 
cluster centers. 

The number of classes depends on the number of 

clusters generated from the optimized k-means clustering. 

Remote sensing domain experts may choose only the 

classes they are interested in. In addition, the training and 

testing texture feature vectors labeled by domain experts 

for multi-class BPM classification are built from the 

nearest neighbors of the cluster centers (See Fig. 3). 

Assume M is the number of feature vectors in a cluster, 

the cluster center is computed as the average of all the 

feature vectors in that cluster.  
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The nearest neighbors of a cluster center are obtained 

by sorting the feature vectors according to their distance, 

e.g. the Euclidean distance, to the cluster center. The 

Euclidean distance between a feature vector 
qF  and the 

cluster center is defined as 
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Algorithm 2 Multi-class BPM Classification 

Training 

Input: A set of clusters 

 
iiijii MjKicycC ,...,1,,...,1,),(, ,  x  

Output: hypothesis  KihH i ,...,1,   

Begin 

  for i = 1 … K do 

    for j = 1 … Mi do 

         
2

,, ijijid cmx   

    Sort  
ijiji Mjd ,...,1,, ,, x   

    Label  
iijiii Njyy ,...,1),,(),( ,  xX  where  

               ii MN   ,  1,0  

  Train BPM with ),( ii yX to produce hypothesis  

               KihH i ,...,1,   

End 

 

Testing 

Input: A data set of  

          
iiiji MNjKicD ,...,1,,...,1,,  x  

          hypothesis  KihH i ,...,1,   

Output: Labeled data set  

          llsllL NsKlyDD ,...,1,,...,1),,(: ,  x  

 

Begin 

  Ensemble  
iiiji MNjKicD ,...,1,,...,1,,  x   

  to produce  NtD tT ,...,1,  x  where  

                    



K

i

ii NMN
1

)(  

  Run H  on 
TD  to produce probabilities    

       NtKlpP tl ,...,1,,...,1),()(  xX  

  for t = 1 … N do
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     if )( tlp x  =  Kljp tj ,...,...,1),( xmax  then 

         1 ll NN ,  

         
lNs  ,  

         
tsl xx ,
, lyl   

         Add ),( , lsl yx  to class 
lD  

   llsllL NsKlyDD ,...,1,,...,1),,(: ,  x  

End  
 

V.  IMPLEMENTATION AND EXPERIMENTS 

A.  Image Selection and Preprocessing 

The experiments were conducted on a geometric 

rectified Landsat TM image, which has a 30 meter by 30 

meter spatial resolution for six of its seven bands. The 

PCA did not use the thermal-infrared band 6 because of 

its much worse spatial resolution of 120 meter by 120 

meter. Fig. 4 shows the first PCA component image that 

consists of 4096 × 4096 pixels, covering the scene of 

middle Tennessee, USA. This image was then divided 

into 32 × 32 = 1024 regions of 128 × 128 pixels each.  

 

 
Fig.4. A Landsat TM image covering the scene of middle Tennessee 

(first PCA component). 

For Landsat TM images, smaller region size may not 

cover sufficient spatial/texture information to characterize 

land use types, while a large region size may involve too 

much information from other types. 

B.  Feature Vector Construction and Clustering 

The Gabor wavelet feature vectors were computed 

using a C++ Dynamic Link Library (DLL) and imported 

to the optimized k-means clustering application 

developed with C# .NET. The filter parameters for Gabor 

wavelet were S = 3, and K = 4. The indices of the regions 

range from [0, 0] to [31, 31] for a total of 1024 regions.  

 

 

 

 

 

 

 

The results of the optimized k-means clustering indicated 

the optimal number of clusters in the given image is 6. 

Fig. 5 shows the corresponding texture patterns identified 

by the clustering and labeled by a remote sensing domain 

expert.  

 

 

C.  Binary Classification in the Online Mode 

Based on the Image Classifier example of the 

Infer.NET [30], a binary BPM classifier running in the 

online mode was implemented to categorize only one of 

these texture patterns at a time. The experimental task for 

the binary classification was to find regions containing 

texture pattern of Water/Wetlands [31].
 

Fig. 6 demonstrates the classification process that 

involves user actions of dragging and dropping a region 

to the box for the corresponding class, which triggers an 

event handler to activate the training model of the binary 

BPM classifier. The rest of regions are categorized into 

two classes by the testing model of the BPM classifier. 

This classification process is animated by automatically 

moving a region to the side of the class it belongs to. 

How far to the left or right the region appears is a 

measure of the degree to which the binary BPM classifier 

believes it belongs to that class. It can be observed that 

more regions with Water/Wetlands are aligned to the left 

given more training images, and in the end, the majority 

of Water/Wetlands regions are correctly classified. 

The binary BPM classification application has 

indicated the potential of the BPM classifier via an 

interactive visual presentation. However, quantitative 

measurements are desired according to the characteristics 

and size of the training and testing image set, as well as 

the classification accuracy [31], which is reported in the 

next section based on the experiments of the multi-class 

BPM classification. 

 

 

 

 

 

 

 

                
Deciduous/Evergreen        Raw Crops/Fallow        Residential/Industrial 

            Forest  

                
Grasslands/Herbaceous       Water/Wetlands                Pasture/Forest 

Fig.5. Texture patterns identified by the optimized k-means clustering. 

 

Fig. 2. Note how the caption is centered in the column. 
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Fig.6. An example of training and testing of the binary BPM classifier. 

D.  Multi-class Classification in the Batch Mode 

The multi-class classification was designed to run in 

the batch mode which takes a set of training images for 

the BPM classifier. Table 1 shows the total number of 

images labeled for each class based on the nearest 

neighbors of the cluster centers.  

Table 1. Number of Images Labeled for Each Texture Class 

Texture Class Number of Images labeled 

Deciduous/Evergreen Forest (D/EF) 150          

Raw Crops/Fallow (RC/F) 110 

Residential/Industrial (R/I) 130 

Grasslands/Herbaceous (G/H) 110 

Water/Wetlands (W/W) 80 

Pasture/Forest (P/F) 120 

 

Training image selection was done through an 

interactive user interface that allows the remote sensing 

domain experts to build a list of feature vectors with the 

associated regions (See Fig. 7). In addition, it offers a 

preview picture box to display the region when the user 

clicks on the file name in the list box. The testing results 

using 5-fold cross validation and 10-fold cross validation 

are presented in the following section. 

 

 

Fig.7. Training image selection for multi-class BPM classification. 

 

VI.  RESULTS 

A.  Classification Accuracy 

Fig. 8 (a) demonstrates classification accuracy of each 

partition using 5-fold cross validation while Fig. 8 (b) 

shows classification accuracy of each partition using 10-

fold cross validation. It can be observed that the accuracy 

of Grasslands/Herbaceous (G/H) texture class is most 

consistent in each partition, while the accuracy of 

Water/Wetlands (W/W) texture class varies most 

significantly. 

Meanwhile, the consistency of average classification 

accuracy of each texture class over all the partitions using 

5-fold cross validation and 10-fold cross validation (see 

Fig. 9) indicates the effectiveness and robustness of the 

BPM classifier in multi-class classification. 
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Fig.8. (a) Classification accuracy using 5-fold cross validation.  

 

Fig.8. (b) Classification accuracy using 10-fold cross validation. 

 

Fig.9. Average accuracy using 5-fold and 10-fold cross validation. 

B.  Comparing the BPM classifier with the SVM classifier 

Additionally, using the same set of training and testing 

data, Fig. 10 (a) and (b) indicate the average accuracy of 

the BPM classifier compared with that of the SVM 

classifier implemented using LIBSVM [32] with 5-fold 

and 10-fold cross validation respectively. Overall, the 

BPM classifier achieved better results than the SVM 

classifier for all the classes except for Water/Wetlands, 

which is in line with the study that SVM is an 

approximation to and theoretically less accurate than 

BPM [15, 29].  

 

Fig.10. (a) BPM vs. SVM using 5-fold cross validation. 

 

Fig.10. (b) BPM vs. SVM using 10-fold cross validation. 

The limited data size of the Water/Wetlands texture 

pattern may have caused the relatively low classification 

accuracy and led to this inconsistent performance. 

Meanwhile, the parameters of BPM and SVM classifiers 

were chosen based on the successful experience of 

previous studies [8, 31], which can be further adjusted 

and optimized. 

 

VII.  CONCLUSION 

This study proposes a new approach for representing 

and extracting the texture features in remotely sensed 

images using PCA and Gabor Wavelets, and categorizing 

the texture patterns based on the BPM classifier and the 

adapted k-means clustering with estimated number of 

clusters and optimized initial starting centers. In 

particular, the training and testing data for the multi-class 

BPM classifier are obtained from the nearest neighbors of 

the cluster centers generated by the optimized k-means 

clustering, a unique process that may help the domain 

experts to select the texture patterns of interest and the 

corresponding training and testing regions in a large 

collection of images. The BPM classifier, when running 

in the online mode, provides the user an interactive 

visualization tool for binary classification. The 

experimental results of the multi-class BPM classifier 
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running in the batch mode indicate overall good 

performance compared with the SVM classifier. 

Our future work includes (1) create a database for 

better support of image selection and organization, (2) 

apply the proposed texture feature classification method 

to other types of satellite images, and (3) implement the 

algorithms in a parallel computing environment using F# 

programming language so that it scales well on larger set 

of images. 
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