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Abstract—The Block-Matching (BM) method for motion 

estimation in most video coding is largely discussed in 

the case of perspective images. The omnidirectional 

cameras provide images with large field of view. These 

images contain global information about motion and 

permit to remove the ambiguity present with little camera 

motion in perspective case. Nevertheless, these images 

contain significant radial distortions.  The Block-

Matching in these catadioptric images is not a resolved 

problem, and still a challenging research field. A 

rectangular block representing the neighborhood in BM 

of a point and used in the perspective images is not 

appropriate for catadioptric cameras. The work presented 

in this article concerns the local motion estimation in 

catadioptric videos with the Adapted Block-Matching 

(ABM). The ABM based on an adapted neighborhood, 

the local motion estimation allows successful 

compensation prediction in catadioptric images. The 

Adapted Block-Matching is obtained from the 

equivalence between the omnidirectional image and the 

projection of scene points on a unit sphere. 

 

Index Terms—Catadioptric images, adapted 

neighborhood, motion estimation, Adapted Block-

Matching. 

 

I.  INTRODUCTION 

Block-Matching methods are the most used in practice 

for motion estimation [1], [2]. They are found in almost 

all Modern video coding standards (H.261, MPEG-1, 

MPEG-2-4…). In the methods of the Block- Matching, 

two rectangular blocks are mapped according to the 

information distribution of their pixels. 

The omnidirectional image has a non-homogeneous 

resolution. A rectangular block representing the 

neighborhood in BM of a point used in perspective 

images is not appropriate for catadioptric cameras. The 

Block-Matching method cannot be applied directly on 

catadioptric images because it necessarily leads to errors. 

Some authors seek to adapt the classical methods (applied  

to perspective images) in the omnidirectional images, by 

seeking the adequate neighborhoods [9], [10]. Tosic et al 

[3] and Bogdanova et al [4] propose to use Block-

Matching method in terms of spherical coordinates. The 

omnidirectional image is projected on the sphere of 

equivalence and the Spherical Block Matching (SBM) is 

developed to estimate motion in catadioptric sequences. 

To estimate the motion, the algorithm simply puts in 

correspondence two solid angles between two spherical 

images. Other researchers have also used Spherical Block 

Matching in catadioptric videos compression application 

[5], [6]. For example, in article [6] the authors used the 

Spherical Block Matching in loop motion compensation 

in the Slepian-Wolf decoder. The correlation between 

images is then assessed by estimating the motion between 

the two spherical images.  

Because of interpolation noise introduced by the 

projection on the sphere some authors have underlined 

the incompatibility of treatments on the sphere (see for 

example [7], [8] and [9]). The objective of this paper is 

therefore to propose a direct adaptation of the classical 

Block-Matching in the omnidirectional images from the 

definition of a neighborhood system taking distortions 

into account. The remainder of this paper is organized as 

follows: in section 2, we present classical Block-

Matching. In section 3 the catadioptric vision and the 

equivalence projection are presented. Section 4 describes, 

our approach to estimate motion using the Block-

Matching with appropriate neighborhood. In section 5, 

the experimental evaluation is given and comparative 

measurements are discussed. 

 

II.  CLASSICAL BLOCK-MATCHING  

Classical Block-Matching computes the optical flow 

on pixel p(x,y) considering that the motion is constant in a 

fixed rectangular neighborhood. Two blocks B(x,y,t) and 

B’(x,y,t+1) are correlated according to the information 

distribution of their pixels in two successive images 

I(x,y,t) and I(x,y,t+1). Let us note V= (vx, vy) the vector 

parameters of motion, B  and B’ the rectangular  
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neighborhood of the point in position p(x,y) in successive 

images and W(x,y) the search window as depicted in  Fig. 

1. 

The Block-Matching method consists to estimate 

velocity vector V(x,y) at the neighborhood B(x,y) in 

search window W(x,y), generally the best candidate block 

is selected  with the minimum SAD error (1): 

 

( , )
,

arg min( , ) ( , , ) ' ( , , 1)    
x y

x y
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v v
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



 Fig. 1.Classical Block Matching 

 

III.  CATADIOPTRIC VISION 

Catadioptric vision consists in associating a convex 

mirror with a camera whose optical axis is coincident 

with the axis of revolution of the mirror. Many authors 

have studied in their works equivalence between a 

catadioptric projection and stereographic projection [10, 

11]. 

Geyer and Daniilidis have introduced a unifying theory 

for all central catadioptric sensors [11]. They proved that 

central catadioptric projection is equivalent to a central 

projection on a virtual sphere followed by projection 

from the sphere to the retina. This second projection 

depends on the shape of the mirror. 

 

 

Fig. 2.Equivalence between the catadioptric projection and the two-

step mapping via the unit sphere 

Firstly the 3D point is projected in sphere from the 

center of sphere “O”; the second step consists in 

projecting point Ps on the sphere to the image plane from 

point “N” placed on the optical axis (Fig. 2). These 

projection points are obtained by calibrating the sensor. 

Let (Xs,Ys,Zs), Cartesian coordinate’s point Ps and (θ, φ) 

the equivalent spherical coordinates. 
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With φ   [0, 2π [, longitude angle and θ   [0, π/2], 

latitude angle, the stereographic projection of Ps on the 

image plane yields point Pi (x, y) given by: 
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By combining Equations (4) and (5) we obtain the 

spherical coordinates of point Pi(x (θ, φ), y (θ, φ)) 

 

cot cos
2

cot sin
2

x

y











 


                            (4) 

 

IV.  ADAPTED BLOCK-MATCHING 

A.  Proposed Neighborhood for catadioptric images 

In Demonceaux et al [7] the adapted neighborhood has 

been used for segmentation of omnidirectional images 

using Markov fields. The adapted neighbourhood is 

obtained from the equivalence between the 

omnidirectional image and the projection of scene points 

on a sphere as defined in Fig. 3. Radgui et al [8], [12] 

propose to use the spherical neighborhood in order to 

adapt the Lucas-Kanade method to estimate the optical 

flow in paracatadioptric images. The method proposed by 

Radgui et al [8], [12] allows a good estimate of the 

optical flow in the case of small displacements of the 

catadioptric camera. We propose, in this paper, to use the 

neighbourhood initially proposed in [7]. The adapted 

neighborhood noted ϑ  (x, y) at point (x,y), is defined as 

follows : 

 

,( , )i i x y i ix y d et d                  (5) 



 

Fig. 3.Adapted neighborhood in omnidirectional image 

Where θi and φi are the spherical coordinates of pixel 

(xi,yi). Constants dθ and dφ define the size of adapted 

neighborhood. In the proposed approach, (dθB, dφB) and 

(dθW, dφW) define respectively the size of block Bx,y and  

search window Wx,y. With the neighborhood in (5) block 

Bx,y and search window Wx,y depend on the position of 

pixels in the omnidirectional image as depicted in Fig. 3. 

In the following section, we describe the Block-Matching 

method which uses this kind of neighborhood.
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B.  Adapted neighborhood used in Block-Matching 

The Adapted Block-Matching puts in correspondence 

two adapted blocks between two successive 

omnidirectional images. Adapted search window Wx,y 

and adapted block Bx,y are obtained from equivalence 

between points of the omnidirectional image and points 

of equivalent sphere as depicted in Fig. 3. 

 

 

Fig. 4.Adapted Block Matching 

First, the Algorithm consists in projecting two 

successive omnidirectional images on the unit sphere by 

using inverse stereographic projection and in addition 

divide first spherical Image I(θ,φ,t) into uniform solid 

angles of size dθB× dφB that form blocks with a constant 

motion (See Fig. 5). The second step is to define the 

neighborhood Bx,y in omnidirectional image I(x,y,t) using 

stereographic projection as described in (6). The last step 

is to find best block B’x,y belonging in target adapted 

search window dθW×dφW on second omnidirectional 

image I(x,y,t+1)  as depicted in Fig. 4. 

 

  
(a) (b) 

Fig.5. Adapted Block in Omnidirectional Image 

(a) Reference Image (t)  (b) Dividing in no overlap blocks 

 

Adapted block of point p (xi,yi) noted Bx,y is defined as 

follows: 

 

,( , )i i x y i B i Bx y B d et d                 (6) 

 

Blocks Bx,y and B’x,y minimizing the well known Sum 

of Absolute Differences (SAD) are used to compute the 

motion vector (dx,dy) : 

 

,

, , , , 1( , ) '
x y

x y t x dx y dy t

W

SAD x y B B            (7) 

 

,

ˆ ˆ( , ) arg min( ( , ))
dx dy

dx dy SAD x y               (8) 

The adapted search window of point P (xi,yi) noted Wx,y 

is defined as follows: 
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Omnidirectional images I(x,y) are defined on 

, ( )L L L   squared grid and plotted with the spherical 

coordinate θ and φ by the equation of an equiangular grid 

defined as follows: 
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Algorithm: Adapted Block Matching (ABM) 
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Fig. 6.Adapted block with fixed value dφB=14°, dθB=11° and adapted 

search window with fixed value dφW=28°, dθW=25° on the sphere and 

their projection on the image plane. 

 

V.  EXPERIMENT SIMULATION AND RESULT ANALYSIS 

The sequences are obtained using a camera embedded 

on a mobile robot which is moving on a plan 

perpendicular to its optical axis. We consider that the 

camera is calibrated. In order to assess the proposed 

method, different types of motion are applied to the 

camera. The translation motion in axis-Y, rotation motion 

in axis-Z and the moving objects in the scene have been 

tested. We have chosen three types of sequences as 

follows: indoor sequence.1 (Fig. 7.a), with pure rotation of 

the camera, indoor sequence.2 (Fig. 7.b), with a fixed 

camera and moving objects in the scene and outdoor 

sequence.3 (Fig. 7.c), a camera placed on a moving car. 

The block sizes and search window used in the classical 

Block-Matching are (B=15x15 and W=41x41 for 

sequence.1), (B=13x13 and W=41x41 for sequence.2) and 

(B=11x11 and W=41x41 for sequence.3). The two 

delimiter angles in our Adapted Block-Matching are 

(dθB=6°, dφB=9°, and dθW=15°, dφW=27° for sequence.1), 

(dθB=5°, dφB=8°, and dθW=15°, dφW=27° for sequence.2) 

and (dθB=4°, dφB=7°, and dθW=15°, dφW=27° for 

sequence.3).  

To evaluate the performance of our method on three 

sequences, we use the PSNR (11) and MSSIM (13). The 

PSNR in Fig. 8, MSSIM in Table1 and Error Image are 

computed from the predicted and the Reference images. 

The predicted image is estimated by using estimated 

motion for each pixel in the Reference image. The results 

of both indoor and outdoor sequences are illustrated 

respectively in Figures: Fig. 9, Fig. 10 and Fig. 11. In all 

these sequences, the motion estimated by our proposed 

method allows an estimation of accurate motion field in 

various scenes and different kinds of camera motions.  

 

 The PSNR is expressed in the case of grayscale  

images by: 
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Where: N×N is the size of the image, I(x, y) represents 

the pixels of the reference image, Ï(x, y) is the predicted 

image obtained using the estimated vectors and the target 

image. 

 

 The Structural Similarity (SSIM) measure is 

calculated on various windows of an image. The 

measure between two windows x and y of common 

size N×N is calculated as: 
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Where, μx and μy represent the mean of windows x, and 

y. σx
2 and  σy

2 are the standard deviation; and C1 and C2 

are included to avoid instability when μx
2+μy

2 and σx
2+σy

2 

are very close to zero. The mean SSIM (MSSIM) is used 

to evaluate the overall quality: 
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Where, X and Y are the reference and the predicted 

images. xi and yi are the intensity at the local window; 

and M is the number of local windows of the image [13]. 

 

   

(a)  (b) 

 
(c) 

 

(a) Sequence.1: pure rotation camera (in Z-axis) 

(b) Sequence.2: fixed camera and moving object 

(c) Sequence.3: camera placed on a moving car (translation Y-axis) 

Fig. 7. The Omnidirectional Sequences  
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(a) 

 
(b) 

 
(c) 

 

(a) Sequence.1 was used with a frame distance of 3 

(b) Sequence.2 was used with a frame distance of 5 

(c) Sequence.3 was used with a frame distance of 2 

Fig. 8.PSNR performances of Block Matching Algorithms 

 

   

(a)  (b) 

   

(c)     (d) 

     

(e)  (f) 

   

(g)  (h) 

 

(a) Reference image (t)   (b) Target image (t+3) 

(c) Motion estimated (ABM) (d) Motion estimated (BM) 

(e) Predicted image (ABM) (f) Predicted image (BM) 

(g) Error image (ABM) (h) Error image (BM) 

Fig. 9.Moving camera in pure rotation  

 

   

(a)  (b) 

    

(c)  (d) 
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(e)  (f) 

  

(g)  (h) 

 

(a) Reference image (t) (b) Target image (t+5) 

(c) Motion estimated (ABM) (d) Motion estimated (BM) 

(e) Predicted image (ABM) (f) Predicted image (BM) 

(g) Error image (ABM) (h) Error image (BM) 

Fig. 10.Fixed camera and moving object 

 

   

(a)  (b) 

  

     

    (c)        (d) 

  

      (e)        (f) 

  

(g)  (h) 

 

(a) Reference image (t) (b) Target image (t+2) 

(c) Motion estimated (ABM) (d) Motion estimated (BM) 

(e) Predicted image (ABM) (f) Predicted image (BM) 

(g) Error image (ABM) (h) Error image (BM) 

Fig. 11.Moving camera in pure Translation (Y-axis)  

Table 1. Average of PSNR (db) and MSSIM of sequences used for 

verifying our motion model (ABM) 

Sequences Mesures  (Average)  BM ABM 

Sequence.1 
PSNR (db) 26.28 31.90 

MSSIM 0.902 0.973 

Sequence.2 
PSNR (db) 32.28 34.78 

MSSIM 0.979 0.990 

Sequence.3 
PSNR(db) 25.94 28.12 

MSSIM 0.896 0.949 

 

The mean PSNR and SSIM obtained from different 

sequences using the two implemented methods (BM) and 

(ABM) are indicated in Table 1. These results show that 

(BM) method is not appropriate in the case of 

omnidirectional images. The results obtained using our 

proposed method is superior to that obtained by classical 

methods. These results give the argument that methods 

dedicated to omnidirectional images are more robust and 

give more precise results. Finally, we can see that the 

measures are superior using approach with different 

camera motions. This means that the fixed support of 

neighborhood is not appropriate to omnidirectional images.  

 

VI.  CONCLUSION AND FUTURE WORK 

In this paper, we have proposed an adaptation of the 

Block Matching method in omnidirectional sequences 

using adapted blocks. The use of an adapted block instead 

of a rectangular block of fixed size improves the results of 
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estimating motion in omnidirectional sequences. The 

experimental results have shown the effectiveness of 

blocks that are appropriate for motion estimation in 

omnidirectional images. Our Block-Matching method 

(ABM) allows interesting results in the different 

movements of the catadioptric camera contrary to the 

results obtained with the classical Block-Matching method 

proposed on the perspective images. 

Indeed, in our various experiments, this method has 

enabled us to rebuild the various areas and contours in the 

predicted images and to reach PSNR and MSSIM of 

quality exceeding the results obtained with classical 

Block-Matching. 

To make our Adapted Block Matching method more 

robust, it is desirable to integrate and to integrate other 

Block Matching research strategies [14] [2]. Nonetheless 

improvements can be introduced to increase the rate 

calculated and a good estimate of the movement for 

example by applying the method in a multi-resolution 

arrangement which consists in performing as many 

motion estimates as levels of decomposition [15]. 
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