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Abstract— The search for a good representation is a 

central problem of image processing, this paper explores 

a new transform type to solve this problem. Color Image 

compression is now essential for applications such as 

transmission and storage in data. In the field of medical 

diagnostics, interested parties have resorted increasingly 

to color medical imaging. It is well established that the 

accuracy and completeness of diagnosis are initially 

connected with the image quality. This paper introduces 

an algorithm for color medical image compression based 

on the bandelet transform coupled with SPÏHT coding 

algorithm;bandelet transform is a new method based on 

capturing the complex geometric content in image. The 

goal of this paper is to examine the capacity of this 

transform proposed to offer an optimal representation 

for image geometric, In order to enhance the 

compression by our algorithm, we have compared the 

results obtained with bandelet transform application in 

satellite image field. For this reason, we evaluated two 

parameters known for their calculation speed. The first 

parameter is the PSNR; the second is MSSIM (structural 

similarity) to measure the quality of compressed image.  

We concluded that the results obtained are very 

satisfactory for color medical image domain 

 

Index Terms— Bandelet transform, Color image, 

Optical flow, Quadtree segmentation, SPIHT coder 

 

I. INTRODUCTION  

Today, distance diagnostic medical system, digital 

library and Internet are applied popularly. One of the 

most important problems in such applications is how to 

store and transmit images [1]. The medical diagnostic 

field is interested by the researchers. It is well 

established that the accuracy and precision of diagnostic 

are initially related to the image quality.  

Finding efficient geometric representations of images 

is a central issue in improving the efficiency of image 

compression. Many ideas have already been studied to 

find new bases can capture geometric regularity image. 

Image representations in separable orthonormal bases 

such as Fourier, local Cosine or Wavelets can not take 

advantage of the geometrical regularity of image 

structures. Standard wavelet bases are optimal to 

represent functions with piecewise singularities; 

however, they fail to capture the geometric regularity 

along the singularities of edges or contours because of 

their isotropic support. To exploit the anisotropic 

regularity along edges, the basis must include elongated 

functions that are nearly parallel to the edges. Multi-

scale geometric analysis (MGA) developed recently 

provides a group of new basis that has anisotropic 

supports such as Curvelets [2-7], A Curvelet frame is 

composed of multiscale elongated and  related wavelet 

type functions, for this reason, In this paper, we 

introduce a new type of transform, called bandelet 

transform by E Le Pennec and Stéphane Mallat[8], this 
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transform is more recently developed method of 

compression technique, which decompose the image 

along multiscale vectors that are elongated in the 

direction of a geometric flow. This geometric flow 

indicates directions in which the image gray levels have 

regular variations; bandelet bases can represent the 

geometric regular images efficiently. 

 

II. THE BANDELET TRANSFORM 

Bandelet transform, introduced by Le Pennec and 

Mallat [9] built a base adapted to the geometric content 

of an image. The bandelets are obtained from a local 

deformation of space to align the direction of regularity 

with a fixed direction (horizontal or vertical) and is 

reduced to a separable basis [10], [11]. 

 

 
 

Figure 1.  Deformation of horizontal field according to a 

geometric flow. 

 

 

2.1 Flow-curve Relationship 

There is a constant correspondence between the flow 

along the vertical direction and curves whose tangent is 

never vertical; the flow associated with this curve is 

given by flow:  
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: Slope of optical flow. 

 

We can generate the basic test bandelet according to 

the flow and geometric regularity of each sub-block. If 

there is no flow geometry in the sub-blocks, this means 

that the sub-block is uniformly regular so that we can 

use the classical separable wavelet basis for treating this 

sub-block. If not, the sub-block must be processed by 

the bandelet.  

Also, the variation along geometric flow defined in 

the sub-block means that we can deform the sub-block 

in horizontal or vertical direction; in this case we can say 

that the sub-block is uniformly regular. [12]. 

Calculates the Lagrangian allows us to determine sub-

block that contains the singularity [13]. 
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 : Lagrangian. 

T : Quantifiction step. 

jGR : is the number of bits to code the optical flew in 

each square. 

jBR : is the number of bits to code the quantized 

bandelet coefficients. 

Rf : is the reconstructed 1D signal by thresholding 

the coefficients smaller thanT . The optimal direction in 

each dyadic sub-region can be defined as 

 

 TfLopt ,,minarg                                 (3) 

 

Then the corresponding 1D wavelet coefficients 

to opt , is defined as bandelet coefficients and the 

optimal direction opt , is recorded for reconstructing 

image. [14] 

 

2.2 Quadtree Segmentation 

Segmentation operation it is a division successive of 

image space that allows us to have a set of sub-blocks. 

 
Figure 2.  Example of quadtree segmentation 

The operating diagram of the quadtree segmentation is the 

following 

 
 

Save decomposition 

End 

Stopping test:

LL 
~

 

 

Yes No 

Start 

Step quadtree decomposition T 

 

Decomposition 

 

Read the input image N*N 

 

 

Figure 3.  Segmentation quadtree diagram functional 
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The optimal segmentation is defined with [15]: 
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Where 
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 iSL0  : Lagrangian of sub-blocks. 

 

2.3 The Operator of Deformation 

The deformation operation is a local operation on a 

block that contains a curve singularity to align or correct 

in a direction horizontal and vertical. 

 
 

 

 

 
(a)                                                  (b) 

 
 

   
(c)                                                  (d) 

 

Figure 4.  Example of model horizon and deformation of the 

field according to a geometric flow. Image distortion: (a) an 

image having a horizontal flow, (b) its image by the operator 

W, (c) an image having a vertical flow, (d) the image by the 

operator W. 

 

Deformation operation gives a wavelet orthonormal 

basis of )(2 L : 
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The horizontal wavelet 
H

nj ,  have not vanishing 

moments along contour, to be replaced by new functions: 
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This is called bandeletization [16], [17]. 

The orthonormal basis of bandelet of field warping is 

defined by: 
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III. OPERATIONAL DIAGRAM 
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Figure 5.  Bandelet transform operational diagram 

 

 

IV. EZW CODING SCHEME 

The algorithm proposed by Shapiro [18], the design of 

this algorithm is based on two pass with a calculated 

threshold T, we determine the maximum value of the 

wavelet coefficients,  so in the first dominant pass, if the 

coefficient absolute value is greater than the threshold, 

so we obtained a positive code or negative code 

according to the sign of coefficient, if the absolute value 

is less, we check the descendants coefficient, if you have 

a coefficient with absolute value above the threshold, we 

obtained IZ code, else we have a code ZT. 

In the second pass, the comparison is made in the 

middle of the interval [Tn, 2Tn[, if this coefficient 

belongs to the first interval, so we are a transmission of 

the bit 1, if this coefficient belongs to the second interval, 

so there are a transmission of bit 0.  
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V. SPIHT CODING SCHEME 

The SPIHT algorithm proposed by Said and Pearlman 

in 1996 [19], ameliorate progressive algorithm is 

compared to the EZW algorithm, based on the creation 

of three list SCL, ICL and ISL with a calculated 

threshold T, each time you make a scan on both lists 

SCL and ISL and that for the classified the significant 

coefficient in the list of significant coefficient. 

 

VI. QUALITY EVALUATION PARAMETER  

The Peak Signal to Noise Ratio (PSNR) is the most 

commonly used as a measure of quality of 

reconstruction in image compression. The PSNR were 

identified using the following formulate: 
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Mean Square Error (MSE) which requires two MxN 

gray scale images I  and Î  where one of the images is 

considered as a compression of the other is defined as: 

 

• The PSNR is defined as: 
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Usually an image is encoded on 8 bits. It is 

represented by 256 gray levels, which vary between 0 

and 255, the extent or dynamics of the image is 255. 

 

PSNR of a color image (RGB) is defined by the 

equation: 
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• The structural similarity index (SSIM): 

The PSNR measurement gives a numerical value on 

the damage, but it does not describe its type. Moreover, 

as is often noted in [20], [21], it does not quite represent 

the quality perceived by human observers. For medical 

imaging applications where images are degraded must 

eventually be examined by experts, traditional 

evaluation remains insufficient. For this reason, 

objective approaches are needed to assess the medical 

imaging quality. We then evaluate a new paradigm to 

estimate the quality of medical images, specifically the 

ones compressed by wavelet transform, based on the 

assumption that the human visual system (HVS) is 

highly adapted to extract structural information. The 

similarity compares the brightness, contrast and 

structure between each pair of vectors, where the 

structural similarity index (SSIM) between two signals x 

and y is given by the following expression: 

       yxsyxcyxlyxSSIM ,,,,                 (11) 

 

Finally the quality measurement can provide a spatial 

map of the local image quality, which provides more 

information on the image quality degradation, which is 

useful in medical imaging applications. For application, 

we require a single overall measurement of the whole 

image quality that is given by the following formula: 
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Where I  and Î  are respectively the reference and 

degraded images, iI  and iÎ  are the contents of images 

at the i-th local window.  

M : the total number of local windows in image. The 

MSSIM values exhibit greater consistency with the 

visual quality. 

 

VII. ALGORITHM 

Before applying bandelet transform on the color 

image, the RGB color images are converts into YCbCr 

form, and then applying bandelet transform on each 

layer independently, this means each layer from YCbCr 

are compressed as a grayscale image. Figure-5 shows 

bandelet transform on each YCbCr layer. YCbCr refers 

to the color resolution of digital component video 

signals, which is based on sampling rates. In order to 

compress bandwidth, Cb and Cr are sampled at a lower 

rate than Y, which is technically known as "chroma 

subsampling." 

 

 
 

Figure 5. Complete steps image compression technique 

using bandelet transform (DBT) coupled with SPIHT 

 

This means that some color information in the image 

is being discarded, but not brightness (luma) information. 

We obtain the best rate of compression using the rich 

less layer for the chromatic composante Cb and Cr. 
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When the decomposition image is obtained, we try to 

find a way to code the bandelet transform into an 

efficient result, taking redundancy and storage space into 

consideration. After,we apply SPÏHT algorithm on each 

layer (y,Cr,Cb) independently . 

 

VIII. RESULTS AND DISCUSSION 

We are interested in this work to the medical images 

compression, that we applied algorithm (DBT+SPIHT), 

(DBT+EZW). For this, we chose sets of images 

(PEPPERS, MRI, RETINOGRAPHIC, SATELLITE) 

images gray level size 512x 512 (color) encoded on 8 

bits per pixel. These images are taken from the GE 

Medical System (database) [22]. The importance of our 

work lies in the possibility of reducing the rates for 

which the image quality remains acceptable. Estimates 

and judgments of the compressed image quality are 

given by the PSNR evaluation parameters and the 

MSSIM similarity Index. 

 

 
(a) 

 

 
(b) 

 

  
(c)                                              (d) 

 

Figure 6.  (a). MRI, (b). RETINOGRAPHIC , (c). PEPPERS,  

(d). SATELLITE original images 

 

 

We will in this section applied bandelet transform on 

these images contain a lot of data redundancy; we 

present the performance of different threshold using two 

incremental encoders to EZW and SPIHT image 

compression. The image is compressed for the different 

bits per pixel. 

Our work is divided into two parts is to make a 

comparative study between different threshold values for 

MRI image and applying after threshold how permit us 

to have a important value of PSNR. For each application 

we vary rate of 0.25 to 2 values and calculate the PSNR 

and MSSIM. 

To show the performance of the proposed method, we 

will now make a comparison between these different 

algorithm ((DBT (T=10)+CDF9/7+EZW), (DBT 

(T=20)+CDF9/7+EZW); (DBT (T=30)+CDF9/7+EZW); 

(DBT (T=10)+CDF9/7+SPIHT); (DBT 

(T=20)+CDF9/7+SPIHT); (DBT 

(T=30)+CDF9/7+SPIHT)). For each application we vary 

the bit-rate 0.25 to 2, and we calculate the PSNR and 

MSSIM. We chose MRI image gray level size 512x512 

encoded on 8 bits per pixel. The results obtained are 

given in Table 1. 

 

 

 

 

 

Table 1 PSNR and MSSIM variation using bandelet transform coupled by EZW coder (MRI) 

 

Rc (bpp) 
DBT(T=10)+CDF9/7+ EZW DBT(T=20)+ DF9/7+ EZW DBT(T=30)+ CDF9/7+ EZW 

PSNR(dB) MSSIM PSNR(dB) MSSIM PSNR(dB) MSSIM 

0.25 29.64 0.36 30.08 0.35 30.37 0.33 

0.5 30.32 0.14 30.76 0.13 31.25 0.11 

0.75 32.48 0.12 32.59 0.14 32.45 0.20 

1 32.46 0.35 33.58 0.37 33.66 0.40 

1.5 33.20 0.31 33.55 0.59 33.93 0.62 

2 34.65 0.38 34.05 0.49 34.40 0.52 
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(a)                                                                                      (b) 

Figure 7.  Numerical results PSNR and MSSIM of compression MRI image by bandelet transform coupled with EZW coder : (a) 

PSNR results , (b) MSSIM results 

 

Visually, from the curves, We note that the 

(DBT(T=30)+CDF9/7) coupled with EZW allow us to 

have better results (good image reconstruction) so a 

better image visual quality and this is proved by higher 

PSNR = 34.40 dB value for 2bpp, this means good 

quality image after  reconstruction. 

 

In order to evaluate PSNR results, we opted to other 

coder type  named ‗SPIHT coder‘, we use this type for 

compression MRI image gray level size 512x 512 

encoded on 8 bits per pixel. This image is taken from the 

GE Medical System database [22]. The results are 

showed in figure 8. 

 

Table 2 PSNR and MSSIM variation using bandelet transform coupled by SPIHT (MRI) 

 

Rc (bpp) 
DBT(T=10)+CDF9/7+SPIHT DBT(T=20)+ CDF9/7+SPIHT DBT(T=30)+ CDF9/7+SPIHT 

PSNR(dB) MSSIM PSNR(dB) MSSIM PSNR(dB) MSSIM 

0.25 30.85 0.1329 31.81 0.18298 32.47 0.27943 

0.5 31.44 0.67249 32.73 0.62357 32.52 0.59355 

0.75 32.84 0.63486 32.95 0.5648 32.79 0.54327 

1 33.74 0.28527 33.06 0.48378 32.89 0.45895 

1.5 34.60 0.36788 33.09 0.29702 33.26 0.29201 

2 35.09 0.44261 34.09 0.35614 33.81 0.37073 
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(a)                                                                                     (b) 

Figure 8.  Numerical results PSNR and MSSIM of compression MRI image by bandelet transform coupled with SPIHT coder : (a) 

PSNR results , (b) MSSIM results 
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By comparing the different values of PSNR and 

MSSIM, we note that (DBT(T=10)+CDF9/7) coupled 

with SPIHT allow us to have better results compared to 

other threshold (T) and higher PSNR = 35.09 dB means 

good quality image after reconstruction. In the following, 

we present the compressed MRI images quality for 

different bit-rate values (number of bits per pixel) by 

(DBT(T) + SPIHT) and (DBT(T) + EZW) algorithm for 

different methods 

 

 
 

Figure 9.  Compressed MRI images by DBT + SPIHT algorithm for different methods 

 

After showing the performance of the algorithm 

(DBT(T=10)+CDF9/7) coupled with SPIHT) for MRI 

image. Now in this study, we subsequently generalize 

and apply our algorithm to the sets of images of the GE 

Medical Systems database (PEPPERS, 

RETINOGRAPHIC and SATELLITE) in order to 

specify the type of image adapted to the algorithm. To 

investigate the influence of the choice of threshold and 

progressive encoder, we presents the results of 

compression images obtained after application of our 

algorithm. These results are obtained with a 2 bpp bite-

rate and calculate the evaluation (PSNR, MSSIM) 

parameters. The results are given in figure10. 

 
PSNR=35.91                        PSNR=37.91 

MSSIM=0.79153                    MSSIM= 0.72741 
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PSNR=30.26 

MSSIM=0.45616 

 

Figure 10. Compressing of different images by bandelet 

transform (T=10) using CDF9/7 and SPIHT coding for 2bpp. 

 

According to the PSNR and MSSIM values, we note 

that from (DBT(T=10)+CDF9/7+SPIHT), TOREX 

image reconstruction becomes almost perfect, and better 

than to the others images. 

 

IX. CONCLUSION 

In this paper, bandelet transform is used to capture 

effectively the complex geometric content in image. To 

arrive at this objective we combined this transform with 

EZW and SPIHT coder to compressed color image gray 

level size 512x 512 encoded on 8 bits per pixel. To have 

an elevated PSNR value we vary the threshold (T=10, 

T=20 and T=30).  

Color medical image compression using the bandelet 

transform is still a vast research field. These transform 

provides a very compact representation for 

RETINOGRAPHIC image and for T=10, DBT (Discret 

Bandelet Transform) can capture more chaotic 

geometries and a major improvement compared to other 

transforms. However, research in this domain is still in 

its beginning and the current obtained results are 

difficult to evaluate. 
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