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Abstract—This paper solves the biomedical engineering 

problem of the extraction of complementary and/or 

additional information related to the depths of the 

anatomical structures of the human brain tumor imaged 

with Magnetic Resonance Imaging (MRI). The combined 

calculation of the signal resilient to interpolation and the 

Intensity-Curvature Functional provides with the 

complementary and/or additional information. The steps 

to undertake for the calculation of the signal resilient to 

interpolation are: (i) fitting a polynomial function to the 

signal, (ii) the calculation of the classic-curvature of the 

signal, (iii) the calculation of the Intensity-Curvature term 

before interpolation of the signal, (iv) the calculation of 

the Intensity-Curvature term after interpolation of the 

signal, (v) the solution of the equation of the two 

aforementioned Intensity-Curvature terms of the signal 

provides with the signal resilient to interpolation. The 

Intensity-Curvature Functional is the result of the ratio 

between the two Intensity-Curvature terms before and 

after interpolation. Because of the fact that the signal 

resilient to interpolation and the Intensity-Curvature 

Functional are derived through the process of re-sampling 

the original signal, it is possible to obtain an immense 

number of images from the original MRI signal. This 

paper shows the combined use of the signal resilient to 

interpolation and the Intensity-Curvature Functional in 

diagnostic settings when evaluating a tumor imaged with 

MRI. Additionally, the Intensity-Curvature Functional 

can identify the tumor contour line. 

 

Index Terms—Applied Computational Engineering, 

Classic-Curvature, Intensity-Curvature term, Intensity-

Curvature Functional, Polynomial Function, Re-sampling, 

Signal Resilient to Interpolation. 

 

I.  INTRODUCTION 

A.  Literature and Background 

The research presented here addresses the problem of 

the calculation of the signal resilient to interpolation [1] 

and the Intensity-Curvature Functional [1, 2] when 

studying the original signal of the Magnetic Resonance 

Imaging (MRI) of a tumor in the human brain.  

Advantages are brought to light through the combined 

use of the signal resilient to interpolation and the 

Intensity-Curvature Functional when processing the MRI 

images. More specifically, the signal resilient to 

interpolation is able to provide with complementary 

specular information of the MRI images and such 

property is novel in literature. On the other hand, the 

Intensity-Curvature Functional is able to provide with the 

advantage consisting of the identification of the tumor 

contour line, which is a signal processing task closely 

related to segmentation. Image segmentation has received 

an enormous attention in the literature and so various 

techniques have been reported. For instance, an approach 

based on multilevel thresholds [3] uses the fast 

convergence of Particle Swarm Optimization (PSO), 

together with the jumping property of simulated 

annealing. 

The discipline treated in the present manuscript, 

intersects with both applied mathematics and biomedical 

image processing. In relationship to the aforementioned 

intersection it is due to report samples of literature related 

to the topic herein addressed. For example brain tumor 

classification has been performed with an artificial neural 

network in [4]. It has been reported an approach which 

uses a modified active control method in order to perform 

left ventricle segmentation in MRI [5]. Image 

segmentation applied to MRI has been performed using 

immune-kernels modeled with infinite Gaussian mixture 

models [6]. While, MRI tumor segmentation has been 

performed with several different techniques corroborated 

by preprocessing steps [7], fractal based methodologies 

have been used to detect and segment the tumor from 

MRI [8, 9]. Also, human brain tumor boundary detection 

from MRI has been performed using a Hopfield neural 

network [10]. In this paper, the properties of the 

Intensity-Curvature Functional to detect and to segment 

the tumor contour line from MRI images has been 

observed when using the bivariate linear model function 

(see for instance Fig. 7). 

Automatic tumor MRI segmentation has been 

developed on the basis of a spatial probabilistic atlas 
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containing knowledge about brain structures and the 

result of the segmentation has been compared to manual 

and semi-automated segmentation procedures [11]. An 

application of automatic tumor segmentation, which 

combines knowledge based (KB) techniques with 

multispectral analysis has been reported in [12]. The 

multispectral analysis is used to target the suspected 

tumor in MRI images. Another approach to the semi-

automatic tumor brain segmentation from MRI images 

uses a combination of: (i) intensity-based fuzzy 

classification of voxels into tumor, and (ii) the signal 

processing techniques called snake [13]. A different 

approach to tumor segmentation uses the hypothesis that 

segmentation can be performed while processing the 

healthy brain structures instead of the areas of the brain 

affected by the tumor [14]. The aforementioned study 

aimed to distinguish between deviations (affected regions 

of the brain) from normalcy (healthy tissues). Other 

approaches reported in literature show that tumor 

segmentation can be achieved: (i) from contrast enhanced 

MRI [15, 16], (ii) using a watershed algorithm [17], and 

(iii) using a fuzzy Markovian Method [18]. At the aim to 

perform MRI human brain segmentation, an extension to 

the traditional fuzzy c-means (FCM) clustering algorithm 

was developed in [19] with the optimization aid of an 

artificial neural network; and a novel hidden Markov 

random field based approach was also reported in [20]. 

B.  The Applied Computational Enginering 

An important aspect of the mathematical procedure 

employed to calculate both of the signal resilient to 

interpolation and the Intensity-Curvature Functional is re-

sampling. Re-sampling is used in order to calculate the 

value of the signal, through the polynomial function, at 

the intra-node coordinate. 

The signal resilient to interpolation and the Intensity-

Curvature Functional results from the following 

mathematical procedure applied to the original MRI.  

The first step is that one of fitting a model polynomial 

function to the MRI signal. The first step is necessary in 

order to build the continuum from a discontinuous sequel 

of sampled signal intensity values.  

The second step is that one of the calculation of the 

Classic-Curvature of the MRI signal and such calculation 

is performed through the computation of all of the 

second-order derivatives of the Hessian of the model 

polynomial function fitted to the signal data. The result of 

the second step is the Classic-Curvature of the MRI 

signal, calculated through the sum of all of the 

aforementioned second-order derivatives.  

The third step is that one of the calculation of the 

Intensity-Curvature term before interpolation which is the 

math expression of the integral of the product between: (i) 

the value of the signal and (ii) the value of the Classic-

Curvature. In the calculation of the Intensity-Curvature 

term before interpolation both of the signal and the 

Classic-Curvature are calculated (through the polynomial 

function) at the node of the sampling grid.  

The fourth step consists of the calculation of the 

Intensity-Curvature term after interpolation. Such term is 

obtained through the integral of the product between: (i) 

the value of the signal and (ii) the Classic-Curvature. In 

the calculation of the Intensity-Curvature term after 

interpolation both of the signal and the Classic-Curvature 

are calculated at the re-sampling coordinate chosen in 

between the nodes of the sampling grid.  

The Intensity-Curvature Functional is the result of the 

ratio between the: (i) the Intensity-Curvature term before 

interpolation, and (ii) the Intensity-Curvature term after 

interpolation.  

The fifth and conclusive step consists in the equation 

of the Intensity-Curvature term before interpolation and 

the Intensity-Curvature term after interpolation. The 

solution of the aforementioned equation provides with the 

math expression of the signal resilient to interpolation. 

The works reported in [1, 2] provides the reader with the 

complete mathematical procedure to calculate both of the 

signal resilient to interpolation and the Intensity-

Curvature Functional. 

A concept is due of clarification. The signal resilient to 

interpolation does not intend to convey the meaning that 

the new signal resulting from the original signal is 

unaffected by any interpolation procedures. The word 

resilient ought to be such to convey the meaning 'bounce 

back' or 'to go up again', and this signifies that the signal 

resilient to interpolation is obtained from the signal from 

which is calculated, which is the original signal. Re-

sampling the original signal can be obtained through 

interpolation and is thus subject to detriments. 

The overall procedure for the calculation of the signal 

resilient to interpolation and the Intensity-Curvature 

Functional relies on the re-sampled signal. The choice of 

the re-sampling coordinate is therefore relevant to the 

appearance of the signal resilient to interpolation and the 

Intensity-Curvature Functional.  

One more important aspect of the signal resilient to 

interpolation and the Intensity-Curvature Functional is 

their domain of application. This study shows that the 

combined use of the signal resilient to interpolation and 

the Intensity-Curvature Functional yields the applied 

computational engineering solution of the problem of 

adding complementary and/or additional information to 

the MRI signal when studying a tumor case. Along the 

line of thought that relies on the hypothesis that in 

biomedical diagnostic settings it is possible, through 

mathematical engineering procedures applied to the 

Magnetic Resonance Signal, to obtain additional and/or 

complementary information, the study herein presented, 

show that the hypothesis is true when using the signal 

resilient to interpolation and the Intensity-Curvature 

Functional. 

In the theory section of this paper, the fundamental 

equations for the calculation of the signal resilient to 

interpolation and the Intensity-Curvature Functional are 

presented. In the results section the signal resilient to 

interpolation and the Intensity-Curvature Functional of 

the human brain tumor imaged with MRI are presented. 

In the discussion section, the theoretical implications of 

the combined use of both of the signal resilient to 

interpolation and the Intensity-Curvature Functional of 
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the MRI are outlined, and in the conclusion section 

benefits and limitations are stated. 

 

II.  THEORY 

Let f(x) be a polynomial function in n dimensions, with 

n = 1…k, where k is an integer positive number.  

 

 

Let the Hessian of the polynomial function be defined 

as: 

 

 

 

 

 

 

 

 

 

 

 

 

Let the Classic-Curvature of the polynomial function 

be defined as: 

 

 

 

 

Let the Intensity-Curvature terms before interpolation 

(E0) and after interpolation (EIN) be defined through 

equations (4) and (5) respectively: 
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Solving the equation E0 = EIN in f(0) yields the signal 

resilient to interpolation:  

 

 

 

The signal resilient to interpolation is a function of the 

variable x, therefore changing in between the intra node 

coordinates. The signal resilient to interpolation can be 

calculated under the assumption that the model 

polynomial function fitted to the original signal benefits 

of the property of second-order differentiability in its 

interval of definition. The definition of the Intensity-

Curvature Functional is: 
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III.  RESULTS 

A.  The Signal Resilient to Interpolation 

This section shows the comparison of the original MRI 

with the signal resilient to interpolation obtained using a 

bivariate cubic Lagrange polynomial fitted to the image 

data and when re-sampling of (x, y) = (0.01mm, 0.01mm).  

Figs. 1 through 4 illustrate the difference between the 

previously stated two sets of images when introducing the 

benefit provided through the signal resilient to 

interpolation. The bivariate cubic Lagrange polynomial is 

parametric in the value of the constant used in the 

convolution of the pixel intensity values and the value of 

the constant was set to -2.54. Fig. 1 demonstrates that the 

signal resilient to interpolation can have a dual purpose. 

One purpose is to present the specular negative of the 

original MRI (see Fig.1b versus Fig. 1a, and Fig. 1d 

versus Fig. 1c). The other purpose is that one of 

highlighting the tumor features. The comparison of Fig. 

1a and Fig. 1b, show the contour line of the tumor along 

with the tumor inner structures which are more visible in 

Fig. 1b. Specifically, the tumor inner structures are 

colored in bright and dark. The pressure that the tumor 

exercises on the ventricles is also visible. It is due to 

remark that the images in Fig. 1 have been brightness-

contrast adjusted so to reveal the details. And the 

observation of the images is in favor to the signal resilient 

to interpolation in a two folded manner. 

 

 

Fig 1: The tumor MRI is shown in (a) and in (c), the matrix size is 
512×512 pixels with 0.49mm × 0.49mm as pixel size. In (b) and in (d) 
is shown the signal resilient to interpolation of the images seen in (a) 

and in (c) respectively, with a visible highlight on the region of the 
tumor with the affected area characterized by the dark regions most 

likely showing fluids like blood and water. The images were cropped so 

to show the regions of interest. 

One is that the distinction between gray and white 

matter of the brain is more visible in the signal resilient to 

interpolation images in (b) and in (d); and the other one is 

that the observation of (a) versus (b) and of (c) versus (d) 

demonstrates higher level of details in the signal resilient 

to interpolation images which would not be otherwise 

observable in the original MRI. The aforementioned 

(b) 

(d) 

(a) 

(c) 
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observation is more evident when looking at the images 

in (a) and in (b) of Fig. 1. 

Fig. 2 serves the purpose to illustrate that, with 

brightness-contrast enhancement set to a particular level, 

it is possible for the signal resilient to interpolation 

images (see Fig. 2b and Fig. 2d) to display in negative, 

the same level of details of the original MRI. The contour 

line of the tumor is well discernible in (a) and in (b) along 

with the details relevant to the fluids shown in bright and 

dark in the two images. It is interesting to note the slight 

difference between the image in Fig. 2a and the image in 

Fig. 2b, specifically the tumor structure seen in (a) is 

missing at the location indicated by the dark arrow in (b). 

In both of the images seen in (c) and in (d) the region of 

the tumor is well demarcated showing the affection of the  

 

 

Fig 2: The tumor MRI is shown in (a) and in (c), whereas the signal 
resilient to interpolation is shown in (b) and in (d). The matrix size is 

512×512 pixels with 0.39mm × 0.39mm as pixel size. Likewise in Fig. 
1, data in (a) and in (c) are fitted with the bivariate cubic Lagrange 

model function and re-sampled with (x, y) = (0.01mm, 0.01mm). The 

signal resilient to interpolation highlights on the region of the tumor 
with specific focus on the fluids which are shown in dark and in bright 

in the images. In this figure though the signal resilient to interpolation 
acts as a negative of the original MRI, and the level of details of the 

signal resilient to interpolation is not superior to the MRI of (a) and (c). 

The images were cropped so to focus on the regions of interest. 

 

 

 

 

Ventricles because of the presence and the extension of 

the tumor. In summary, Fig. 2 is a case in which is 

objective to report that the signal resilient to interpolation 

offers complementary information but not additional 

information in reference to the original MRI. 

Fig. 3 shows a typical case of complementariness 

between the signal resilient to interpolation and the MRI. 

The brightness-contrast enhancement has been set to 

values making a comparison which is on the same basis 

of objectiveness. While looking at the MRI of Fig. 3a and 

Fig. 3c the following observations can be made. The 

extension of the tumor, the pressure exercised by the 

tumor onto the ventricles, the fluids which are 

presumably water and/or blood, and the nuances of the 

region of the tumor. Within the context of 

complementariness, the signal resilient to interpolation 

shown in Fig. 3b and in Fig. 3d confirms the anomaly 

seen in MRI. Specifically, when looking at the regions 

inside the white circles in Fig. 3 it is possible to have 

confirmation of the extension of the tumor in reference to 

the tumor contour line (see bottom part of the image 

located inside the circles).  

 

 

Fig 3: The MRI with the tumor is shown in (a) and in (c), the signal 
resilient to interpolation is shown in (b) and in (d). The complementary 

information provided by the signal resilient to interpolation focuses on 
the bright and dark regions of the tumor seen inside the circles, most 

likely fluids like blood and/or water. The level of details seen in (b) and 

in (d) is similar to the original MRI. The matrix size is 512×512 pixels 
with 0.39mm × 0.39mm as pixel size. The images were cropped so to 

focus on the regions of interest. The model polynomial function fitted to 
the images shown in (a) and in (c) is the bivariate cubic Lagrange and 

the intra-pixel re-sampling coordinate is (x, y) = (0.01mm, 0.01mm). 

 

(a) 

(c) 

(b) 

(d) 

(a) 

(c) 

(b) 

(d) 
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Fig 4: The original MRI is shown in (a) and in (c) and the signal 
resilient to interpolation is shown in (c) and in (d). The level of details 

of the tumor region is equally visible in the signal resilient to 

interpolation images in (b) and in (d) when compared to the MRI in (a) 

and in (c). The dark region is presumably blood and/or water. The 
matrix size of the images is 512×512 with pixel size of 0.49mm × 

0.49mm. The images in (a) and (c) were fitted with the bivariate cubic 
Lagrange polynomial and they were re-sampled of the misplacement (x, 

y) = (0.01mm, 0.01mm). 

An interesting observation visible in Fig. 3 is that the 

Cerebrospinal Fluid (CSF) is imaged with the same color 

(in dark color) of the fluids of the tumor (see (a) and (c)), 

and as far as regards this, the opposite is visible (in bright 

color) in the images of the signal resilient to interpolation 

in Fig. 3b and in Fig. 3d. 

The dark nuances seen in Fig. 4 demonstrate, as far as 

regards the signal resilient to interpolation images seen in 

(b) and in (d), that the level of details of the tumor is 

quite similar to the MRI image seen in (a) and in (c) 

respectively. The images in Fig. 4 have been adjusted to 

the level of brightness-contrast enhancement so to make 

an objective comparison. The tendency seen in Fig. 2, Fig. 

3 and Fig. 4 is though, that one of complementariness of 

the signal resilient to interpolation to the MRI, whereas in 

Fig. 1 the tendency of the signal resilient to interpolation 

is that one of offering additional information about the 

tumor to the MRI. 

B.  The Intensity Curvature Functional 

Fig. 5 shows the combined use of the signal resilient to 

interpolation and the Intensity-Curvature Functional. The 

signal resilient to interpolation was calculated when 

fitting the parametric bivariate quadratic B-Spline model 

function [21-23] (see (c) and (d)) to the original MRI 

shown in (a) and in (b), whereas the Intensity-Curvature 

Functional (see (e) and (f)) was calculated when fitting 

the bivariate linear model function. The misplacement 

used to re-sample the images so to obtain Fig. 5c and Fig. 

5d is (x, y) = (0.9mm, 0.9mm), with the value of the 

parametric constant set to 2.54, and the misplacement 

used to re-sample the images so to obtain the images seen 

in Fig. 5e and in Fig. 5f is (x, y) = (0.01mm, 0.01mm). 

Fig. 6 shows the Intensity-Curvature Functional 

calculated on the basis of the original MRI seen in Fig. 1a 

and Fig. 1c. As anticipated earlier the main characteristic 

of the Intensity-Curvature Functional is that one of 

displaying the third dimension perpendicular to the image 

plane. 

The third dimension reveals information about the 

anatomical structures of the human brain and as such also 

the tumor structures are highlighted. In this section of the 

paper, the Intensity-Curvature Functional was calculated 

when fitting to the MRI the bivariate linear model 

function and the intra-pixel re-sampling coordinate is: (x, 

y) = (0.5mm, 0.5mm). An important characteristic shown 

in Fig. 7 is the highlight of the fluids of the tumor. 

When looking at Fig. 7 in comparison to Fig. 2a and 

Fig. 2b, it is possible to recognize that what was seen in 

the aforementioned pictures in bright and dark is here 

reproduced with an elevation from the imaging plane and 

such elevation adds information to the original MRI as far 

as regards the anatomy of the tumor structures. In general, 

it is visible from the pictures reported in this section that 

the most important capability of the Intensity-Curvature 

Functional is that one of presenting information which is 

not observable in the original MRI and such information 

pertains to the third dimension given by the Intensity-

Curvature Functional to the anatomical structures of the 

brain and more specifically to the anatomy and the details 

of the tumor.  

 

 

Fig 5: The original MRI is shown in (a) and in (b). The signal 
resilient to interpolation is located in the images shown in (c) and in (d). 

The Intensity-Curvature Functional is shown in (e) and in (f). The 

matrix size of the images is 512×512 with pixel size of 0.45mm × 

0.45mm. While the signal resilient to interpolation clearly shows 

complementary information to the original MRI, the Intensity-Curvature 

Functional adds information to the original MRI when showing the 
depths of the anatomical structures of the tumor. The depths are more 

visible in (e) than in (f). The images were cropped so to highlight the 

regions of interest.

(a) 

(c) 

(b) 

(d) 

(a) (b) 

(c) (d) 

(e) (f) 
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Fig 6: The Intensity-Curvature Functional of the MRI seen in Fig. 1a 
is shown in (a), whereas the Intensity-Curvature Functional of the MRI 

seen in Fig. 1c is shown in (b). The elevation of the cortex with respect 

to the cerebrospinal fluid (CSF) is visible from the pictures and also the 

contour line of the ventricles appears as such to give the perception of 
the third dimension perpendicular to the image plane. The tumor 

structures are highlighted in the regions inside the white ellipses (see 

Fig. 1a and Fig. 1c for reference). 

 

Fig 7: The Intensity-Curvature Functional of the MRI shown in Fig. 
2a is on display in (a), whereas the Intensity-Curvature Functional of the 

MRI shown in Fig. 2c is shown in (b). The characteristics of the images 
in (a) and in (b) is that of presenting the third dimension of the tumor 

structures, along with the CSF (see (b)), which appears elevated along 

the axis perpendicular to the imaging plane. 

Clearly, Fig. 7 shows that the Intensity-Curvature 

Functional is capable to identify the tumor contour line. 

In Fig. 8 the accent is on the ventricles, the CSF and the 

anatomical structures of the tumor. The pressure 

exercised by the tumor on the ventricles and the third 

dimension of the tumor structures are visible. Specifically, 

what was seen in white (most presumably fluids) in Fig. 

3a and in Fig. 3c is here seen in Fig. 8a and in Fig. 8b 

with an elevation from the image plane. It is worth 

mentioning that the combined information provided 

through the signal resilient to interpolation images seen in 

Fig. 3b and in Fig. 3d, which is complementary to the 

original MRI, is now corroborated with the additional 

information provided through the Intensity-Curvature 

Functional shown in Fig. 8a (calculated from Fig. 3a) and 

the Intensity-Curvature Functional shown in Fig. 8b 

(calculated from Fig. 3c). 

 

Fig 8: The Intensity-Curvature Functional of Fig. 3a is shown in (a) 
and the Intensity-Curvature Functional of Fig. 3c is shown in (b). These 

pictures present another evidence of the capability of the Intensity-

Curvature Functional to build the third dimension perpendicular to the 
image plane. In the specifics, the ventricles and the CSF are shown with 

an elevation when compared to the cortex and more specifically when 

compared with the anatomy of the tumor (see regions inside the white 
ellipses). 

The additional information provided through the 

Intensity-Curvature Functional images shown in Fig. 9 is 

relevant to the white nuances seen in Fig. 4a and Fig. 4c. 

The Intensity-Curvature Functional in the case presented 

in Fig. 9 is able to build a third dimension on the basis of 

what in Fig. 4 are shown as fluids of the tumor. This is 

not the first instance as it was seen in the previous figures 

seen in this section, which show that the fluids can have a 

third dimension extracted by the Intensity-Curvature 

Functional. 

 

 

Fig 9: The Intensity-Curvature Functional of the MRI shown in Fig. 
4a is shown in (a), and the Intensity-Curvature Functional of the MRI 

shown in Fig. 4c is shown in (b). A remarkable feature of the Intensity-
Curvature Functional images is the making of the third dimension of the 

white nuances seen in Fig. 4 (see regions of the tumor inside the white 

ellipses). Also, the contour line of the ventricles is elevated from the 

inner CSF and the cortical region appears at the same elevation of the 

ventricles (see the contour white line). 

 

IV.  DISCUSSION 

The major findings of the research herein presented are 

congruent with the following concept. An image 

processing algorithm which is intended to perform feature 

extraction from the original image cannot extract any 

realities from the original image which do not exists in 

the image. Think of the previously stated concept 

likewise filter theory. A filter applied to a signal can 

extract frequencies located in the signal but cannot make 

frequencies out of the signal that are not located in the 

signal. The congruency of the aforementioned logic is in 

(a) 

(b) 

(a) (b) (a) (b) 

(a) (b) 
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harmony with the results seen from the calculation of the 

signal resilient to interpolation from the original MRI. 

We have seen through the results presented in this paper 

that the tendency of the signal resilient to interpolation is 

to reproduce the MRI with similar, if not equal, level of 

details. However the reproduction of the details of the 

signal resilient to interpolation happens in a domain 

which is not the same as the one of the MRI, and thus it 

was seen that the signal resilient to interpolation adds 

complementary but not additional information to the 

original MRI. Nevertheless, the true novelty in this paper 

is the capability of the Intensity-Curvature Functional [24, 

25] to perform feature extraction from the MRI and to 

make of the MRI a new domain where details are shown, 

which are not readily observable in the original domain. 

The previously stated novelty breaks the grounds of the 

congruency recalled at the beginning of this discussion 

and proposes the Intensity-Curvature Functional as the 

mathematical engineering tool capable to extract realities 

in the images which would not be observable otherwise. 

The question for the future is still along the line of 

thought of the congruency of this research with the 

theoretical statement that forbids the creation of realities 

from non-existing ones. In other words, the question for 

the future of the herein presented study is in the making 

of the additional evidence that the reality created by the 

Intensity-Curvature Functional is indeed present already 

in the original MRI and needs to be extracted. The third 

dimension seen in the Intensity-Curvature Functional 

images, however, at the present stage of the research, 

breaks the grounds of congruency and brings the results 

to a higher level of testable validity. Should the third 

dimension seen in the images through the Intensity-

Curvature Functional belong to a reality not located in the 

MRI, then the Intensity-Curvature Functional is not a 

feature extractor but an instrument placed on a different 

level of congruency as far as regards the one to which the 

signal resilient to interpolation belongs to. 

One aspect which is relevant to the methodological 

approach to the diagnosis made on the basis of the aid of 

the signal resilient to interpolation and the Intensity-

Curvature Functional to the MRI is the preparedness of 

the physician reading the images. In the cases presented 

in this paper, the constant parameter of the polynomial 

model functions was set to the value of 2.54 for the 

bivariate quadratic B-Spline polynomial, and to the value 

of -2.54 for the bivariate cubic Lagrange polynomial. The 

signal resilient to interpolation images tend to appear as 

the specular negative of the original MRI. This fact needs 

to have the physician ready to interpret the signal resilient 

to interpolation images but the advantage is that the 

evaluation of the signal resilient to interpolation images 

happens in parallel with the MRI. Although not reported 

here, it is possible to obtain signal resilient to 

interpolation images with the gray scale level consistent 

with that one of the MRI. For instance signal resilient to 

interpolation images which are very much the same as the 

MRI images. 

A few remarks should be made concerning the 

following observation. Fig. 1c, Fig. 3c and Fig. 4c have 

their Intensity-Curvature Functional calculated and 

displayed in Fig. 6b, Fig. 8b and Fig. 9b respectively. As 

it can be noted the aforementioned Intensity-Curvature 

Functional figures show a region of notable level of 

flatness. Such region is corresponding in the original MRI 

to a region where the tumor structures are also flat. 

Conversely, it is possible to observe a notable tendency 

of the Intensity-Curvature Functional images to display 

the third dimension in correspondence to the MRI images 

having complex structures made of, or surrounded by, 

tumor fluids such as water and blood.  

An interesting behavior is discernible in the signal 

resilient to interpolation of the MRI shown in Fig. 2a, Fig. 

2c, Fig. 5a, Fig. 5b, and the Intensity-Curvature 

Functional of Fig. 7a and Fig. 7b. While in Fig. 2 the 

signal resilient to interpolation responds with the specular 

negative imaging shown in Fig. 2b and in Fig. 2d, in Fig. 

5 and in Fig. 7 the Intensity-Curvature Functional 

responds with a clear and neat third dimension. In Fig. 5 

and in Fig. 7 the tumor shows anatomical structures as 

well as nuances attributable to fluids. In both of the cases 

seen in Fig. 5 and in Fig. 7 the Intensity-Curvature 

Functional responds similarly, thus extracting the third 

dimension.  

 

V.  CONCLUSION 

The most important benefit of the signal resilient to 

interpolation and the Intensity-Curvature Functional is to 

provide the diagnostic settings with two imaging 

instruments which expand the capability of MRI. This 

benefit was explored in this research through the study of 

an MRI tumor case.  

More benefits of the combined use of the signal 

resilient to interpolation and the Intensity-Curvature 

Functional yields the obtainment of images which favors, 

on the basis of the original MRI, both: (i) the 

reproduction under a different perspective, and (ii) the 

making of a different reality. The results presented in this 

piece of research, which studies a tumor case, show that 

the combined use of the signal resilient to interpolation 

and the Intensity-Curvature Functional places the 

emphasis on the anatomy of the tumor, the fluids (most 

presumably water and blood) of the tumor and the 

nuances of the pathology. Overall, the role of the signal 

resilient to interpolation, which was seen through the 

results presented herein, show complementary 

information to the original MRI, whereas the Intensity-

Curvature Functional show additional information to the 

original MRI.  

On a theoretical basis, one benefit of the signal 

resilient to interpolation and the Intensity-Curvature 

Functional is the fact that both of them can be calculated 

on any model polynomial function which has of the 

property of second order differentiability. 

As far as the limitations are concerned, the one which 

is most relevant is the complexity of the mathematical 

procedures which are necessary to formulate both of the 

signal resilient to interpolation and the Intensity-

Curvature Functional. Nevertheless, the software 
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implementation of the math formulations is also a 

limitation, because of the length of the math formulae. 
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