
I.J. Image, Graphics and Signal Processing, 2015, 10, 11-18
Published Online September 2015 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijigsp.2015.10.02

Copyright © 2015 MECS I.J. Image, Graphics and Signal Processing, 2015, 10, 11-18

A Compressed Representation of Mid-Crack

Code with Huffman Code

Sohag Kabir
Department of Computer Science, University of Hull, Hull, UK

E-mail: s.kabir@hull.ac.uk

Abstract—Contour representation of binary object is

increasingly used in image processing and pattern

recognition. Chain code and crack code are popular

methods of contour encoding. However, by using these

methods, an accurate estimate of geometric features like

area and perimeter of objects are difficult to obtain. Mid-

crack code, another contour encoding method, can help to

obtain more accurate estimate of the geometric features

of objects. Though a considerable amount of reduction of

the size of images is obtained by fixed-length mid-crack

code, yet, more efficient encoding is possible by

considering and applying variable-length encoding

technique. In this paper, a compressed mid-crack code is

proposed based on the Huffman code. Experiments

performed on different images yield that the proposed

representation reduces the number of bits require to

encode the contour of an image with compared to the

classical mid-crack code.

Index Terms—Image Processing, Mid-crack Code,

Huffman Code, Image Compression, Image

Communication, Pattern Recognition, Contour Coding.

I. INTRODUCTION

Most computer vision applications that are designed

for automated inspection or recognition of objects require

extraction of the contour of the boundary of objects in the

recognition phase. Many applications also require to

measure different geometric features of objects like

perimeter and area. Different encoding algorithms are

available for contour tracing of binary objects and their

encoding efficiency is very important in representing,

recognizing, storing, analysing, and transmitting the

shape of the objects.

 Chain codes are widely used contour tracing algorithm

in image processing and pattern recognition applications.

In 1961, Freeman introduced the method for representing

the boundaries of digital curves using chain code [1]. An

adaptive algorithm for converting the quad tree

representation of binary image to its chain code

representation was presented in [2] and a way of

computing local symmetry of the contour of an object

from its chain code representation was shown in [3]. The

chain code moves from the centre of a pixel to the centre

of the adjacent pixel along the boundary of the objects

following the eight-connected rule. As the classical chain

codes are fixed-length code, in the eight-direction

version, the directions are encoded using a numbering

scheme using 3-bit numbers as that is

denoting a counter-clockwise angle of with

respect to the positive x-axis, as shown in Fig.1(a). If the

chain code is employed to compute the perimeter and the

area of an object, then it either underestimates or

overestimates the values. As seen in Fig.2 the outer chain

code appears to overestimate whereas the inner chain

code underestimates the area and perimeter of the object.

(a) Freeman Chain Code (b) Crack Code

(c) Mid-crack code on the
vertical crack

(d) Mid-crack code on the
horizontal crack

Fig.1. Contour Coding Schemes: Chain Code, Crack Code, and Mid-
Crack Code [4]

A second contour encoding scheme, crack code, can

accurately estimate the area of an object. It is also a

fixed-length encoding scheme and defines four directions

using a 2-bit numbering scheme as to

denote a counter-clockwise angle of with respect

to the positive x-axis (see Fig.1(b)). In this scheme, the

contour is formed by traversing the outer edge of the

pixels along the boundary of the objects. Dunkelberger

and Mitchell [5]; and Wilson and Batchelor [6] had

provided a detailed description of the crack coding

scheme. Although, this scheme accurately calculates the

area of an object, major drawbacks of this scheme are that

it generates much more code with compared to the chain

12 A Compressed Representation of Mid-Crack Code with Huffman Code

Copyright © 2015 MECS I.J. Image, Graphics and Signal Processing, 2015, 10, 11-18

code and overestimates the perimeter of the object.

Fig.2. Silhouette with the Inside and Outside Chain Coded Contours
(Dashed Lines) and the Crack Coded Contour (Solid Line) [7]

A third scheme, the mid-crack code [5], was

introduced to overcome the limitation of the chain code

and the crack code in computing area and perimeter of

objects. It is a variation and an improvement of classical

contour tracing approaches between crack code and chain

code. In contrast to the chain and the crack code, it moves

along the midpoint of the outer edge of the pixels along

the boundary of the objects. Mid-crack code also defines

eight directions (counter-clockwise) with respect to the

positive x-axis using a 3-bit numbering scheme.

However, it requires more moves in mid-crack code than

the chain code to represent the same object. Although, all

the contour tracing methods reduce the size of the objects

(in terms of the amount of information requires to

represent the object) but none of them are developed to

produce efficient coding to minimise the number of bits

require to encode the shape of an object. Though the

angle differences between two adjacent pixels are not

equally probable, i.e., frequencies of moves in different

directions are not the same, all the above mentioned

methods do not take the frequencies of moves in different

directions into account while assigning codes. Rather,

they use fixed-length codes (2 or 3 bits) to denote

different directions irrespective of their occurrence

frequencies. But encoding moves in different directions

with predefined fixed-length codes does not attain an

optimum performance as every move consumes an equal

number of bits. A variable-length encoding scheme can

help to increase the compression performance.

Huffman code [8] is a variable-length encoding scheme

that takes the frequency of occurrence of characters into

account and assigns variable length codes to characters,

and thus represents a message with fewer number of bits.

By utilising the compression performance of the Huffman

code, the chain code has been modified by Liu and Zalik

[9]. However, no attempts have been made to increase the

compression efficiency of the mid-crack code. In this

paper, a new representation of the mid-crack code is

proposed based on the Huffman code without altering the

basic structure of the mid-crack code. Experimental

results suggest that the new representation contributes

towards improved compression performance of the mid-

crack code.

The rest of the paper is organized as follows: Section II

presents the background study of the mid-crack code, the

Huffman code and the related works. The new

compressed representation of the mid-crack code using

the classical Huffman code is shown in Section III.

Experimental results and discussion are presented in

Section IV. Finally, concluding remarks are presented in

Section V.

II. BACKGROUND STUDY AND RELATED WORKS

A. Mid-Crack Code

Mid-crack code defines eight directions using a 3-bit

numbering scheme as shown in Fig.1 (c) and Fig.1 (d). In

mid-crack code, moves are defined from the midpoint of

one crack to the midpoint of an adjacent crack [4]. The

length of horizontal and vertical (even valued) moves is

1, and diagonal moves (odd valued) have length

√
.

Unlike the chain and the crack code there are two

restrictions on the moves in the mid-crack code. Moves in

directions denoted by 2 and 6 are not allowed from the

horizontal crack, and moves in direction denoted by 0 and

4 are not allowed from the vertical crack (see Fig.1 (d)

and 1 (c)). A mid-crack coding scheme is described by

Shih and Wong in [10]. A thinning algorithm for binary

objects based on the mid-crack code is shown in [11].

(a) Chain Code (b) Mid-crack code

Fig.3. Comparison Between Chain Code and Mid-Crack Code [4]

It is mentioned earlier that the mid-crack code has

higher accuracy over the chain and the crack code in

estimating perimeter and area of objects. The superiority

of mid-crack code in computing perimeter and area was

experimentally verified in [5]. A common property of the

chain code and the mid-crack is that both the techniques

use a fixed-length encoding scheme. However, one

disadvantage of mid-crack code, as seen in Fig.3 (b), is

that it takes more moves with compared to the chain code

to encode the boundary of an object. As all the contour

coding techniques uses fixed-length encoding schemes,

they do not attain an optimum performance because every

move consumes an equal number of bits irrespective of

their occurrence frequencies. A variable-length encoding

scheme that can take the frequency of occurrence of

distinct move into account to assign code can be

employed to increase the compression efficiency of the

contour encoding schemes. A significant number of

https://d.docs.live.net/4d50dedddd5c6eb3/Paper%20to%20Publish/IJIGSP%20Midcrack%20code%20and%20Huffman%20code/elsarticle-template-STAFF-CO39062.rtf#page4
https://d.docs.live.net/4d50dedddd5c6eb3/Paper%20to%20Publish/IJIGSP%20Midcrack%20code%20and%20Huffman%20code/elsarticle-template-STAFF-CO39062.rtf#page4

 A Compressed Representation of Mid-Crack Code with Huffman Code 13

Copyright © 2015 MECS I.J. Image, Graphics and Signal Processing, 2015, 10, 11-18

researchers like [9], [12]–[15] have performed a

considerable amount of research to improve the

compression performance of the chain code. However, to

the knowledge of the author, so far no attempt has been

made to encode the mid-crack code with a variable-length

coding scheme to have a better compression performance.

B. Huffman Code

In computer science and information theory, Huffman

code is an entropy encoding algorithm used for lossless

data compression. It takes into account the probabilities at

which different symbols are likely to occur and results in

fewer data bits on the average. For any given set of

symbols and associated occurrence probabilities, there is

an optimal encoding rule that minimizes the number of

bits needed to represent the source. Encoding symbols in

predefined fixed-length code does not attain an optimum

performance, because every character consumes an equal

number of bits irrespective of their degree of contribution

to the whole message. Huffman code tackles this by

generating variable length codes, given a probability

usage frequency for a set of symbols. It generates prefix-

code, i.e., none of the code is a prefix of any other code,

to facilitate unambiguous retrieval of information.

Applications of Huffman code are pervasive

throughout computer science. The algorithm to

completely perform Huffman encoding and decoding is

explained in [16]. It can be used effectively where there is

a need for a compact code to represent a long series of a

relatively small number of distinct bytes. For example,

Table 1 shows 8 different ASCII characters, their

frequencies, ASCII codes and the codewords generated

for those symbols using the Huffman code. It is seen

from the table that the codeword to represent each

character is compressed and the most frequent character

gets the shortest code. In this example, the compression

ratio obtained by Huffman code is 64.16%.

Table 1. Example of application of Huffman code to Compress ASCII

Characters

Symbols Frequency ASCII Code
Codewords using

Huffman code

A 50 01000001 00

B 35 01000010 101

C 42 01000011 110

D 22 01000100 1001

E 65 01000101 01

F 25 01000110 1111

G 9 01000111 1000

H 23 01001000 1110

It is believed that the mid-crack code can also be

compressed using the Huffman code. But an interesting

thing to notice that the codewords in the mid-crack code

are already well-compressed with compared to the ASCII

codes because there are only 8 different moves possible

in mid-crack code hence the moves are represented with

3-bit codes (not a byte). Therefore, application of

Huffman code to represent the mid-crack code can help to

compress it further in most of the cases, however, a much

lower compression ratio is expected in this case because

of the limited compression scope. Another important

thing to keep in mind that if the characters that are

required to be encoded using Huffman code are equally

occurring in the input message then further compression

of those characters are not possible.

C. Related Works

Different approaches like chain code, crack code and

mid-crack code are used to encode the contour of digital

images. All the approaches are developed with an aim to

reduce the amount of information to represent an object.

However, all of them use fixed-length encoding schemes

to represent the angle difference between two adjacent

pixels along the border of an image, hence, they do not

obtain a maximum compression performance. The

applicability of the variable-length encoding schemes to

improve the compression efficiency of the contour

encoding schemes has not gone unnoticed. Specially, for

the chain code, several efforts have been made to apply

variable length encoding schemes to encode the angle

difference between the border pixels of images. In [9], a

new variation of the Freeman chain coding scheme has

been proposed based on the Huffman code. Authors in [9]

showed that the probability of relative angle difference

between two border pixels of an image in different

directions are not the same, hence, they decided to use

variable-length code instead of fixed-length code to

encode the moves in different directions. The authors

used the classical Huffman code to generate variable-

length codewords based on the occurrence frequencies of

moves in different directions.

In [15], two different variable-length versions of the

vertex chain code [17] have been proposed. In the

original version of the vertex chain code, only three

elements (1, 2, and 3) are used to encode an image, hence

two bits fixed length codes (01, 10, and 11) are used to

denote the three elements. The authors in [15] showed

that the occurrence probability of element 2 is greater

than the other two, therefore they used binary digit 0 to

denote code 2, 10 for code 1 and 11 for code 3. This

extension of the vertex chain code is named as the

variable-length vertex chain code. In the second

extension of the vertex chain code, the authors introduce

five codes instead of three codes of the original vertex

chain code to encode the contour of an object. Afterwards,

they have shown experimentally that the five different

codes are not equiprobable, thus variable-length codes are

used to denote five different codes. Similar to the

approach presented in [9], this approach also used the

Huffman code to generate the variable-length codes.

Recently, in [14], a new variable-length version of the

chain code has been proposed. The approach is proposed

by treating binary bits unequally. The authors considered

the costs of binary bits as unequal similar to that of the

Morse code where a dash (−) is three times longer than a

dot (·) in duration. Based on the occurrence frequency of

the moves in different directions, the approach generates

the variable-length codewords to denote the moves using

Huffman code with unequal letter cost algorithm [18].

14 A Compressed Representation of Mid-Crack Code with Huffman Code

Copyright © 2015 MECS I.J. Image, Graphics and Signal Processing, 2015, 10, 11-18

III. COMPRESSED REPRESNTATION OF MID-CRACK CODE

WITH HUFFMAN CODE

The mid-crack code assigns 3-bit codes to denote

moves in different directions, i.e., ignores the probability

of occurrence of a certain move in the sequences of

moves. As the moves in different directions are not

equiprobable, it is worth trying to have a compressed

representation of these codes. The new representation of

the mid-crack code is proposed by taking the frequency

of moves in different directions into account to assign the

codewords to denote different directions. The idea is to

assign a variable length code to denote 8 different

directions and the assignment is performed in a way that

the shortest code is assigned to the most frequent moves

and vice versa.

The uniquely decodable variable-length codes to

denote different moves in the mid-crack code is obtained

by using the Huffman code technique. The process is

shown in Fig.4. In the first step, the input image is

provided to the mid-crack code generator block. The mid-

crack code generator obtains the mid-crack code

representation of the contour of the image using existing

mid-crack code generation algorithm. In addition to the

coordinate of the starting pixel of the mid-crack code and

the code itself, i.e., sequences of moves, this block also

counts the number of moves in different distinct

directions. The number of moves in different directions

along with the moves themselves is then fed to the

Huffman code generator. It treats each move as a distinct

symbol and the number of occurrences of each move in

the mid-crack code as their frequency. Based on these

data and using the Huffman code algorithm, the variable

length codeword is generated for each move. In the next

step, the codewords are assigned to their respective

moves to have a new representation of the moves in the

mid-crack code. In the new representation, moves are

denoted using variable length codewords, but as

mentioned earlier the sequences of moves in the mid-

crack codes are not altered. In this way a compressed

representation of the mid-crack code is obtained.

Fig.4. Process of Producing Compressed Mid-Crack Code

The process is illustrated by applying it to an example

image, shown in Fig.5. Table 2 shows the frequencies of

angle difference between two adjacent moves in the mid-

crack code representing the contour of the example image

and the codewords assigned by the classical mid-crack

code and the new representation. For this particular image,

the most frequent move is in 180° and the least frequent is

in 270° angle. Therefore, the new representation assigns

the shortest code (01) to represent a move in 180° and the

longest code (11110) to represent a move in 270°. To

encode the contour of the plane image, the mid-crack code

takes 4332 bits, on the other hand, the new compressed

representation of the mid-crack code takes 4098 bits. As a

result, the compression ratio obtained by the new

representation is 5.402%.

Fig.5. An Example Image

Table 2. Frequency of Moves in Different Angles and the Code words

Assigned by the Mid-Crack code And the Compressed Mid-Crack code

Angle

Change
Frequency

Mid-crack

Code

Compressed

Mid-crack code

0° 298 000 00

45° 205 001 110

90° 84 010 11111

135° 107 011 1110

180° 329 100 01

225° 199 101 101

270° 59 110 11110

315° 163 111 100

Total Bits=

4332
Total Bits= 4098

IV. RESULTS AND DISCUSSION

A variable-length scheme is considerably better than a

fixed-length scheme, as the variable-length scheme

assigns shorter codewords to frequent symbols and longer

codewords to infrequent ones. To evaluate the

performance of the new compressed representation of the

mid-crack code, experiments were performed on 100

images of arbitrary shapes. Fig.6 shows sixteen of the test

images. For each of those images, mid-crack code was

generated and variable-length codewords were generated

by compressed mid-crack code focusing on bit reduction.

Bits required by the classical mid-crack code and the

 A Compressed Representation of Mid-Crack Code with Huffman Code 15

Copyright © 2015 MECS I.J. Image, Graphics and Signal Processing, 2015, 10, 11-18

compressed mid-crack code to encode the contour of the

images of Fig.6 along with the compression performance

for each of those images are shown in Fig.7. As mid-

crack code assigns fixed-length code to define moves in

different directions, the number of bits required by this

method is proportional to the total number of moves

required to encode the contour of an object. So, from

Fig.7, it is seen that the maximum number of moves is

required to encode the horse image (Fig.6 (n)) and the

minimum number of moves is required for the shark

image (Fig.6 (k)).

The experimental results for all 100 images are shown

in Fig.8 and Table 3. Fig.8 shows the comparison

between the mid-crack code and the new representation

of the mid-crack code in terms of bits required to

represent the contour of objects. As seen in the figure, for

most of the images, the new representation takes the

fewest number of bits to represent the contour of the

objects. Out of the 100 images only for 6 images, both

the representations of the mid-crack code takes an equal

number of bits, i.e., no compression is obtained. For other

images the experiments suggest that the new

representation reduces the numbers of bits by 1.29% in

the worst case scenario; in the best case it reduces the

number of bits by 23.12%; and on average it reduces the

number of bits by 4.48%.

As the images were of different dimensions and shapes,

a varied number of total moves in different directions were

required to represent the shape of the images. A varying

trend is seen in the percentage of moves in each of the

eight directions with the varying number of total moves

(see Table 3). As seen from Table 3, the best average

compression performance is obtained for those images for

which the total number of moves in the mid-crack codes

are in between 1301 to 1700, whereas the least average

compression performance is obtained for the images

having the total number of moves in the range between

1701 and 2100. It is also seen from Fig.7 that the

maximum compression performance is obtained for the

fighter jet image (Fig.6 (g)) although it does not have the

maximum number of moves and the least compression is

obtained for the crab image (Fig.6 (p)) although it has a

second maximum number of moves. Therefore, by

observing the trends of compression performance from

Fig.7 and Table 3, it can be said that the compression

performance is not dependent on the total number of

moves, rather it depends on the shapes of the images, i.e.,

the relative angle difference between the border pixels of

the images. If the mid-crack code of the contour of an

image is dominated by the moves in some certain

directions, then due to the nature of the Huffman code a

better compression performance is obtained. Because, in

such situations, moves in some special directions are most

frequent therefore they are given the shortest length code,

and thus they contribute a relatively less number of bits

with compared to the least frequent moves. If the mid-

crack code of an image contains equal number of moves in

all eight directions or the entropy of the frequencies of the

moves in the different directions are very much closer to 3,

then no further compression of the mid-crack code is

possible. For this reason, no compression was obtained

for 6 images.

Table 3. Trends of Moves in Different Directions and Compression Performance of the New Representation for Images with Different Ranges of

Moves

Ranges of

moves

Average Percentage of moves in different angles
Average

Compressio

n Ratio (%)
0° 45° 90° 135° 180° 225° 270° 315°

101-500 10.79 9.58 15.01 13.94 10.71 11.10 13.56 15.31 3.37

501-900 10.61 13.26 13.81 12.94 10.54 12.15 14.99 11.70 3.68

901-1300 12.69 11.76 12.03 13.07 13.70 10.65 12.13 13.97 4.44

1301-1700 12.72 12.99 12.49 11.14 13.67 12.41 12.12 12.46 5.16

1701-2100 8.62 11.67 14.53 15.45 8.55 11.27 15.00 14.91 3.03

2100-above 8.89 15.43 13.67 13.28 7.60 15.49 14.89 10.75 4.03

16 A Compressed Representation of Mid-Crack Code with Huffman Code

Copyright © 2015 MECS I.J. Image, Graphics and Signal Processing, 2015, 10, 11-18

(a) Butterfly (b) Plane (c) Man

(d) Ostrich (e) Cow

(f) Deer

(g) Fighter Jet (h) Palace (i) Bird

(j) Tank (k) Shark (l) Banana

(m) Helicopter (n) Horse (o) Rat

 (p) Crab

Fig.6. Sixteen Test Images

 A Compressed Representation of Mid-Crack Code with Huffman Code 17

Copyright © 2015 MECS I.J. Image, Graphics and Signal Processing, 2015, 10, 11-18

Fig.7. Comparison of Performance between Mid-Crack Code and Compressed Mid-Crack Code For Sixteen Test Images

Fig.8. Comparison of Performance between Mid-Crack Code and Compressed Mid-Crack Code For 100 Test Images

V. CONCLUSION

The encoding efficiency to represent the shapes of

objects is very important in digital object recognition and

analysis. Mid-crack code is an efficient lossless

compression method for representing the contours of

binary objects. It has higher accuracy over other contour

encoding approaches in calculating perimeter and area

from the contour representation of the objects. By

encoding moves in different angles using predefined

fixed-length codewords, the mid-crack code does not

attain an optimum performance in terms of compression,

because every symbol consumes an equal number of bits.

Statistical analysis shows that the moves in different

directions in the mid-crack code are not equiprobable,

therefore variable-length codes are selected as a potential

solution to increase the compression performance of the

mid-crack code. In this paper, Huffman code is used as

the method to obtain the new representation of the mid-

crack code. The comparison of bits requirements between

the classical and the new representation of the mid-crack

code confirms that the new representation requires a

fewer number of bits than the classical approach to

represent the contour of the objects. At present, bit

consumption is taken into account to compress the mid-

crack code. In future, transmission cost of bits can be

considered to obtain a low power version of the mid-

crack code for high performance data transmission.

REFERENCES

[1] H. Freeman, ―On the Encoding of Arbitrary Geometric

Configurations,‖ IRE Trans. Electron. Comput., vol. EC-

10, no. 2, pp. 260–268, 1961.

[2] F. Y. Shih and W.-T. Wong, ―An adaptive algorithm for

conversion from quadtree to chain codes,‖ Pattern

Recognit., vol. 34, no. 3, pp. 631–639, 2001.

18 A Compressed Representation of Mid-Crack Code with Huffman Code

Copyright © 2015 MECS I.J. Image, Graphics and Signal Processing, 2015, 10, 11-18

[3] F. Y. Shih and W.-T. Wong, ―A one-pass algorithm for

local symmetry of contours from chain codes,‖ Pattern

Recognit., vol. 32, no. 7, pp. 1203–1210, 1999.

[4] G. R. Wilson, ―Properties of contour codes,‖ IEE Proc.

Vision, Image Signal Process., vol. 144, no. 3, pp. 145–

149, Jun. 1997.

[5] K. Dunkelberger and O. R. Mitchell, ―Contour tracing for

precision measurement,‖ in Proceedings of International

Conference on Robotics and Automation, 1985, vol. 2, pp.

22–27.

[6] G. R. Wilson and B. G. Batchelor, ―Algorithm for

forming relationships between objects in a scene,‖ IEEE

Proc. Comput. Digit. Tech., vol. 137, no. 2, pp. 151–153,

Mar. 1990.

[7] W.-T. Wong, ―Parallelization for image processing

algorithms based chain and mid-crack codes,‖ New Jersey

Institute of Technology, 1999.

[8] D. A. Huffman, ―A Method for the Construction of

Minimum-Redundancy Codes,‖ Proc. Inst. Radio Eng.,

vol. 40, no. 9, pp. 1098–1101, Sep. 1952.

[9] Y. K. Liu and B. Žalik, ―An efficient chain code with

Huffman coding,‖ Pattern Recognit., vol. 38, no. 4, pp.

553–557, 2005.

[10] F. Y. Shih and W.-T. Wong, ―A new single-pass

algorithm for extracting the mid-crack codes of multiple

regions,‖ J. Vis. Commun. Image Represent., vol. 3, no. 1,

pp. 217–224, Mar. 1992.

[11] F. Y. Shih and W.-T. Wong, ―A new safe-point thinning

algorithm based on the mid-crack code tracing,‖ IEEE

Trans. Syst. Man Cybern., vol. 25, no. 2, pp. 370–378,

Feb. 1995.

[12] Y.-K. Liu, B. Žalik, P. Wang, and D. Podgorelec,

―Directional difference chain codes with quasi-lossless

compression and run-length encoding,‖ Signal Process.

Image Commun., vol. 27, no. 9, pp. 973–984, 2012.

[13] B. Žalik and N. Lukač, ―Chain code lossless compression

using move-to-front transform and adaptive run-length

encoding,‖ Signal Process. Image Commun., vol. 29, no.

1, pp. 96–106, 2014.

[14] S. Kabir, T. Azad, and A. S. M. A. Alam, ―Freeman

Chain Code with Digits of Unequal Cost,‖ in The 8th

International Conference on Software, Knowledge,

Information Management and Applications (SKIMA),

2014, pp. 1–6.

[15] Y. K. Liu, W. Wei, P. J. Wang, and B. Žalik,

―Compressed vertex chain codes,‖ Pattern Recognit., vol.

40, no. 11, pp. 2908–2913, 2007.

[16] J. Amsterdam, ―Data compression with Huffman coding,‖

BYTE, vol. 11, no. 5, pp. 98–108, 1986.

[17] E. Bribiesca, ―A new chain code,‖ Pattern Recognit., vol.

32, no. 2, pp. 235–251, 1999.

[18] S. Kabir, T. Azad, A. S. M. A. Alam, and M. Kaykobad,

―Effects of Unequal Bit Costs on Classical Huffman

Codes,‖ in The 17th International Conference on

Computer and Information Technology (ICCIT), 2014, pp.

96–101.

Authors’ Profiles

Sohag Kabir is a postgraduate research

student in Department of Computer

Science, University of Hull, UK. He

received his MSc degree in Embedded

Systems from University of Hull, UK in

2012 and BSc degree in Computer

Science and Engineering from Military

Institute of Science and Technology

(MIST), Dhaka, Bangladesh in 2010. His

research interests include embedded systems, parallel

computing, information theory, image processing, model-based

safety assessment, and probabilistic risk and safety analysis.

How to cite this paper: Sohag Kabir,"A Compressed Representation of Mid-Crack Code with Huffman Code", IJIGSP,

vol.7, no.10, pp.11-18, 2015.DOI: 10.5815/ijigsp.2015.10.02

